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Abstract The exact pathogenesis of syringomyelia associ-
ated with Chiari type 1 malformation is unknown, although
a number of authors have reported their theories of syrinx
formation. The purpose of this review is to understand
evidences based on the known theories and to create a new
hypothesis of the pathogenesis. We critically review the
literatures on clinicopathological, radiological, and clinical
features of this disorder. The previously proposed theories
mainly focused on the driven mechanisms of the cerebro-
spinal fluid (CSF) into the spinal cord. They did not fully
explain radiological features or effects of surgical treatment
such as shunting procedures. Common findings of the
syrinx in clinicopathological studies were the communica-
tion with the central canal and extracanalicular extension to
the posterior gray matter. Most of the magnetic resonance
imaging studies demonstrated blockade and alternated CSF
dynamics at the foramen magnum, but failed to show direct
communication of the syrinx with the CSF spaces. Pressure
studies revealed almost identical intrasyrinx pressure to the
subarachnoid space and decreased compliance of the spinal
CSF space. Recent imaging studies suggest that the
extracellular fluid accumulation may play an important
role. The review of evidences promotes a new hypothesis of
syrinx formation. Decreased absorption mechanisms of the
extracellular fluid may underlie the pathogenesis of
syringomyelia. Reduced compliance of the posterior spinal
veins associated with the decreased compliance of the
spinal subarachnoid space will result in disturbed absorp-

tion of the extracellular fluid through the intramedullary
venous channels and formation of syringomyelia.
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Introduction

The exact pathogenesis of syringomyelia associated with
Chiari type 1 malformation has not been clarified. This
disorder is characterized by ectopia of the cerebellar tonsils
with or without displacement of the brainstem through the
foramen magnum. Disturbed pathway of the cerebrospinal
fluid (CSF) around the foramen magnum is assumed to be
the primary cause of syringomyelia. However, hydroceph-
alus is usually absent, and the degrees of subarachnoid
blockade at the foramen magnum and descent of the
cerebellar tonsils are not associated with presence or
absence of syringomyelia. Although recent advances of
neuroradiological imaging provided static and dynamic
information on the anatomical structures around the
foramen magnum, none of the previously reported theories
fully explained the clinical or radiological features. Until
now, no animal models successfully reproduced this
disorder. In the known experimental models, syringomyelia
was produced by induction of adhesive arachnoiditis, spinal
cord injury or hydrocephalus.

In this article, we critically review the previously
proposed theories and clinical studies of syringomyelia
associated with Chiari type 1 malformation. The anatomical
and pathophysiological evidences are analyzed to infer the
mechanisms of syrinx formation. The purpose of this review
is to create a new hypothesis for the pathogenesis of
syringomyelia associated with Chiari type 1 malformation.
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Previous theories for the pathogenesis

Table 1 summarizes the previously reported theories. Most
of theories in 1900s focused on how CSF entered into the
spinal cord as the pathogenesis of syringomyelia [16, 57–
59, 130, 145, 200, 201]. The main source of CSF entrance
was considered to be the fourth ventricle via the central
canal [57–59, 200, 201] or the spinal subarachnoid space
via the perivascular spaces [16, 130, 145]. The latter theory
that the syrinx fluid originates from the subarachnoid CSF

has been supported by many clinical or experimental
studies. However, the subarachnoid CSF origin theory
was not based on direct evidences. Recent articles in
2000s proposed that the syrinx fluid derived from the
extracellular fluid from the spinal cord microcirculation, not
from the CSF in the subarachnoid space or the fourth
ventricles [69, 70, 104, 115]. These studies did not show
new clinical evidences but provided novel insights into the
pathogenesis of syringomyelia. The idea that the syrinx
fluid originates from the extracellular fluid may explain the

Table 1 The authors and study descriptions of the known theories for the pathogenesis of syrngomyelia associated with Chiari type 1
malformation

Authors Theory Study description

CSF entrance from the fourth ventricle

[57–59] Ventricular CSF fluid enters into the central canal
by the arterial pulsation. Narrowed portion
of the central canal acts as a one-way valve

Speculation from clinical studies on patients
with Chiari malformation who underwent
posterior surgeries (17 patients in 1950;
45 patients in 1958; 68 patients in 1965).
The theory assumed presence of mild or
compensated hydrocephalus

[200, 201] The pressure dissociation between the intracranial
and spinal subarachnoid spaces secondary to
venous pressure changes sucks the fourth
ventricle CSF into the central canal

