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Abstract
There is a lack of class I evidence concerning the impact of surgery in the treatment of diffuse low-grade glioma; the early
maximal resection with preservation of eloquent brain areas has been accepted as the first therapeutic option. We performed a
systematic review of the literature using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines and protocol. Inclusion criteria: only case series with at least 100 patients containing supratentorial hemispheric diffuse
low-grade glioma (according to any of the WHO classification used in papers published between 2000 to 2019), with pre- and
postoperative MRI study were included in the qualitative and quantitative analyses. The extent of resection should be defined
based on MRI at least in two categories and correlated with patients’ outcomes (with univariate or multivariate analyses) using
overall survival (OS) or malignant progression-free survival (MPFS). A total of 18 series with 4386 patients, published in 20
papers, were included in this systematic review. All the series that evaluates the relation between the extent of resection (EOR)
and OS showed a statistically significant improvement of OS at univariate and/or multivariate analyzes with a greater EOR. Six
studies showed a statistically significant improvement of MPFS with a greater EOR. We demonstrate that when a more rigorous
analysis of EOR is performed, a benefit of a more aggressive resection on OS and MPFS is observed. Our review about EOR in
different molecular groups of DLGG also suggests a benefit of maximum safe resection for all different subtypes, even though
“radical surgery” may be associated with better OS and MPFS in tumors with a more aggressive signature.
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Key points
- When systematically measured, the importance of EOR for DLGG is
evident in outcome.
- All subgroups of DLGG benefit from a higher EOR.
- Higher EOR may have a greater impact on DLGG with a more
aggressive signature.
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Importance of the study

We made a systematic review about the importance of the
extent of resection (EOR) in diffuse low-grade glioma. This
review brings three new aspects in literature:

1. We selected only papers with a systematic assessment of
the extent of resection with MRI

2. We detailed the papers with pre- and postoperative volu-
metric assessments

3. We reviewed the impact of the extent of resection on
different molecular subtypes of LGG

Our study reviews the results of large, modern series that
assessed the impact of EOR on the outcome of patients with
DLGG. Although there are similar studies, this is the first
review to combine all series that performed pre- and postop-
eratively MRI analysis of the tumor and all series that also
performed volumetric analyses. We could observe for the first
time that all series with a rigorous analysis of the tumor vol-
ume with volumetric assessment were unanimous in demon-
strating that the higher the EOR the better the prognosis.

Introduction

Supratentorial diffuse low-grade glioma (DLGG), classified as
World Health Organization (WHO)Grade II tumors, are diffuse
neuroectodermal primary brain tumors [5, 58]. They are char-
acterized by continuous and relatively slow growth at an aver-
age rate of 4 mm/year [41, 58]. Their diffuse infiltrative pattern,
tumor invasiveness, and migration along the white matter tracts
limit the extent of surgical resection, jeopardizing the efficacy
of oncological treatments. DLGG will inevitably become ma-
lignant [56, 57] and such malignant transformation (MT) will
lead to the functional deficit and ultimately to death [13].

Supratentorial DLGG is a complex and heterogeneous
group, with a highly variable median survival, ranging from
a few months to more than 15 years, variable according to
clinical factors, molecular characteristics, and treatment pro-
tocol [5, 18, 24, 62].

Treatment of DLGG includes surgery, radiotherapy, and/or
chemotherapy. The role of surgery is still to be investigated in
a randomized trial, which is unlikely to happen due to ethical
reasons [58]. Although there is a lack of class I evidence
concerning the impact of surgery, the early maximal resection
with preservation of eloquent brain areas has been accepted as
the first therapeutic option for most DLGG [5, 40, 45, 63],
once multiple clinical series have demonstrated evidence that
extent of resection (EOR) is a significant prognostic factor for
malignant progression-free survival (MPFS) and overall sur-
vival (OS) among those patients [5, 40, 45, 63].

This systematic review aims to evaluate the impact of the
EOR in DLGG patients and also assess the impact of the new
WHO gliomas classification, based on the molecular signa-
ture, on the surgical treatment of different subtypes of DLGG.
The originality of this article consists of our paper selection,
including only series with a systematic assessment of the EOR
comparing pre- and postoperative MRI, and we detailed the
papers with pre- and postoperative volumetric assessment.

Methods

We performed a systematic review of the literature using the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines and protocol (Fig. 1). A litera-
ture search was performed using PubMed, Cochrane Library,
EMBASE, MEDLINE, and SCOPUS databases up to October
12, 2019. Search terms included “grade II AND gliomas AND
surgery, low-grade AND gliomas AND surgery, and low-grade
AND glioma AND surgery.” We selected full-text articles pub-
lished from January 2000 to September 2019. Screening of titles
and abstracts was performed, and further evaluation of full-text
publications was used to further exclude studies.

Inclusion criteria Only case series with at least 100 patients
containing supratentorial hemispheric diffuse low-grade glio-
ma (according to any of theWHO classification used in papers
published between 2000 to 2019), with pre- and postoperative
MRI study were included in the qualitative and quantitative
analyses. The extent of resection should be defined based on
MRI at least in two categories and correlated with patients’
outcomes (with univariate or multivariate analyses) using OS
or malignant progression-free survival (MPFS).

Exclusion criteria Case series related to non-hemispheric
supratentorial diffuse low-grade glioma (e.g.. optic nerve gli-
oma), series in which the EOR was defined based only in the
surgeon’s impression or with CT scan, and extension of resec-
tion versus outcome assessed using only progression-free sur-
vival (PFS) were excluded.

