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Abstract
Cellular response to TBI is a mixture of excitotoxicity, neuroinflammation, and cell death. Biomarkers that can track these lesions
and inflammatory processes are being explored for their potential to provide objective measures in the evaluation of TBI, from
prehospital care to rehabilitation. By understanding the pathways involved, we could be able to improve diagnostic accuracy,
guide management, and prevent long-term disability. We listed some of the recent advances in this translational, intriguing, fast-
growing field. Although the knowledge gaps are still significant, some markers are showing promising results and could be
helping patients in the near future.
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Introduction

American statistics report 2.8 million medical emergency as-
sessments for traumatic brain injuries (TBI) annually. In
middle- and low-income countries, the incidence of TBI is
even higher, corresponding to the leading cause of death and
disability in young adults. Even mild trauma (mTBI), which
accounts for 80 to 90% of all injuries, can be responsible for
long-term damage. [16, 28]

Cellular response to TBI is a mixture of excitotoxicity,
neuroinflammation, and cell death. Biomarkers that can track
these lesions and inflammatory processes are being explored
for their potential to provide objective measures in the evalu-
ation of TBI, from prehospital care to rehabilitation. By un-
derstanding the pathways involved, we could be able to im-
prove diagnostic accuracy, guide management, and prevent

long-term disability. [31] We propose a short review of recent
advances on biomarkers for TBI, translating from a physio-
logical point of view to their potential usefulness.

Materials and Methods

We searched PubMed and Google Scholar, using the terms
“traumatic brain injury” and “biomarkers.” Additional studies
were sought through snowballing. Priority was given to stud-
ies in humans and recent publications (last 5 years). Only
English language papers were accepted. Articles were ana-
lyzed by title and abstract for inclusion in this review.

Results

Filtering by the last 5 years, we found 1406 articles in PubMed
and 347 in Google Scholar. Among them, a pre-selection
screened articles by their titles, considering those that were
more appropriate to this review. We analyzed their references,
identifying twelve other relevant papers (from 2004 to 2013).
The final selection included 40 articles, including 2 random-
ized trials, 6 observational studies, 10 case-control studies, 6
cohort studies, 1 report, and 15 reviews.
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Discussion

Copeptin

The C-terminal part of the vasopressin arginine prohormone,
or copeptin, is used to document the existence of a brain
concussion, reflecting the pituitary-mediated stress re-
sponse. The serum levels of copeptin increase proportion-
ally to the severity of TBI, potentially allowing to evalu-
ate the degree of injury in a situation where there are no
imaging findings.[15]

GFAP

Glial fibrillary acid protein (GFAP) is a structural astrocyte
protein released in the CSF/serum in the acute posttraumatic
phase, indicating cellular membrane injury. Levels of GFAP
and its breakdown products can also serve as parameters to
determine TBI severity. Elevations in CSF GFAPwithin 3–34
h after trauma and posterior elevation of serum levels correlate
with severe TBI (sTBI); conversely, in mTBI, only in serum
levels rise, peaking at around 24 h after trauma. Increases in
serum GFAP may predict low CPP, elevated ICP and
mortality.[8]

GFAP could also help determine patients with mTBI who
would benefit from imaging studies. A study comparing the
predictive value of multiple biomarkers for TBI-related CT
abnormalities identified that GFAP was the best choice. [1,
6, 17, 29, 32]

UCH-L1

Ubiquit in C-terminal hydrolase-L1 (UCH-L1), a
deubiquitinating enzyme that corresponds to 10% of all neu-
ronal proteins, is an injury marker expressed not only by the
CNS, but also in the peripheral nervous system, endocrine
system, tumors, and muscles. While GFAP represents astro-
cyte damage, UCH-L1 is a surrogate of neuronal damage. [1,
29, 32, 36]

Increased UCH-L1 serum levels can be identified in cases
of concussion, mTBI, and sTBI. In severe cases, however,
elevations can last longer and can also be detected in CSF.
Studies related to UCH-L1 have demonstrated that this marker
presents high sensitivity to predict intracranial lesions.

Evaluation of this parameter within the first 6 h post-trauma
can increase its predictive value for head CT findings, also
providing more accurate information about the injury severity.
Due to its low specificity, UCH-L1 is more useful as a screen-
ing to avoid unneeded CT scans. In mTBI, the association
between UCH-L1 and GFAP analysis may aid this
decision.[1, 17, 20, 29, 32]

Tau protein

Great attention has been given to the axonal phosphoprotein
named Tau, which helps modulating microtubule stability. It
is mostly expressed in axons, and also non-neural tissues, such
as the liver, kidneys, and testis. One of its isoforms, “Big” tau,
is expressed by peripheral nerves and muscles.