Speculation based on common clinical
observations and the literature review and
the clinical study in 37 patients with
syringomyelia and Chiari malformation.
The lumbar CSF pressure became higher
firstly by cough or Valsalva maneuver and fell
faster than the ventricle pressure in
24 out of 37 patients

CSF entrance from the subarachnoid space

[16] CSF enters into the spinal cord via perivascular
spaces. The elevated thoraco-abdominal pressures
are transmitted via the epidural venous plexus
to the spinal subarachnoid space

Speculation from the pathological study using
human spinal cord specimen with syringomyelia.
Intra-syrinx injection of Indian ink resulted
in spread and pool in the dilated
perivascular spaces

[131] Tonsillar herniation blocks the upward flow
of the central canal fluid. CSF may enter into
the spinal cord via the perivascular spaces

Speculation from the clinical and pathological
study on 20 autopsy specimens
(6 fetuses and 14 adults) and 45 patients with
hindbrain lesions including 25 patients
of Chiari type 1 malformation

[145] Piston action of the cerebellar tonsil forces the
subarachnoid CSF into the spinal cord through
the perivascular or interstitial spaces

Speculation from the clinical study using
phase-contrast MR imaging and intraoperative
ultrasonography findings in 7 patients with
syringomyelia and Chiari type 1 malformation

Extracellular fluid origin

[69, 70] Syringomyelia is produced by mechanical
distension of the spinal cord and filling with
extracellular fluid from the spinal
cord microcirculation

Speculation based on phase-contrast MR
imaging study on 16 patients with spinal
cord cysts including 7 patients with Chiari
type 1 malformation, and literature review

[104] Syringomyelia is originated from
accumulation of the extracellular fluid
in the spinal cord

Speculation from the literature review

[115] Dilatation of intramedullary vessels below
the subarachnoid blockade partially disrupts
the blood-cord barrier and produces the
syrinx with accumulation of the fluid
from the intramedullary microcirculation

Speculation from the literature review
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pathophysiology of syrinx formation in adhesive spinal
arachnoiditis but is still difficult to explain effectively the
mechanism in Chiari type 1 malformation.

Clinicopathological studies

There have been only several studies reporting human
spinal cord specimens of syringomyelia with Chiari type 1
malformation. In 1953, Netsky reported autopsy findings of
8 patients with syringomyelia and found abnormal vessels
around the syringes [141]. He suggested that the intra-
medullary abnormal vessels were the cause of syringomy-
elia. However, Chiari malformation was present in only one
patient in the series. From 1987 to 1996, autopsy findings
of 18 cases of syringomyelia with Chiari type 1 malforma-
tion were reported in four papers [20, 80, 91, 132]. These
studies demonstrated that there was no direct communica-
tion between the fourth ventricle and the syrinx, but the
central canal to the fourth ventricle was patent in eight of
these 18 cases. Ependymal lining of the syrinx or
communication of the syrinx with the central canal was
observed in all cases. The syrinx usually extended into the
posterior gray matter and sometimes communicated with
the spinal subarachnoid space.

Radiological evidences of CSF dynamics

CT-scan with intrathecal water-soluble contrast materials

Computed tomographic (CT) scan after intrathecal admin-
istration of water-soluble contrast materials (CT myelog-
raphy (CTM)) was introduced for radiological examination
of syringomyelia in the end of 1970s [51, 159]. The
delayed CTM several hours after intrathecal injection of
metrizamide (MW 789) displayed enhancement of syringo-
myeliac cavities [13, 26, 27, 29, 35, 100, 101, 111, 117,
168, 198, 206]. Such CTM findings supported the theory of
parenchymal CSF entrance because the contrast medium
injected into the spinal subarachnoid space was accumulat-
ed in the syrinx without entrance into the fourth ventricle.
Similar intramedullary contrast accumulation was also
present in other intramedullary cystic lesions in cervical
spondylosis, intramedullary tumors, and syringomyelia due
to other etiologies [95, 99].

Several studies demonstrated dynamics of the intrathe-
cally injected water-soluble contrast materials in the normal
spinal cord. These studies indicated that a significant part of
the intrathecally injected metrizamide was eliminated to the
blood via the spinal routes in rabbits [66] and humans [45,
146]. It is also known that the intrathecally injected water-
soluble contrast materials penetrate into the normal brain

and spinal cord parenchyma in dogs [40, 161], rabbits [44,
85] and humans [86, 88, 203]. The mechanism of metriza-
mide penetration from the subarachnoid space into the spinal
cord was thought to be a simple diffusion because of lack of
a barrier between subarachnoid CSF and the extracellular
fluid of the spinal cord. Tracer studies using HRP (MW
43,000) demonstrated rapid entrance of the subarachnoid
HRP into the spinal cord [176, 177] or the brain [179] via the
perivascular spaces in normal rats, cats, dogs and sheep.
These studies suggested the role of arterial pulsation as a
driving force.