We did not use the PFS as a variable, because we under-
stand that DLGGs present a slow, but continuous growth.
Therefore, they would not have a real interval without pro-
gression [39]. Mandonnet et al. [29] demonstrated that
DLGGs are not stable lesions. They observed that the average
slope of the evolution of the mean tumor diameter [MTD = (2
× V)1/3] overtime was corresponding to 4.1 mm/year (95%CI
3.8–4.4 mm/year), and that the MTD of these tumors grows
inexorably during the follow-up period in a grossly linear
fashion. Pallud et al. [40], in a similar paper with 143
DLGG patients, showed a growth rate in all cases, mean of
4.4 mm/year (ranged from 1 to 35.8 mm/year). The same
group published a larger series of DLGG with 407 patients,
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showing a mean diameter expansion of 5.8 mm/year (median
of 3.9 mm/year) [38]. They observed that the spontaneous
velocity of diametric expansion modeled as a categorical
(< 8 or ≥ 8 mm/year) or as a continuous variable was an
independent prognostic factor at multivariate analysis for OS
(p < 0.001) andMPFS (p < 0.001). It also has been shown that
radiological tumor growth rates remain unchanged after sur-
gical resection [29, 31].

We extracted details on the type of study, which WHO
classification was used, patient characteristics including age
and sex, initial tumor volume, volumetric assessment, resected
percentage, extent of resection per group, OS versus EOR,
malignant progression-free survival versus EOR, follow-up
years, and number of deaths. Included studies were assessed
by two authors (L. J. M. M. F and L. A. F. A.) to ensure that
cases were correctly included in the study. Patient data from
multiple studies were combined into a table for comparison
(Table 1) [1, 5, 6, 8, 12, 17, 20, 22–24, 26, 27, 31, 36, 37, 45,
50, 52, 58, 64].

Additional clinical questions

In addition to the systematic review described above, we con-
ducted a second review seeking to answer two questions to

assess the role of the molecular profile versus the EOR or RTV
in DLGG:

1. Does the EOR or RTV have a positive effect on OS ac-
cording to different molecular signatures?

2. Does the molecular signature influence the EOR or RTV?

To this review, we included case series containing
supratentorial hemispheric diffuse low-grade glioma with
pre- and postoperative MRI study. The EOR or RTV should
be defined based on MRI and correlated with patients’ out-
comes using OS. The EOR or RTV should be correlated with
the IDH and/or 1p19q status.

Results

A total of 18 series, published in 20 papers, were included in
this systematic review (Table 1). Two series were published
twice focusing on different aspects of the same population in
the case of Nitta et al. [36, 37], and reviewing the results
considering the new WHO classification and with longer fol-
low up in the case of Jakola et al. [21, 23]. Thirteen series were
single-center [1, 6, 8, 12, 17, 26, 27, 30, 36, 37, 45, 52, 64],
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two with two centers [23, 24, 50], and three multicentric [5,
20, 50]. Seventeen series were retrospectives and one had a
mixture of retrospective and prospective patients [5]. In all
series, the EOR was based in a pre- and postoperative MRI;
there were no volumetric assessments in 7 series, volumetric
assessment with the ellipse volume in 2 series [5, 10], and
volumetric assessment by segmentation in 10 series [8, 17,
22, 26, 36, 37, 45, 50, 52, 58].

A total of 4386 patients were included. The mean age
ranged from 34.7 to 45 years old, and the median age ranged
from 36 to 44 years old. In all series, men were more predom-
inant (ranging from 54.1 to 76%). The mean initial tumor
volume ranged from 38.4 to 75 cm3 and the median initial
tumor volume ranged from 28.8 to 69 cc. The mean EOR
ranged from 75.5 to 81.4% and the median EOR ranged from
76.1 to 95%.

We found different cutoff thresholds of EOR, as shown in
Table 1, and even then, all the series (17/18) that evaluate the
relation between EOR and OS showed a statistically signifi-
cant improvement of OS at univariate and/or multivariate an-
alyzes with a greater EOR. The only series that did not ob-
serve such association was the one published by Chaichana
et al. [6]. Those authors did not evaluate that parameter—
instead, their analysis was focused on recurrence and malig-
nant degeneration after resection of DLGG. Six studies
showed a statistically significant improvement of MPFS at
univariate and/or multivariate analyzes with a greater EOR
[1, 6, 20, 22–24, 52].

We observed a heterogeneous follow-up duration, varying
from a mean of 3 years to 7.8 years. The median OS varied
from 5.8 to 6.7 years at biopsy groups to 14.4–25.1 years in
groups that underwent maximal safe resection.

The authors used different WHO classification in their
methodology (range from 1993 WHO classification to 2016
WHO classification). It is interesting to observe that with the
meticulous analysis of the pre and postoperative tumor vol-
ume, a positive correlation between EOR and OS was ob-
served independent of the WHO classification used.

Surgical goal

Regarding OS and MPFS, some authors have demonstrated
the benefit of EOR as a continuous variable and others as an
ordinal variable [1, 5, 25, 32, 36, 52, 64] (Table 2). However,
the threshold of the extent of resection or residual tumor vol-
ume (RTV) from which there is a clinical benefit remains a
matter of debate. In Table 2, we selected series that correlated
in a multivariate fashion the EOR or postoperative residual
tumor volume with the overall survival. We observe that for
EOR, a positive finding ranges from > 40% of resection to
100% or resection; and for RTV, a positive finding ranges
from < 15 to 0 cm3 [1, 5, 18, 22, 25, 26, 32, 36, 37, 44, 51,
52, 56, 62, 64].f
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Role of molecular signature

With the increasing participation of molecular markers in the
management of DLGG, it has been speculated on its real role
in clinical practice. We reviewed these markers to answer two
main questions related to the main scope of our review
(Table 3).