Neurodegenerative disorders known as tauopathies are
characterized by increased levels of tau inclusions inside neu-
rons and glial cells. Processes of axonal injury, neuronal loss,
and cellular toxicity occur in TBI and may stimulate abnormal
phosphorylation and tau aggregation to a proportional
extent.[1, 22, 23, 29]

Studies with athletes of contact sports show that exposure
to repetitive mTBI increases the risk of chronic traumatic en-
cephalopathy (CTE), which is also related to abnormal accu-
mulation of hyperphosphorylated tau protein (P-tau) in neu-
rons and glia.[22, 23, 29]

All severity degrees of TBI have already been linked to
higher levels of P-tau, both in serum and CSF samples, par-
ticularly in the acute phase. After sTBI, both CSF and serum
levels of total tau (T-tau) and P-tau are elevated, decreasing
over time until stabilization. Serum P-tau levels tend to remain
higher in the long-term, while serum T-tau levels return to
normal when compared to controls.[6, 23]

P-tau and P-tau/T-tau ratio are superior to T-tau alone for
diagnosing and grading acute TBI. However, one study did
not detect increased circulating tau after concussions among
soccer players. Such divergent findings highlight the need for
a better understanding of how trauma intensity, sample col-
lection and analyses, and other confounders can interfere with
the results related to tau levels.[23, 24]

Tau could also be useful to assess the need for imaging
after mTBI and to estimate prognosis, particularly the devel-
opment of CTE or AD similar diseases in the long-term.
Higher levels of T-Tau, P-Tau, and P-Tau/T-Tau ratio were
identified among TBI patients with positive CT findings and
signaled worse prognosis. Notably, P-tau levels and P-tau/T-
tau ratio showed a better accuracy to discriminate CT
abnormalities.[1, 22, 23, 29]

BDNF

Brain-derived neurotrophic factor (BDNF) is another potential
biomarker for TBI assessment. This neurotrophin is secreted
from neuronal and glial cells, playing an essential role in
neuroplasticity, neurogenesis, and anti-inflammatory re-
sponses. Lower serum BDNF concentrations within 36 h after
trauma is proportionally related to higher TBI severity.[7, 35]

There is evidence that BDNF may also accurately predict
patient recovery, especially in mTBI. During the first hours
after trauma, there is a transient overexpression of the mRNA
related to BDNF and its receptor. These changes have been
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detected in specific brain areas, such as the hippocampus,
injured cortex, and dentate gyrus. Cognitive decline after
TBI in association with reduced expression of these mRNA
was identified in adult rats. BDNF may play an important role
in preventing secondary injuries after TBI, as well as recover-
ing the primarily injured areas.[7, 35]

The microtubule-associated protein 2 (MAP-2) is abundant
in the brain, with high specificity for dendritic injury. Its CSF
levels early after TBI could predict 2-week mortality in sTBI.
In terms of diagnosis, serum levels of MAP-2 > 0.25 ng/mL
demonstrated sensitivity around 89–95% and specificity
around 100% to distinguish TBI from other consciousness
impairment etiologies (i.e., drug intake), which could aid di-
agnosis and management of unresponsive patients. MAP-2
elevations can be detected within the first few hours after
injury, outperforming other markers in determining TBI
severity.[3, 18]

MAP-2 measurements in both serum and CSF could also
predict CT findings. CSF concentrations matched the degree
of diffuse damage and axonal injury detected on initial CT,
mainly within the first 120 h after trauma. However, compar-
ing UCH-L1 and GFAP isolated and in combination, GFAP
alone may be the best marker for this purpose.[3, 18]

Coagulation

Serum coagulation biomarkers that predict poor outcomes in
severe trauma include D-dimer, thrombospondin-1, and
SCUBE1. D-dimer is thought to indicate TBI-induced coagu-
lopathy. The underlying mechanisms comprise tissue factor
(TF) release, hyperfibrinolysis, shock, and hypoperfusion,
triggering the protein C pathway, disseminated intravascular
coagulation, and platelet dysfunction. Thrombospondin-1 is
an antiangiogenic factor sensitive to thrombin whose expres-
sion is increased after intracerebral hemorrhage. SCUBE1 is
released from endothelial cells and platelet alpha granules
during platelet activation.[4, 11, 26, 30, 39]

Inflammation

Among the many available inflammation biomarkers (i.e., C-
reactive protein, interleukins), a recent study detected raised
levels of IL-33 in patients with TBI, identifying this interleu-
kin as an independent prognostic factor. Although not specific
for brain insults, they can contribute with prognostic informa-
tion, helping to characterize strong inflammatory responses to
TBI that contribute to secondary brain injury and, ultimately,
poor outcomes.[13, 38]

Neuron-specific enolase

Another biomarker correlated to posttraumatic inflammation
is the neuron-specific enolase (NSE), also referred to as

gamma-enolase or enolase 2. NSE is a glycolytic pathway
enzyme expressed in mature neurons and neuroendocrine
cells. Increased CSF/serum ratio of this protein indicates neu-
ronal damage, and serum elevations were also documented in
mTBI and sTBI.