Considering the results of CTM and tracer studies, intra-
medullary penetration of the water-soluble contrast materials
from the subarachnoid space will not be specific to syringomy-
elia. Delayed clearance of the contrast from the syrinx cavities
may explain delayed visualization of the syrinx in CTM.

CSF dynamics by cine-mode MR imaging

Cine-mode magnetic resonance (MR) imaging enables
analysis of CSF dynamics in a cardiac cycle in the patients
with Chiari type 1 malformation. Most of the published
studies utilized phase-contrast techniques [3, 6, 21, 28, 38,
69, 74, 76, 83, 90, 105, 120, 126–128, 150, 154–156, 174,
196, 204]. Some studies demonstrated CSF movement as
the displacement of the bands [185] or stripes [164].
According to these MR studies, there was a significant
variety in the degree of subarachnoid blockade and
physiological parameters of the CSF flow in Chiari type 1
malformation. The CSF movement in the posterior sub-
arachnoid space at the foramen magnum was disturbed or
completely blocked by the displaced cerebellar tonsils.
However, some studies on pediatric population reported
normal CSF flow in 19–33% of the patients with Chiari
type 1 malformation [126, 127, 196]. The reported data on
the CSF velocities in the spinal subarachnoid space were
more confusing. Some studies [3, 6, 21, 164] reported that
the systolic CSF velocities in Chiari patients were lower
than those in healthy controls. Other studies [76, 89, 120]
reported significantly higher systolic velocities. Simulta-
neous bidirectional CSF flow at the foramen magnum was
also reported [190]. None of cine-mode MR imaging
studies showed CSF entrance from the fourth ventricle or
the spinal subarachnoid space into the syrinx. Also, most of
them did not explain why some Chiari patients developed
syringomyelia and others did not. Only one study compared
cine MR findings of 32 patients with syringomyelia and 15
patients without syringomyelia in Chiari type 1 malforma-
tion [154] and reported that the duration of the caudal CSF
movement in the ventral subarachnoid space was signifi-
cantly longer in syringomyelia.

Thus, the cine-mode MR imaging studies demonstrated
abnormal CSF dynamics in Chiari type 1 malformation.
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However, they failed to display definite evidences that CSF
enters into the syrinx.

Pressure studies of syringomyelia

Direct recordings of the pressure in the syrinx were
performed in four studies [34, 46, 76, 133]. In 1970,
Ellertsson and Greitz first recorded pressures of the
subarachnoid space and the syrinx using electromanometric
equipment after percutaneous puncture in ten patients [46].
They described that the pressures in the syrinx were above
those in the subarachnoid space in most cases, but the
difference was not significant. Unfortunately, they did not
specify the type of syringomyelia. Davis and Symon
recorded the intrasyrinx pressure with a simple manometric
technique during surgery in 17 syringomyelic patients
including 5 Chiari malformations [34]. The recorded
pressures were relatively low (4.0 to 7.0 cmH2O in 15
patients and 0 to 1.0 cmH2O in the other two patients)
probably because their measurement was performed after
draining of the subarachnoid CSF and syringomyelic fluid.
Milhorat et al. performed manometric recordings of the
intrasyrinx pressure in 32 patients including 21 Chiari type
1 patients during syrinx surgery [133]. They recorded the
pressure through an 18-gage needle inserted into the syrinx
after opening the dura and arachnoid. The recorded
pressures ranged from 0.5 to 22.0 cmH2O (mean, 7.7).
They described that the patients with syrinx pressures
greater than 7.7 cmH2O tended to have more rapid
progression of symptoms. Heiss et al. recorded the
pressures of the cervical subarachnoid space and the syrinx
through 22-gage spinal needles during surgery in 20
patients of syringomyelia with Chiari type 1 malformation
[76]. They reported that the syrinx pressure (15±5.8 mmHg)
was identical to the cervical subarachnoid pressure (15.1±
4.7 mmHg). Relatively larger values of the syrinx pressure
in this study compared with the other two studies may be
explained by preservation of the spinal subarachnoid space
during recordings. They also reported that the CSF
compliance (milliliters of CSF per milliliters of mercury)
of the spinal subarachnoid space was significantly low in
Chiari-syringomyelia patients than normal controls.