Does the EOR or RTV have a positive effect
on OS according to different molecular
signatures?

There is no consensus about this data in the literature, as we
may see in Table 3. The methodology and focus of these
studies are heterogeneous, making it hard to conclude.
Some authors observed that a greater resection was

beneficial to all the new subgroups of the 2016 WHO clas-
sification [24]. Eseonu et al. [17] also believe that all sub-
groups would benefit from a higher EOR. However, be-
cause of a small number of patients with IDHmt without
1p19q codeletion, this subgroup did not reach the statistical
significance. On the other hand, Wijnenga et al. [58] only
found the benefit of a greater EOR in this specific subgroup
with IDHmt without 1p19q codeletion.

Analyzing in isolation the IDHmt, Jungk et al. [25] and
Scherer et al. [50] concluded that IDHmt patients would
benefit from a higher EOR, which was not seen by Patel
et al. [41]. And analyzing in isolation the IDHwt, Patel et al.
[41] and Scherer et al. [50] observed a higher OS in patients
with greater EOR. Poulen et al. [43] could not correlate
positively the EOR with OS; however, all the patients in
this series benefited from a large resection as we comment
below in the discussion.

Table 2 Low-grade glioma—minimum extent of resection or residual tumor volume cutoff to improve overall survival at multivariate analysis

Series (ref. no.) No of patients Extent of resection (which cutoff) Postoperative residual tumor
volume (which cutoff)

Yeh et al. [62]a 93 Yes (100%) NA

Smith et al. [52] 216 Yes (> 80%) Yes (0 cm3)

McGirt et al. [32] 170 Yes (100%) NA

Rezvan et al. [44]a 130 Yes (> 90%) NA

Schomas et al. [51]a 314 Yes (rSTR or GTR)b NA

Ahmadi et al. [1] 130 Yes (100%) NA

Ius et al. [22] 190 Yes (continuous variable) NA

Youland et al. [64] 554 Yes (> 80%)c NA

Capelle et al. [5] 1097 Yes (100%) NA

Nitta et al. [36]
Nitta et al. [37]

153 Yes (≥ 90%) NA

Liu et al. [26] 115 Yes (100%) NA

Roelz et al. [45] 126 NA Yes (< 15 cm3)

Jungk et al. [25]a 46 Yesc (≥ 40%) Yesd (continuous variable)

Wijnenga et al. [58] 228 NA Yes (continuous variable)

Franceschi et al. [18]a 213 Yes (100%) NA

NA not applicable

Inclusion criteria: only case series with at least 40 patients containing supratentorial hemispheric diffuse low-grade glioma (according to any of theWHO
classification used in papers published between 2000 to 2019), only series with multivariate analyses positive findings, outcome assessed using overall
survival (OS)

Exclusion criteria: case series related to non-hemispheric supratentorial diffuse low grade glioma (ex.: optic nerve glioma), outcome assessed using only
progression-free survival (PFS) or malignant progression-free survival (MPFS), series with only univariate analyses positive findings
a Series not included in Table 1
bA surgical procedure was designated as radical subtotal resection (rSTR) first, when the operative report described “radical subtotal resection”; second
when gross total resection (GTR) was clearly the goal of the operation but minimal known tumor was left in situ; or third when imaging reports indicated
small, questionable amounts of residual tumor after GTR
cAlthough GTR/rSTR (> 80% of resection) was not associated with OS on multivariate analysis at first, it was likely masked by the strong negative
association between postoperative RTandOS.When RTwas removed frommultivariate analysis, GTR/rSTRwas strongly associated with higher OS, as
expected (p < 0.05)
c In this analysis of low-grade astrocytomas stratified for IDH1mutation, extensive tumor resections were prognostic for OS in patients with ≥ 40% EOR
d In a subgroup of patients with ≥ 40% EOR
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When observing the 1p 19q isolated, Scherer et al. [50]
observed a greater EOR benefit in these patients.

Does the molecular signature influence
the EOR or RTV?

Cordier et al. [10] retrospectively investigated the predictive
value of 1p19q, IDH1, p53 expression, and Ki67 index for the
EOR in 200 patients with DLGG, trying to discover if a better
EOR is correlated to a more favorable genetic profile. There
was no significant correlation between IDH1, p53, or Ki67
and the EOR. However, they observed a statistical signifi-
cance of lower EOR in patients with codeletion 1p19q (p =
0.0463).

Wijnenga et al. showed that the molecular subtype of the
tumor did not correlate with postoperative tumor volume [58].
Scherer et al. [50] and Rossi et al. [46] did not find any asso-
ciation between IDH status and postoperative RTV or EOR,
respectively.

Discussion

The impact of the EOR on the outcome of DLGG patients is
controversial. Different factors likely play a role to justify such
heterogeneous results, including tumor biology, case selec-
tion, and method for assessment of the extent of resection.
The inconsistency of results might be influenced by the fact
that EOR was not routinely assessed on postoperative MRI
but, instead, it was sometimes based on the neurosurgeon’s
estimation of tumor resection or a single computed tomogra-
phy scan, in some studies, what has been shown to be much
less accurate [13, 22].

According to European guidelines [53] and as demonstrat-
ed by our review, maximal resection with preservation of elo-
quent brain areas is an essential part of the treatment of DLGG
[53]. The classic strategy of biopsy followed by a “wait and
see” approach is associated with inferior outcomes and should
be reserved for cases where tumor resection may lead to sig-
nificant neurological deficit [23, 24, 45]. It may jeopardize the
treatment by allowing the continuous progression of the dis-
ease and there is the chance of underestimation of the tumor
grade [33].