As a drawback, NSE is also expressed in red blood cells,
which prompts the need to account for hemolysis. Several
studies indicate elevations in NSE levels after TBI, in both
serum and CSF. Acutely, serum NSE is a good predictor of
the extent of neuronal damage, and persistent elevations were
also detected long after mTBI.[6, 32]

In sTBI, it is still controversial whether NSE is associated
with contusion volume and clinical outcome. Conversely, in-
creases in its CSF levels are strongly correlated with the ex-
tension of brain lesions after sTBI. It might predict fatal out-
comes when concentrations are high or if there is a second
peak weeks after trauma.[6]

S100B

In addition to increased NSE in acute/subacute phases, higher
CSF levels of S100B were detected in the patients who died
during hospitalization, compared to those who survived.
S100B is a calcium-binding protein expressed in astroglia,
adipose tissue, and cardiac and skeletal muscles. Because it
is not specific to neural tissues, S100B elevations can also be
related to muscle lesions or orthopedic trauma without head
injury. However, this astroglial biomarker could aid in the
management of TBI patients.[1, 6]

Excessive serum levels of S100B correlate with poor out-
comes, including significant mortality and brain death. For
S100B serum levels higher than 0.7 ng/mL, studies reported
100% of mortality. Correlations between elevated levels of
S100B and chronic complications of TBI, such as cognitive
impairment, remain unclear.[1, 6]

Analyzing temporal profiles of S100B may contribute
to patient management. As is the case for NSE, a second
rise of S100B during the subacute phase indicates ongo-
ing processes of excitotoxicity or inflammation, and thus
secondary brain lesions. Oppositely, lower initial levels
and the absence of a second peak suggest mTBI and pos-
itive outcomes, including recovery, rehabilitation, and
safe return to play for athletes. In mTBI patients, S100B
could predict CT abnormalities, and in sTBI, it correlates
with the extension of brain damage.[1, 6]

Unlike S100B, levels of GFAP and its breakdown products
are not increased in the absence of brain injury, which might
be helpful in scenarios of polytrauma. Combined analysis of
S100B and GFAP may contribute to distinguishing favorable
from unfavorable outcomes. In sTBI, combined analyses with
UCH-L1 can also contribute to the assessment of severity and
clinical outcomes.[1, 6]
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Alfa-II-spectrin

Investigation of the alfa-II-spectrin in the context of TBI
started to emerge recently. Its breakdown products are split
between C-terminal and N-terminal fragments, and their re-
lease is associated with necrosis, apoptosis, and neurodegen-
erative conditions. Although abundantly present in axons of
the CNS, alfa-II-spectrin can also be expressed by some or-
gans and peripheral blood mononuclear cells, which could
impair interpretations.

Increased levels of C-terminal fragments (SBDP150,
SBDP145, SBDP120) were detected in CSF after TBI, while
higher levels of N-terminal fragments (SNTF) were identified
in the blood after concussions. Higher levels of N-terminal
fragments in the acute phase correlate with poor prognosis in
mTBI, with worse performance on cognitive and sensory mo-
tor integration tests. Under normal conditions, those fragments
are not detectable in the brain, and their release is possibly
provoked by intra-axonal calcium overload and axonal cyto-
skeletal disruption.[25]

Neurofilament proteins

Neurofilament proteins (NF) are also components of the axo-
nal cytoskeleton, with the advantage of being expressed ex-
clusively in neurons. NF subunits differ in molecular

weight—NF-H (heavy), NF-M (medium), and NF-L (light).
All of them have already been detected in high concentrations
within biofluids after TBI, suggesting a possible correlation
with poor outcomes and mortality.

NF continues to be released days after head trauma, which
could indicate ongoing processes of proteolysis and impair-
ment of axonal membrane integrity. In contrast, Sandmo et al.
found no significantly increased levels of NF-L in soccer
players that suffered mild head impacts, which raises ques-
tions concerning its reliability.[24, 32]

Anti-pituitary antibodies

Anti-pituitary antibodies were detected in the chronic
phase after TBI. Therefore, autoantibodies produced after
TBI may be related to the development of certain second-
ary conditions, like hypopituitarism and growth hormone
deficiency.