Several studies reported the relationship between the
intracranial and spinal subarachnoid pressures in Chiari
type 1 malformation. Williams reported the pressure
dissociation between the intracranial and spinal subarach-
noid spaces during Valsalva maneuver [201]. Häckel et al.
reported that eight of nine patients with syrinx had a CSF
block, while only three of 13 patients without syrinx
showed a block by Valsalva maneuver of Queckenstedt test
[73]. Using a manometric Queckenstedt test technique,
Tachibana et al. demonstrated severe or complete CSF

block with neck flexion and no CSF block with neck
extension in the patients of syringomyelia with Chiari type
1 malformation [180]. According to the study by Heiss et
al., the Valsalva maneuver during surgery failed to produce
significant pressure differences between the intracranial and
lumbar subarachnoid space in 20 Chiari patients with
syringomyelia [76].

From these pressure studies, there is a variety of the
degree of the CSF blockade in patients with Chiari type 1
malformation. The intrasyrinx pressure is almost identical
to that of the surrounding subarachnoid space. It is unlikely
that a simple pressure gradient is the main mechanism of
syrinx formation.

Morphometric studies

Posterior fossa size

Morphometric studies on the posterior fossa and neural
structures provided quantitative evidences on etiology of
Chiari type 1 malformation. The posterior fossa volume
was significantly reduced in the patients with Chiari type 1
malformation compared to normal controls [15, 134, 179,
187, 195]. There were some small differences in the results
among the morphometric studies. Nishikawa et al. reported
that there was no significant difference in the mean
posterior crania fossa volume between Chiari type 1
patients and normal controls in adults [142]. However, the
volume ratio of the neural structure (the brainstem and
cerebellum) and the posterior cranial fossa was significantly
larger in the Chiari patients. From the analysis of MRI in 42
pediatric patients with Chiari type 1 malformation, Sgouros
et al. reported that there was no significant difference of the
posterior fossa volume between the patients with Chiari
malformation only and normal controls, but Chiari patients
with syringomyelia had a significant smaller posterior fossa
volume [172]. Studies measuring the parameters of the
posterior fossa such as length of the supraocciput and clivus
also showed small posterior fossa in Chiari type 1
malformation [14, 102, 144, 167]. These studies indicate
that Chiari type 1 malformation is a disorder of paraxial
mesoderm that induces underdevelopment of the occipital
bone and overcrowding in the posterior fossa [134, 142].
However, the relationship between the presence of syrin-
gomyelia and size of the posterior fossa has not been
clarified.

Tonsillar herniation

Chiari malformation has been defined as the descent of the
cerebellar tonsil of 3 or 5 mm below the foramen magnum
[1, 18]. Degree of tonsillar herniation was reported to be
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associated with the severity of the brainstem or cerebellar
compression symptoms [47, 207]. However, the literature
indicated that tonsillar herniation of less than 3 or 5 mm can
cause symptoms consistent with syringomyelia with Chiari
type 1 malformation [53, 134, 170]. Even the patients
without tonsillar herniation showed clinical presentation of
syringomyelia with Chiari type 1 malformation [89, 109,
110, 189, 210] and were successfully treated by posterior
fossa decompression.

It was also reported that the degree of tonsillar herniation
did not correlate with presence of syringomyelia and size of
the syrinx [125, 134, 175, 178, 207, 208]. Some studies
demonstrated that intermediate level of tonsillar herniation
was most frequently associated with syringomyelia. Stevens,
et al. reported that syringomyelia was present in 57% of the
patients showing the tonsillar descent at occiput-C1, 70% at
C1–C2, and 20% at lower than C2 [175]. Stovner, et al. also
reported that syringomyelia was significantly more associat-
ed with a herniation of 9 to 14 mm (56%) than smaller
(13%) or larger (13%) herniations [178]. In a clinical study
on surgical series of Chiari type 1 malformation by
Yamazaki et al., the length of the ectopic tonsil was
significantly larger in the patients without syringomyelia
than those with syringomyelia [208].

According to these morphological studies, the role of
mechanical effects of the displaced tonsil on the upper
cervical cord may be limited.