Extent of resection

The largest surgical series comparing EOR and prognosis was
made by a French multicenter and multidisciplinary study
group (Réseau d’Étude des Gliomes), in which each center
applied a different therapeutic approach along the timespan
covered by this study [5]. A total of 1097 patients with
DLGG were collected retrospectively since January 1985

and prospectively from 1996 up to December 2007. In multi-
variate analysis, the results of the study demonstrated that
EOR, as well as postsurgical residual volume, were indepen-
dent prognostic factors significantly associated with longer
overall survival.

Until now, no randomized controlled trial assessing the
different extent of resection rates and clinical outcomes has
been conducted in patients with DLGG [45]. However, the
current literature presents accumulating evidence to support
the benefits of early surgical intervention. Additionally, it is
unlikely that such a randomized trial will ever be performed
for ethical reasons.

Two near-randomized series compared the OS of patients
with DLGG in similar populations, exposed to distinct surgi-
cal approaches [23, 24, 45]. Jakola et al. [23] compared the
results of parallel cohorts of DLGGs from 2 independent hos-
pitals with different surgical strategies: in one hospital, only
biopsy followed by a “wait and scan” approach was the first
choice (66 patients—71% biopsy and 29% resection); in the
other hospital, the early resections as the main conduct (87
patients—14% biopsy and 86% resection). They observed
no significant differences in surgical complications (9% vs.
8%; p = .82) or new deficits (18% vs. 21%; p = .70) between
the two institutions. However, the malignant transformation
was more common when the biopsy was the initial approach
(56% vs. 37%; p = 0.02). There was also a relevant difference
in median survival between the centers, at the center favoring
biopsy it was 5.8 years and at the center favoring early resec-
tion, it was not reached (p < 0.001), estimated 5-year survival
was 57% vs. 81% respectively.

Roelz et al. [45] also published another near randomized
study in a single institution series with two different depart-
ments (Department of Stereotactic Neurosurgery and
Department of Neurosurgery) with different and independent
approaches to DLGG patients. These patients were referred to
either department by a near-randomized process. A total of
126 patients with DLGG entered the study, 77 patients were
initially submitted to stereotactic biopsy, and 49 patients
underwent an early surgical approach. They observed a sig-
nificantly better OS for patients managed by early surgical
management (p = 0.0018). The 5/10-year OS rate was 82%/
67% for early resection versus 54%/38% for initial biopsy.
Interestingly, a later surgical intervention as performed in 22
patients initially submitted to only a biopsy (after a mean of
2.8 years) did not have a favorable impact on OS, making
clear the high importance of the initial treatment decision. It
is important to observe that the survival benefit of patients
initially submitted to surgical resection was observed in pa-
tients with a residual tumor volume ≤ 15 cm3 (p = 0.034).

Two recently published literature reviews deserve mention.
Xia et al. [59] did a meta-analysis to assess the relationship
between the extent of resection (EOR) and the prognosis of
patients with DLGG. They selected 20 studies that fulfilled
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their inclusion criteria and observed that, if compared with
STR, GTR could significantly increase the 5-year survival of
patients with DLGG (OR 3.90; 95% CI 2.79~5.45) and the
10-year survival (OR 7.91; 95% CI 5.12~12.22).
Additionally, GTR significantly increased survival at 5-years
when compared to biopsy only (OR 5.43; 95% CI 3.57~8.26)
and 10-years (OR 10.17; 95% CI 4.02~25.71). Finally, when
compared to the survival of patients with DLGG submitted to
biopsy versus STR, the last one significantly increased surviv-
al at 5-years (OR 2.59; 95% CI 1.81~3.71) and 10-years (OR
2.21; 95% CI 1.16~4.25). Yang et al. [61] performed a sys-
tematic review and meta-analysis of papers analyzing the im-
pact of EOR in DLGG. They included 60 reports (55 were
retrospective, 5 prospective, and no randomized controlled
trials) of adult patients with supratentorial DLGG, with
13,289 patients. They found that the mean OS increased from
3.79 years (95% CI 2.37–5.22) in the biopsy group to 6.68
years (95% CI 4.19–9.16) in the STR group and 10.65 years
(95% CI 6.78–14.52) in the GTR group. They showed a ben-
efit in OS associated with GTR versus biopsy (p < 0.001);
GTR versus STR (p < 0.001); resection of any extent versus
biopsy (p = 0.015); and STR versus biopsy (p = 0.04). The
incidence of malignant transformation was 53.7% (95% CI
29.5–76.3) in the biopsy group, 47.5% (95% CI 30.3–65.4)
in the STR group, and 15.9% (95% CI 4.2–44.7) in the GTR
group. Compared with STR, GTR delayed the occurrence of
malignant transformation significantly (p = 0.032). Those re-
views show that patients with DLGG are expected to benefit
from a greater EOR if no new neurological deficit is associat-
ed with the procedure. The greater EOR also improve seizure
control and delay malignant transformation [61]. Some of the
limitations of those studies include no randomized trials avail-
able for analysis, the inclusion of old retrospective series, and
poor criteria for the assessment of EOR (almost all of the
studies defined EOR based on the impression of the surgeon
or CT scan, instead of systematic assessment of pre and post-
op MRI). Our review is the first in the literature to focus on a
series of DLGG outcome with a meticulous assessment of
EOR by MRI, what we believe to provide a better level of
evidence.