Other potential biomarkers identified in a recent blast ex-
posure mice model are autoantibodies against the following
proteins: fructose-biphosphate aldolase A (ALDOA), phos-
phorylase b kinase regulatory subunit beta (PHKB), alpha-
globin 1 (HBA-A1), dihydropyrimidinase-related protein 2
(DPYSL2), isoform Ib of synapsin-1 (SYN1), and creatine
kinase B-type (CKB).[12]

Table 1 Changes in biomarkers
associated with traumatic brain
injury

Pathological process Biomarker Purpose

Diagnostic and stratification
(minutes to hours)

Prognostic
(days to weeks)

Monitoring
(months to years)

Neuronal cell body
injury

UCH-L1 ↑↑

NSE ↑↑

Necrosis SBDP150 ↑↑

SBDP145 ↑↑

SNTF ↑↑

BBB damage S100B ↑↑ ↑

Gliosis/glial injury GFAP ↑↑ ↑

Axonal injury NF-L ↑

↑

↑

↑

↑

↑

NF-M

NF-H

Dendritic injury MAP-2 ↑

Neurodegeneration/CTE T-tau ↑↑ ↑↑ ↑ or ↑↑

P-tau ↑↑ ↑↑ ↑ or ↑↑

BDNF ↑ or ↓

UCH-L1, ubiquitin C-terminal hydrolase-L1; NSE, neuron specific enolase; SBDP, spectrin breakdown product;
SNTF, spectrin N-terminal fragment; S100B, calcium-binding protein B;GFAP, glial fibrillary acidic protein;NF-
L, light neurofilament protein; NF-M, medium neurofilament protein; NF-H, heavy neurofilament protein;MAP-
2, microtubule-associated protein-2; T-tau, total tau protein; P-tau, phosphorylated tau protein; BDNF, brain-
derived neurotrophic factor
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Exosomes

Neuronally derived (NDE) and astrocyte-derived (ADE)
exosomes have been linked to the presence and development
of AD. Plasma NDE cargo proteins from mTBI samples ex-
hibited toxicity to neuron-like recipients in vitro, suggesting a
possible injury mechanism. Winston and collaborators report-
ed differences in measurements of NDE-associated proteins
collected 4–6 months after head injuries, supporting the hy-
pothesis that they can identify cellular injury pathways related
to TBI.[33]

Nucleic acids

Circulating nucleic acids are possible prognostic tools, al-
though not brain-specific. Total plasma cell–free DNA
(cfDNA) correlated with TBI severity, mortality, and func-
tional outcomes after head injuries. Plasma cfDNA was an
independent mortality predictor in sTBI patients. Certain
microRNAs may also present a relevant prognostic value in
mTBI cases, such as miR-425-5p, miR-502, miR-142-3p, and
miR-423-3p. Implementation of these biomarkers in the clin-
ical practice should consider the fact that detecting cfDNA is
less complicated and costly than RNA.[21, 32]

Cardiac biomarkers

Cardiac function is indirectly disrupted after TBI, particularly
in severe cases and among younger patients. Almost a quarter
of moderate sTBI patients had developed systolic
dysfunction.[9, 10] The cardiac impact may be induced by
trauma-related coronary hypoperfusion, sympathetic hyperac-
tivity, release of inflammatory mediators, and impairment of
the autonomic nervous system. Elevated CK-MB and tropo-
nin I after TBI have been associated with worse outcomes.[5,
9, 28]

Among sTBI patients, studies detected associations be-
tween increased brain natriuretic peptide (BNP) concentra-
tion, hyponatremia, and higher ICP. Initial BNP values after
TBI were found to be 7.3-fold higher compared to
controls.[27] Furthermore, progressive levels of BNP are as-
sociated with diffuse subarachnoid hemorrhage (SAH) and
poor prognosis. [19, 27, 34] Serum NT-proBNP levels corre-
late with the growth of ischemic or hemorrhagic intra-axial
lesion dimensions after mild to moderate TBI. [2] Increased
concentrations of NT-proBNPwere also detected in CSF sam-
ples of sTBI patients without signs of BBB damage. [14]

Although pathophysiological mechanisms of BNP and
NT-proBNP elevations after TBI remain unclear, there is great
evidence of their usefulness and potential to be included in
clinical practice. [2, 19, 27, 34, 37]

Conclusion

Biomarkers could help improve all aspects of patient care in
traumatic brain injury, i.e., diagnosis, classification, manage-
ment, prognosis, and rehabilitation. We listed some of the
recent advances in this translational, intriguing, fast-growing
field. Although the knowledge gaps are still significant, some
markers are demonstrating promising results and could be
helping patients in the near future (Table 1).
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