Effects of surgical treatment

Posterior decompression

Gardner initially reported suboccipital craniectomy with
opening of the fourth ventricle and plugging of the obex as
a surgical treatment of syringomyelia associated with Chiari
type 1 malformation [59]. The rationale of obex plugging
was based on the idea that CSF entered into the central
canal from the fourth ventricle. The Gardner's operation had
been performed by many neurosurgeons [24, 25, 29, 43, 82,
116, 124, 153, 186]. However, simple decompressive
procedures at the craniovertebral junction proved to have
similar effects on reduction of syringomyelia with lower
incidence of complications [56, 121]. Suboccipital craniec-
tomy with laminectomy of the upper cervical spine and
expansive duraplasty has been a standard surgery in this
disorder [5, 7, 11, 12, 23, 36, 67, 81, 138, 165, 168, 188–
192]. Several variations in procedures were reported. The
arachnoid membrane was opened to explore the foramen
magendie and excise adhesions [10, 31, 32, 39, 48, 63, 64,
71, 103, 107] or was left intact [37, 173, 199]. Some
authors left the dura mater open with arachnoid dissection
[22, 107] or intact [151]. Displaced tonsils were sometimes

manipulated, coagulated or resected [4, 8, 9, 33, 54, 68, 72,
108, 112, 140, 205]. To prevent CSF-related complications,
some authors did not open the dura, but removed the dural
band (occipitoatlantal membrane) or outer layer of the dura
[30, 55, 61, 75, 94, 98, 118, 136, 147, 148, 209, 211].
Meta-analysis of 582 pediatric patients in the literature
revealed that foramen magnum decompression without
duraplasty was associated with higher risk of reoperation
but showed lower risk of complication compared to that
with duraplasty [42]. There was no significant difference
between these two methods in clinical improvement and
reduction of syringomyelia after surgery. Several authors
recommended suboccipital expansive craniotomy using
autologous bone or synthetic materials to obtain dural
expansion [84, 162, 163, 181, 193]. Too wide suboccipital
craniectomy was also reported to produce downward
displacement of the hindbrain [41, 84]. Thus, enlargement
of the subarachnoid space around the hindbrain will be
important to provide therapeutic effects. Recent variations
in surgical procedures aimed to reduce complications or to
achieve sufficient decompression.

Shunting procedures

Shunting procedures such as syringo-subarachnoid (S-S),
syringo-peritoneal or syringo-pleural shunting are another
option of surgical treatment. Syrinx shunting was developed
as an additional procedure to foramen magnum decompres-
sion [4, 48, 52, 130, 160, 183, 197] or as a surgical
treatment of syringomyelia without hindbrain abnormalities
[17, 114, 122, 152, 182, 194]. Several authors reported that
S-S shunting was effective in reduction of syrinx and
improvement of syringomyeliac symptoms as the primary
surgical treatment in syringomyelia with Chiari type 1
malformation [77–79, 92, 93, 96, 97, 149]. Although the
syrinx shunting has shown higher incidence of reoperation
[19, 171, 202], shunting procedures are the important
option for syringomyelia of various etiologies including
Chiari type 1 malformation. S-S shunting, which drains the
syrinx fluid into the surrounding subarachnoid space,
theoretically does not alter the CSF flow around the
foramen magnum. The previous theories proposing CSF
entrance from the subarachnoid space does not explain why
S-S shunting works well as far as the shunt tube is patent.

Pre-syrinx state

In 1999, Fischbein et al. reported 5 patients showing enlarged
spinal cord with parenchymal T1 and T2 prolongation but no
cavitations on MR imaging, and called this condition as the
presyrinx state [50]. Their series included one case of Chiari
type 1 malformation. They proposed that the increased CSF
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pressure by the pulsatile tonsillar descent drives CSF into the
spinal cord parenchyma via perivascular spaces. The driven
CSF will enlarge the central canal in syringomyelia. If the
central canal is not patent, the driven CSF will distribute
more diffusely in the spinal cord parenchyma and result in
the presyrinx state. Several authors reported similar MR
imaging features as the presyrinx state in Chiari malforma-
tions [65, 119], trauma [157, 169], arachnoiditis [87],
hydrocephalus [137], or posterior fossa arachnoid cyst
[143]. The MR appearance may be identical to that in
posttraumatic microcystic degeneration [49, 113, 123] or
adhesive spinal arachnoiditis [106]. Although the driven
mechanism of CSF from the subarachnoid space into the
central canal or the spinal cord parenchyma via perivascular
spaces should be further verified, explanation for the
extracellular fluid accumulation is plausible.

Recently, we investigated MR imaging findings of the
spinal cord parenchyma in syringomyelia with Chiari type 1
malformation [2]. Parenchymal hyperintensity areas were
present around the central canal and base of the posterior
column adjacent to the syringomyelic cavity on T2-
weighted images. This study indicates that the elevated
extracellular fluid state is commonly present in the spinal
cord in syringomyelia with Chiari type 1 malformation
(Fig. 1). Such centrifugal pattern of the extracellular fluid

accumulation is most likely produced by the disturbed
absorption mechanisms of the extracellular fluid, not by the
driven force of CSF from the spinal cord surface [2].