Besides the improvement in OS and MPFS, a maximal
EOR has also been associated with better control of seizure,
which is a significant source of morbidity in DLGG patients.
The review of Yang et al. [61] mentioned above also showed
that the GTR group had an 81% seizure-free rate compared
with 54.2% in the STR group and 47.8% in the biopsy group.
Xu et al. [60] in a multivariate analysis of a series of 128
DLGG patients observed that the EORwas the only parameter
to significantly affected the likelihood of postoperative Engel
Class I status (all the subgroups of Class I) (p = 0.002). They
observed in a receiver operating characteristic (ROC) curve
that the ideal threshold to seizure control was an EOR ≥ 80%,
with approximately 94% of Engel Class I beyond this cutoff.

Still et al. [54] performed a similar study with 346 DLGG
patients, and they also found in a multivariate analysis that a
higher percent of tumor resection was independently associ-
ated with good postoperative seizure control (p < 0.001).
Based on a ROC curve they established an optimal cutoff of
≥ 91.1% of EOR and ≤ 19 cm3 of the residual tumor to obtain
an optimal total seizure control (only Engel Class IA).

Surgical goal

There is no consensus about the minimal extent of resection
needed to obtain any significant clinical benefits. Smith et al.
[52] observed a significant association between EOR and sur-
vival (p < 0.001). They found that patients with at least 90%
resection had 5- and 8-year OSs of 97% and 91%, respective-
ly, whereas patients with less than 90% resection had 5- and 8-
year OS rates of 76% and 60%, respectively. EOR remained a
statistically significant predictor of OS even when the set of
patients analyzed was limited to those with EOR of at least
80% (p = 0.016).

Ius et al. [22] provided evidence that a more aggressive
resection correlates with a significant improvement in OS (p
= 0.001), as well as in PFS (p < 0.0001) and MPFS (p <
0.0001), compared with a simple debulking procedure. The
EOR, treated as both a continuous and an ordinal variable, was
associated with significant improvement of both PFS and
MPFS values. Patients with an EOR of less than 70% had a
much higher risk of death (19.7 times), disease progression
(13.6 times), and malignant transformation (9.77 times) than
did patients with an EOR of 90% or more.

The largest investigation addressing the influence of EOR
on prognosis suggested a residual tumor volume of fewer than
10 cm3 to be the crucial factor for a favorable prognosis, in
particular, due to a delay of anaplastic transformation [5]. A
large near-randomized series observed that the survival benefit
of patients with initial resection was reserved for patients with
a residual tumor volume of fewer than 15 cm3 [45].

In a more recent series, Scherer et al. [50] used volumetric
analysis in order to quantitatively evaluate the association of
RTV and EOR with survival and to address whether survival
associations follow continuous or threshold-based principles.
For OS, regression was limited to univariate analysis corrob-
orating a significant impact of continuous volumetric mea-
sures RV (p < .001) and EOR (p < .002).

Although there is no consensus to howmuch of resection is
“satisfactory,” and probably there is a linear association of the
residual disease with survival, current evidence suggests that
an extent of resection threshold of > 80% and a residual vol-
ume of < 10 cm3 or at least < 15 cm3 as the surgical goal in
DLGG needed to be of therapeutic benefit to individual pa-
tients [12, 21, 45, 52]. Although EOR and the final residual
volume are independent factors associated with improved out-
comes, we believe the final residual volume might be a more

1382 Neurosurg Rev (2021) 44:1371–1389



reliable factor, since it is not dependent on the initial tumor
volume—another important predictor of prognosis [12, 22,
32, 45, 52, 63].

As Scherer et al. [50] stated, to define minimum cutoffs is a
reasonable approach to guide decision making preoperatively;
however, dichotomization may lead to limited statistical infor-
mation, to simplification of differences within dichotomized
subgroups and, hence, oversimplification of the issue.

Different strategies can be used to try to estimate the per-
centage of the tumor able to be removed (EOR) or the prob-
able final residual volume. The functional atlas of human
white matter developed by Sarubbo et al. [48], based on the
concept of “minimal common brain” [21], is a good example
of a useful tool for such a goal. In a second publication,
Sarubbo et al. [47] published a more complete atlas integrating
both cortical hubs and white matter tracts critical for brain
functions.

Supratotal resection

The boundaries of DLGG cannot be precisely defined by cur-
rent neuroimaging technology. Pallud et al. [40] studied 16
patients who underwent serial stereotactic biopsies for the
diagnosis of untreated supratentorial DLGG, in whom biopsy
samples were taken within and beyond MRI-defined abnor-
malities. They demonstrated that conventional MRI underes-
timates the actual spatial extent of DLGG, even when they are
well delineated. Biopsies performed at distances of 10 to
20 mm from the limit of MRI-defined abnormalities showed
a significantly larger number of tumor cells than biopsies at
distances greater than 20 mm from MRI-defined abnormali-
ties [21]. Therefore, the amount of brain containing tumor
cells is larger than estimated by routine MR-sequences, which
may explain recurrences at the resection margins after gross
total surgical removal and the prognostic significance of the
EOR [48]. These results support the idea that a functional-
based extended resection encompassing a margin beyond
MRI-defined abnormalities (ideally with 2 cm of margin)
should be pursued whenever feasible, in non-eloquent brain
areas. This might improve the outcome of DLGGs, by
delaying anaplastic transformation [19, 40, 63]. All these as-
pects favored the creation of supratotal resection (SpTR)
conception

Yordanova et al. [63] published a series of 15 patients with
DLGG submitted to SpTR and observed that the margin of the
resected brain tissue showed tumoral cells in all but 1 case,
strengthening the theory that conventional MR imaging (even
in FLAIR) underestimates the real extension of these lesions.
They hypothesized that SpTR approach would reduce even
more the tumoral burden, and consequently improve the OS
and MPFS. Based on intraoperative mapping, they extended
the resection up to functional boundaries at the cortical and
subcortical levels. They compared these 15 patients submitted

to SpTR with a control group of 29 patients of “only” com-
plete resection and observed that malignant transformation
was observed in 7 cases in the control group but in no case
in the SpTR group (p = 0.037). Furthermore, adjuvant treat-
ment was administered in 10 patients in the control group
compared with only one patient in the SpTR group (p =
0.043). The mean duration of postoperative follow-up was
35.7 months (range 6–135 months)[58]. The same group pub-
lished a series of long-term follow up (mean of 11 years,
range, 8–16.5 years) in 16 patients with DLGG submitted to
SpTR [49]. No patient was submitted to adjuvant treatment.
There was no relapse in eight cases. Eight patients experi-
enced tumor recurrence after an average time of 70.3 months
(range, 32–105 months), but without malignant transforma-
tion [14].