A new hypothesis for syrinx formation

The evidences of CSF dynamics, pressure studies, mor-
phology of the hindbrain structures, effects of surgical
intervention and recent MR imaging findings of “pre-syrinx
state” promote new insights into the pathogenesis of syrinx
in Chiari type 1 malformation.

Anatomical consideration

Human spinal cord has a characteristic vascular distribution
over the cord surface. The outer layer of the pia mater
covers the anterior spinal artery and vein at the anterior
surface. There are no arachnoid trabeculae in the anterior
subarachnoid space. In contrasts, the posterior subarachnoid
space contains a longitudinal midline dorsal septum, which
becomes only a few strands immediately below the foramen
magnum [139]. The posterior spinal veins and arteries are
situated in the true subarachnoid space with arachnoid
trabeculations [184]. The posterior spinal veins receive

Fig. 1 MR imaging of the cervical spine in a 16-year-old girl showing
syringomyelia with Chiari type 1 malformation. a T1-weighted
sagittal image showing displaced tonsil and syringomyelia from the
C2/3 to C6/7 levels. b T2-weighted sagittal image demonstrates
intramedullary hyperintense areas at the C2 and C7 levels. The three
lines indicate the levels of axial slices. c–h T1- (c, e, g) and T2-
weighted (d, f, h) axial images at the upper (c, d), middle (e, f), and

lower C2 (g, h) levels. T2-weighted images clearly demonstrate
hyperintense areas at the central canal and the posterior gray matter (d,
f), while T1-weighted images show only slightly hypointense signal
(c, e). At the C2/3 level, T2-weighted image (h) demonstrates more
extensive abnormal signal area in the spinal cord than T1-weighted
image (g)
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venous tributaries from the base of the posterior columns
[62, 135] and constitute an important venous drainage of
the spinal cord.

In the spinal cord, extracellular fluid is intimately
associated with blood circulation. At the capillary level,
fluid moves from the blood flow into the interstitial space at
the arteriolar end of the capillary, where the filtration
pressure exceeds the oncotic pressure, and from the
interstitial space into the capillary at the venular end, where
the oncotic pressure exceeds the filtration pressure [60]. It
has been known that CSF is produced not only at the
choroid plexus but also at the brain and spinal cord [129,
166]. Clinical and experimental studies using CTM and
tracer techniques indicate that there is a significant fluid
communication between the subarachnoid CSF and the
extracellular space in the spinal cord. Considering these
evidences, the extracellular fluid of the spinal cord contains
both the filtrate from the spinal cord microvasculature and
the CSF, and at least some part of the extracellular fluid will
be absorbed into the intramedullary venous channels
(Fig. 2-a).

Venous compliance and syrinx formation

The spinal CSF shows pulsatile movement with arterial
pulsation. At the foramen magnum level, CSF enters into
the spinal CSF space during systole and goes back to the
intracranial space during diastole. The spinal CSF space

will respond such CSF volume changes by altering the
venous blood volume of the spinal cord and/or the epidural
venous plexus. These venous blood volume changes during
cardiac cycle may help to absorb blood from the capillary
bed and the extracellular fluid from the spinal cord
parenchyma.

There is evidence that compliance (the volume change
per the pressure change) of the spinal CSF space is reduced
in syringomyelia with Chiari type 1 malformation [76].
Reduced intracranial compliance determined from cine-
mode MR imaging was also reported in Chiari type 1
malformation [3]. The low compliance of the CSF space is
most likely produced by the tonsillar blockade of the
posterior subarachnoid space at the foramen magnum.
Because the posterior spinal veins exist in the true
subaracnoid space, the spinal CSF pressure directly
influences the posterior spinal veins and will reduce
compliance of the posterior spinal veins. That is, the
posterior spinal veins reduce the ability to expand during
diastole of cardiac cycle and the absorption mechanism of
the extracellular fluid from the spinal cord parenchyma will
be most likely disturbed. The spinal cord blood flow may
be preserved because of the preserved arteriovenous
perfusion pressure. Thus, the reduced venous compliance
results in decreased absorption of the extracellular fluid
through the intramedullary venous channels. Because the
central canal acts as the active transport of the fluid, the
decreased venous absorption will produce enlargement of