Although the SpTR is not possible in most cases because of
the proximity with eloquent areas, it should be pursued when-
ever possible, because it might positively change the natural
history of DLGG, by decreasing the risk of malignant trans-
formation (MT) for a long period

Functional aspects related to EOR

Despite all evidences presented in favor of a broad EOR of the
tumor, maximal EOR or even supratotal resection should only
be favored in connection with preservation of neurological
and neurocognitive functions. A new permanent neurological
deficit may also influence the overall survival, and then must
be prevented.

There is an increased amount of evidences showing the
benefit of brain mapping in awake surgeries for DLGG, in
preserving a good quality of life/return to work in patients
submitted to a maximal EOR or even supratotal resection.

Aiming to assess the postoperative cognitive function and
ability to work in patients with DLGG, Muto et al. [34] pub-
lished a series with 39 cases involving eloquent areas and
having a functional-based maximal surgical resection under
awake procedures. The mean EOR was 91.0% (total or
supratotal resection in 46.2% of cases) and the mean residual
volume was 4.8 cm3. They observed functional worsening in
89.7% of patients in the early postoperative period (no relation
with the EOR, p = 0.216). In long-term cognitive outcomes,
none of the patients without preoperative cognitive deficit had
a postoperative cognitive deficit; and in the patients with a
preoperative cognitive deficit, 44.4% improved, 36.1%
remained stable, and 27.8% worsened as compared to the
preoperative evaluation. A total of 28/34 patients (82.4%)
with preoperative remunerative employment resumed their
previous job. The mean time between surgery and return to
work was 6.9 months. Subtotal and total resection (p = 0.014
and p = 0.019 respectively) were independently associated
with postoperative return to work. They conclude that
functional-based surgical resection does not worsen
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postoperative cognitive evaluations and even may improve
postoperative cognitive evaluations in these patients.

Ng et al. [35], in a series of 74 asymptomatic patients with
incidental DLGG submitted to maximal safe resection in
awake craniotomies, observed that 3 months after surgery,
all patients had totally recovered from transient neurological
worsening (no permanent deficits). The mean EOR was
95.7% (total or supratotal resection in 58.1% of cases), with
a mean residual tumor volume of 1.3 cm3. Among the 68
employed patients preoperatively, 66 (97.1%) resumed their
previous employment. The mean time between awake surgery
and return to work was 6.8 months. They observed that the
time between surgery and return to work did not statistically
correlate with the EOR. They argue in favor of a preventive
and maximal safe resection of DLGGs.

Rossi et al. [46] reported a large series of SpTR for DLGG
aiming to investigate functional outcome based on an analysis
of neuropsychological and quality of life profiles when resec-
tion was performed according to functional boundaries in
awake craniotomies. In a total of 449 patients (79.5% of
DLGG), they achieved SpTR in 145 patients (32.3%), total
resection in 183 patients (40.8%), and subtotal/partial resec-
tion in 121 patients (26.9%). They observed that the rates of
new (within the first week of surgery) deficits were quite high
(88.9% in all group; 91.7% in partial/subtotal resection group;
88% in total resection group; and 87.6% in supratotal resec-
tion group) and independent from the EOR achieved (p =
0.498). Most deficits recovered in a few weeks. The incidence
of permanent deficit (persistent at 1 month after surgery) was
low (2% in all group; 6.6% in partial/subtotal resection group;
0.55% in total resection group; and 0.69% in supratotal resec-
tion group), but was significantly higher in the subtotal/partial
resection group versus the total/supratotal group (p < 0.001).
They concluded that the SpTR can be safely achieved in a
considerable number of patients in the clinical routine when
a functional approach is used.

Adjuvant treatment in DLGG

There is no defined approach to adjuvant therapy in DLGG. In
young patients, whose tumors have a favorable molecular
profile and who have undergone a total or supratotal resection,
it is safe to not offer additional therapy initially. However, in
older patients with significant residual tumor, additional treat-
ment should be considered. Buckner et al. [3] published a
series of 251 DLGG patients with a median follow-up time
of the surviving patients of 11.9 years. Patients whowere 18 to
39 years of age (with subtotal resection or biopsy), and those
who were 40 years of age or older were randomized to receive
radiotherapy alone or radiotherapy plus chemotherapy
(PCV—procarbazine, CCNU, and vincristine). This phase 3
trial showed a survival benefit among patients with DLGG
who were treated with radiation therapy plus chemotherapy,

as compared with those who received radiation therapy alone.
They also demonstrated that patients with tumoral IDH1 mu-
tations had a significantly longer OS in the group treated with
radiotherapy plus chemotherapy. [3] We cannot fail to men-
tion the risks of late cognitive decline related to radiotherapy
and the adverse events of chemotherapy. Buckner et al [3] also
demonstrated, as expected, that the frequency and severity of
toxic effects were greater in the group that received radiation
therapy plus chemotherapy than in the group that received
radiation therapy alone.