Fig. 2 Schematic presentations of the extracellular fluid circulation in
the cervical spinal cord. ASA anterior spinal artery, ASV anterior spinal
vein, PSA posterior spinal artery, PSV posterior spinal vein, PCC
central canal. a Normal spinal cord. Small arrows indicate the flow of
the extracellular fluid. The fluid in the extracellular space is derived
from the filtrate of the arteriole end of the capillaries and the
subarachnoid space via the perivascular spaces. The central canal acts
as the active transport of the fluid. The extracellular fluid is absorbed
through the intramedullary venous channels. The posterior spinal
veins are situated in the posterior subarachnoid space and are directly

influenced by the CSF pressure of the posterior subarachnoid space. b
Syringomyelia associated with Chiari type 1 malformation. Reduced
compliance of the posterior spinal veins due to the decreased
compliance of the spinal subarachnoid space produces disturbed
absorption of the extracellular fluid through the intramedullary venous
channels. The accumulated extracellular fluid results in the enlarged
central canal and the interstitial edema. Cleft formation of the
expanded central canal and the accumulated extracellular fluid
produce the extracanalicular syrinx
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the central canal and increased extracellular fluid (intersti-
tial edema) around the central canal (Fig. 2b). The
extracellular fluid will be accumulated also in the relatively
coarse areas such as the central gray matter and the
posterior gray matter. Cleft formation initiated by rupture
of the distended central canal may contribute to formation
of the extracanalicular syrinx (Fig. 3).

Spinal dural arteriovenous fistula (AVF) also shows venous
congestion and the spinal cord edema, but syringomyelia is
uncommon. This should be noted. Spinal dural AVF produces
significant decrease in spinal cord perfusion pressure. The
abnormal perfusion state will result in both the extracellular
fluid accumulation and intracellular edema caused by
ischemia. Such ischemic edematous state will not result in
syringomyelic cavity. Accumulation of the extracellular fluid
with the preserved perfusion pressure may be important in
expansion of the fluid pathways in the spinal cord.

Although most of our supposed mechanisms lack the
experimental or clinical evidences and consist of specula-
tions, this decreased absorption hypothesis can explain
several radiological and clinical features. For example,
delayed visualization of syringomyelia by CTM is the result
of delayed clearance of the contrast via the intramedullary

veins after influx of the subarachnoid contrast into the syrinx
via the perivascular spaces. S-S shunting drains the syrinx
fluid (the accumulated extracellular fluid) into the subarach-
noid space where the usual CSF circulation and absorption
mechanisms exist. It is still unclear why some patients with
Chiari type 1 malformation develop syringomyelia and some
do not. Differences in capacity of the venous absorption of
the extracellular fluid or the fluid transport mechanism of the
central canal may underlie such variation in clinical
presentation of Chiari type 1 malformation.

Conclusions

This study critically reviews the evidences of the clinico-
pathological, radiological and clinical presentations of
syringomyelia associated with Chiari type 1 malformation.
The previous theories for the pathogenesis do not fully
explain the radiological features and effects of surgical
treatment such as shunting procedures. The MR appearance
of syringomyelia demonstrates the extracellular fluid
accumulation in the spinal cord parenchyma and suggests
decreased absorption mechanisms of the extracellular fluid.

Fig. 3 MR imaging of the cer-
vical spine in a 28-year-old
woman showing syringomyelia
with Chiari type 1 malforma-
tion. a Coronal image with fast
imaging employing steady-state
acquisition (FIESTA). This
heavily T2-weighted image
clearly demonstrates the en-
larged central canal and the
extracanalicular extension of the
syrinx (arrow). b–e T1- (b, d)
and T2-weighted (c, e) axial
images at the C4/5 (b, c) and
C5/6 (d, e) levels. Abnormal
hyperintense areas around the
central canal (c) or the syrinx (e)
indicate accumulation of the
extracellular fluid or interstitial
edema
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The review of the evidences promotes a new hypothesis of
syrinx formation: Reduced compliance of the posterior
spinal cord veins, that is associated with the decreased
spinal CSF compliance due to the foramen magnum
blockade, will produce disturbed absorption of the extra-
cellular fluid through the intramedullary venous channels
and result in syringomyelia in Chiari type 1 malformation.
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Comments

Fumio Suzuki and Kazuhiko Nozaki, Shiga, Japan
The authors are to be congratulated for this comprehensive

overview on the pathophysiology of syringomyelia. They made a
modification of the theory proposed by Greitz D. in that a decreased
compliance of the large veins in the subarachnoid space, which results
from the reduced compliance of CSF below the obstruction, decreases
the absorption of the extracellular fluid from intramedullary venous
channels, resulting in the accumulation of extracellular fluid in spinal
cord. This phenomenon might contribute partly to the development of
syringomyelia but does not seem to be a main cause of syrinx
formation. Although Greitz D. reported in his review that venous
congestion might contribute to syrinx formation, venous congestion is
not so obvious in Chari malformation type 1 as in spinal dural AVFs,
in which large veins of the spinal cord are congested severely and
compromised veins should reduce their compliance. These abnormal
venous conditions may induce necrotizing myelitis but do not
necessarily accompany syrinx formation. The authors referred to the
report by Heiss J. et al. as an evidence of reduced CSF compliance,
but the data was not statistically significant. More data about the
changes in compliance of CSF space in Chiari Type 1 should be
needed before establishing their modified theory.