This is the reason why the EORTC group has recently
proposed to use MGMT methylation score in order to “iden-
tify patients who benefit from first-line treatment with TMZ,
to defer RT for long-term preservation of cognitive function
and quality of life.” [2]. Indeed, thanks to a maximal safe
resection up to functional boundaries, it is possible to post-
pone adjuvant treatment, especially radiotherapy, to preserve a
better cognition—according to the needs of the patient—
including in DLGG with foci of malignant transformation,
as shown by Darlix et al. [11] in a series with 50 patients with
95% of survival at 5 years. In their series, the median time
interval between surgery and the initiation of new treatment
was 3.4 years (median time interval of 9.5 years between RT
and the first surgery) [11]. In this state of mind, Mandonnet
et al. [30] published a recursive algorithm to guide an individ-
ualized treatment: although no adjuvant treatment is recom-
mended when a complete resection has been achieved, in case
of initial biopsy and limited resection, epilepsy relapse and/or
re-evolution of the tumor with a volume above 15 cm3 and/or
growth rate acceleration, further treatment can be considered.
The first option is re-operation, if it is estimated that a signif-
icant degree of resection as mentioned above is possible, with-
out a higher risk of neurological deficit. If further surgery is
not feasible, chemotherapy is considered. If the lesion remains
radiologically stable with chemotherapy, one can only follow
the patient with neuroimaging. If there is a reduction in tumor
volume, the possibility of a new surgery may be re-consid-
ered. Radiotherapy should be considered in cases where there
is no response to chemotherapy and if there is no possibility of
a new surgery.

To conclude, in the recent literature, adjuvant treatment
after surgery for DLGG is still matter of debate [15].

Role of molecular signature

The WHO 2016 edition has radically changed the classifica-
tion of gliomas, updated based on molecular markers, which
offers more precise prognostication and prediction of treat-
ment response [28]. Gliomas are therefore classified using a
layered diagnosis according to histologic as well as molecular
criteria into astrocytomas and oligodendrogliomas [4, 28].
The main change in classification of histological DLGG is
the presence or not of a mutation at the isocitrate
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dehydrogenase (IDH 1 or IDH 2; IDHmt henceforth for a
mutation in either IDH1 or IDH2) and the presence or not of
1p19q codeletion. That allows classification into three distinct
groups of DLGG[21, 27, 42, 47, 55]:

1. IDH muta ted wi th 1p and 19q codele t ion—
oligodendroglioma. They are associated with favorable
outcomes [16, 21]. Median overall survival may be more
than 14 years, up to 17.1 years in some series [4, 7].

2. IDH mutated with no 1p and 19q codeletion—IDH mu-
tated astrocytoma. Median overall survival of 9 to 11
years [4, 7, 58].

3. IDH not mutated—IDH wild-type astrocytoma. A more
aggressive form of low-grade glioma. Its prognosis may
be similar to that of glioblastoma [46]. Median overall
survival of 1.7 to 2.1 years [21, 43, 47]. However, it
may present a heterogeneous median survival, per muta-
tion, e.g., TERT mutant—1.76 years, TERT wt—10.65
years) [7].

The effect of EOR or RTV in OS at different DLGG groups (WHO
2016)

Jungk et al. [25] evaluated the prognostic impact of EOR in
astrocytomas stratified with IDH1mt (38 patients). IDH1 mu-
tation was an independent positive prognosticator for OS in
multivariate analysis (p = 0.002). In a subgroup of patients
with ≥ 40% EOR (n = 39), initial and residual tumor volumes
were prognostic for OS (HR 1.03, p = 0.005 and HR 1.08, p =
0.007, respectively), persistent after adjustment for IDH1 mu-
tation status.

Five years after the first publication of their series, Jakola
et al. [24] published new analyses of their cohort now in light
of the established molecular markers, dividing patients into 3
groups: (1) the low-risk group being IDH mutated, 1p19q
codeleted; (2) the intermediate-risk group being IDH mutated
and 1p19q non-codeleted; and (3) the high-risk group being
IDH wild-type. They found that the survival benefit of surgi-
cal strategy remained after adjustment for molecular groups (p
= 0.001), supporting the results of their previous publication.
They concluded that surgical resection is effective in all mo-
lecular subgroups.

Patel et al. [41] aiming to assess the impact of EOR on
MPFS and OS in IDHmt and IDHwt DLGG performed a
retrospective review of 74 patients (two groups: 52 IDH1
mutations and 22 IDH wild-type) with WHO grade II gliomas
undergoing resection at a single institution. The 3-year OS rate
was 95.2% in IDHmt patients’ versus 64.2% in the IDHwt
group. Patients with IDHmt had correspondingly longer me-
dian MPFS (6.5 years) and median OS (10.9 years) versus
IDHwt patients (median MPFS: 3.2 years, median OS: not
reached). Greater EOR was the only variable assessed that

prolonged MPFS (p = 0.009) and OS (p = 0.03) (150).
However, when they performed an age-adjusted Cox regres-
sion model, stratified by IDH mutation status revealed that a
greater EOR was only associated with prolonged MPFS and
OS in IDHwt patients (MPFS—p < 0.001 and OS—p =
0.003), but not for IDHmt patients (MPFS—p = 0.83 and
OS—p = 0.48). Therefore, greater EOR seems to be particu-
larly associated with improved survival in a subgroup of
DLGG with IDHwt status. Although these are interesting re-
sults, they should be carefully interpreted and the limitations
of the study need to be considered, such as a small number of
patients, retrospective nature of the study, baseline differences
between groups, and short follow up.

Wijnenga et al. [58] (Table 1) studied the correlation of
molecular profiles and RTV on OS. In a univariate analysis
of the whole, the amount of postoperative RTV (as a contin-
uous variable) was significantly associated with OS, with a
hazard ratio (HR) of 1.01 per 1 cm3 increase in volume (p <
0.0001). However, there was a different impact of the RTV in
as t r ocy tomas ( IDHmt , 1p19q re t a i ned ) ve r su s
oligodendrogliomas (IDHmt, 1p19q codeleted). In the astro-
cytoma group, even with minimal residual volume (0.1–5.0
cm3), OS was impaired compared with no residual tumor (0.0
cm3). In the oligodendroglioma group, a trend toward better
OS with more extensive resection was observed, although
there was no significant improvement in OS in patients with
GTR versus small residual tumor (0.1–5.0 cm3).

Poulen et al. [43] performed a retrospective review of 31
patients who underwent resection for histopathologically con-
firmed, IDHwt, non–1p19q codeleted gliomas. No patient re-
ceived immediate postoperative adjuvant treatment, according
to the authors due to the high extent of resection (94% on
average) and because these grade II astrocytoma patients were
managed before the new 2016 WHO classification. The me-
dian velocity of diameter expansion (VDE) was 2.45 mm/year
(range 0.4–5 mm/year). The median follow-up was 74months
(range 24–157 months). They observed substantial heteroge-
neity in survival (OS at 5 years was 77.3% for the entire
group). However, two groups were identified: subgroup 1
with 5 patients who underwent subtotal resection and died
rapidly (median time from radiological diagnosis of 3.5
years); subgroup 2, no death of 21 patients with a long-term
follow up over 5 years (2 patients with more than 10 years of
follow up). Those results suggest that greater EOR may im-
prove OS outcomes even in the absence of IDH mutation and
1p19q codeletion.

Eseonu et al. [17] assessed the role of EOR on OS based on
genetic classification of DLGG: type 1 (IDHmt, 1p19q
codeleted), type 2 (IDH1mt, TP53 mutation, ATRX muta-
tion), and type 3 (IDHwt). They found that EOR was signif-
icantly associated with OS for type 1 DLGG with an EOR ≥
70% (p < 0.001). EOR was also significantly associated with
OS for type 3 DLGG with an EOR ≥ 79% (p = 0.040).
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However, they did not contain sufficient type 2 DLGG pa-
tients to conduct an EOR survival analysis. They concluded
that this different EOR cutoff suggests that the genetic makeup
of a DLGG could influence how effective the EOR is on
survival.

Scherer et al. [50] found that IDHmt had a significant as-
sociation with OS (p = 0.005), and that GTR had a beneficial
effect onOS regardless of themolecular profile (based on IDH
or 1p19q). Possible implications of molecular biomarkers on
surgical efficacy and EOR could not be found.

As shown above, greater EOR is related to a better OS
when all DLGG are analyzed as a single group (independent
of molecular subtypes). EOR has also been proven to signif-
icantly affect survival, after the establishment of molecular
biomarkers [24, 58], which we believe it is true. However,
the question is how beneficial the degree of resection is for
each subgroup. Possibly groups with a less favorable progno-
sis profile benefit more from a wider resection.

The molecular signature influence in the EOR or RTV

The relationship of EOR and glioma molecular markers, such
as the 1p19q codeletion or IDH mutation, is not clear [10].
Probably, as seen in Table 3, favorable molecular markers are
not related to a greater EOR. Cordier et al. [10] observed a
statistical significance of lower EOR in patients with
codeletion 1p19q, which reinforces the idea that a greater
EOR is an important prognostic factor per se, independently
of the molecular pattern.

Limitations of the review

Some of the limitations of our review are (1) the absence of
randomized trials since none available in the literature. (2) We
established an arbitrary cutoff of 100 patients as an inclusion
criterion of our systematic review, which may exclude impor-
tant smaller series. (3) We did not analyze the PFS reported in
the series. Although it is a very used outcome, we believe it is
not accurate enough because the DLGG presents continuous
growth (so there is not a real-time with progression-free sur-
vival) and the definition of this parameter is heterogeneous in
literature. (4) Among the papers added in this review, we may
observe a wide variety of WHO classification (range from
WHO 1993 to WHO 2016).

Conclusion

Our study reviews the results of large, modern series that
assessed the impact of EOR on the outcome of patients with
DLGG. Although there are similar studies, this is the first
review to combine all series that performed pre and postoper-
atively MRI analysis of the tumor and all series that also

performed volumetric analysis. We could observe for the first
time that all series with a rigorous analysis of the tumor vol-
ume with volumetric assessment were unanimous in demon-
strating that the higher the EOR the better the prognosis.

Surgery remains the first treatment option for the manage-
ment of low-grade gliomas. There is accumulating evidence
that supports early surgical resection rather than the classic
conservative “wait and see” approach or stereotactic biopsy.

A better understanding of the different molecular signature
demonstrates the heterogeneity of DLGG. Current data sug-
gest a benefit of maximum safe resection for all different sub-
types; however, “radical surgery”may be associated with bet-
ter OS and MPFS in tumors with a more aggressive signature
(IDHwt tumors; or IDH mutated non-codeleted tumors).
Further understanding of the behavior and response to treat-
ment of different DLGG subtypes will likely have an impact
on treatment strategies shortly, with the advent of target ther-
apies and new radiotherapy modalities and protocols. The
incorporation of those modalities, the development of surgical
techniques, and further understanding of the brain
connectome may contribute to a significant improvement not
only in patients’ survival but also in the quality of life.
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