Ricardo V. Botelho, São Paulo, Brazil
The authors performed a comprehensive review of mechanisms

and concepts related to the pathogenesis of syringomyelia in Chiari
malformation and have designed a hypothetical model of pathogenesis
for syringomyelia.

Some of the factors reviewed are well established and others are
hypothetical:

1. Patients with CM and sirirngomielia have smaller posterior fossa
than those who did not have syringomyelia.

2. In patients with Chiari malformation, smaller tonsillar herniations
are associated more frequently with syringomyelia than larger herniations.

The combination of these two features, small and shallow posterior
fossa and small herniation of the tonsils might suggest a lower
compliance of the foramen magnum, at the same time, prevents the
descent of the tonsils and produces an early and intense blockage of
free flow of craniocervial CSF in patients with syrinx.

3. Patients with syringomyelia have a blockage of subarachnoid
CSF flow and less complacency of the subarachnoid space and
posterior spinal veins.

4. The reduced absortion mechanism from the extracellular fluid
from the spinal Cord parenchyma would result in syringomyelia in
Chiari type 1 malformation, as speculated by the authors.

One real and observed effect in patients with syringomyelia and
MC is that decompression of the posterior fossa often decreases
syringomyelia cavity, probably by restoring the caniocervical flow of
CSF.

The importance of reducing capacity venos absorption of extra-
cellular fluid is an interesting suggestion posed by the authors that
future works will confirm or not these suggestions.

Jörg Klekamp, Quakenbrück, Germany
In this paper, Koyanagi and Houkin present a hypothesis that was

supposed to explain the development of syringomyelia in patients with
a Chiari type I malformation. The authors correctly summarize in their
paper that previous theories trying to explain syringomyelia by
cerebrospinal fluid (CSF) entering the spinal cord via the 4th ventricle
or other avenues have failed to demonstrate such a communication
and are not able to explain several observations in these patients. Even
though several thoughts and conclusions by the authors are well
founded, I do have some reservations against this paper.
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In table 1, the authors provide a list of previous theories and
disqualify each of these as speculative. This statement is grossly
negligent. Gardner's and Williams' theories, for instance, may no
longer be tenable but were based on careful clinical tests, pressure
recordings in patients and several animal studies. Given the technical
conditions at the time, these works were state of the art and well
founded on the observations made. Likewise, the theories of
extracellular origin relating syringomyelia to edema formation are
based on animal experiments and clinical observations and by no
means just the result of a literature review.

The concept of syringomyelia as a spinal cord edema is by no
means new. Tannenberg in 1924 and Liber and Lisa in 1937 were the
first to propose this view. Taylor and Byrnes in 1974, Aboulker in
1979, and Yamada et al. in 1996 further elaborated on this theory and
already emphasized the importance of venous obstruction, which they
thought to cause syrinx formation in combination with CSF flow
obstruction.

I do not agree with the authors' initial statement, that theories
concerning the pathophysiology of syringomyelia on this basis do
not apply to patients with a Chiari malformation. Several experi-
mental studies have provided new insights into the physiological
exchange between extracellular fluid (ECF) of the spinal cord and
CSF under normal conditions as well as with CSF-flow obstructions.
It appears that any pathology causing a CSF-flow obstruction and/or
spinal cord tethering as well as certain intramedullary tumors are
able to disturb the balance between ECF und CSF in the spinal

canal, which may then lead to syrinx formation. This concept applies
to patients with a Chiari malformation just as well as to those with
posttraumatic syringomyelia, for instance. After all, syrinx formation
in Chiari patients is the result of CSF-flow obstruction at the
foramen magnum as it is in posttraumatic syringomyelia with CSF-
flow obstruction at the level of the posttraumatic arachnopathy. With
their hypothesis, Koyanagi and Houkin simply add a reduced
compliance of posterior spinal cord veins to this concept of ECF/
CSF imbalance. Spinal cord veins may turn out to contribute to
syrinx formation in this setting but this assumption does not imply a
completely novel hypothesis.
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