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Abstract We carried out an experimental investigation of
cartilage endplate vascularity of degenerated interverte-
bral discs produced by exogenous melatonin (MEL)
treatment. Adult Swiss albino rats were divided into three
groups: control, operated degeneration, and MEL treat-
ment. There were five rats in each group and, using a
posterior approach, cuts were made parallel to the
endplates in the posterior annulus fibrosus in five
consecutive intervertebral discs between the 5th and
10th vertebral segments of the rats’ tails. At 8 weeks, five
of these animals were treated with exogenous MEL (s.c.
injection of 30 mg/100 g body weight daily for 4 weeks).
In each experimental group, one animal was examined
using CT scanner to study the density of the cartilage
endplate of the disc. To evaluate the bone growth and
vascularity of the cartilage endplate region, the animals
were killed for subsequent histopathological evaluation.
We found that the vascular channel counts and percentage
areas from animals treated with MEL were significantly
lower than from the operated degeneration animals.
Accordingly, the density histogram in the MEL group
showed a spike profile for both the vertebral body and the
cartilage endplate, indicating an increase in the amount of
higher density tissues in these regions. Our results

demonstrate that the use of MEL reduces the cartilage
endplate vascularity of degenerated intervertebral discs,
suggesting that it may have an osteoinductive effect on
bone formation. Further studies are needed to characterize
fully the relevance of our findings for the treatment of
disorders such as postmenopausal osteoporosis.
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Introduction

Intervertebral disc degeneration is the most common age-
related condition in spines of elderly people with low
back pain [14]. It is well known that a variety of spinal
problems such as disc herniation, scoliosis, and spondy-
losis cause changes in the cartilage endplates of discs [17,
39]. Several studies have shown a correlation between
intervertebral disc degeneration and increased bone
density [47, 52]. In 1999, Roth et al. [43] demonstrated
that the pineal hormone, melatonin (N-acetyl-5-methox-
ytryptamine) (MEL), was capable of promoting osteoblast
differentiation and bone formation, and they suggested
that this hormone might play an essential role in
regulating bone growth. Recently, it was reported that
MEL stimulates the proliferation and type I collagen
synthesis of human bone cells in vitro, suggesting that
MEL may act to stimulate bone formation [33]. To our
knowledge, no experimental study in the literature
specifically addresses the effects of MEL administration
on the bone mineral density (mass per unit volume) and,
in particular, cartilage endplate vascularity.

The objective of the present study was to reproduce
experimental disc degeneration in order to study the
radiological and histopathological features and investigate
the effects of MEL on vascular channels in the cartilage
endplates of degenerated intervertebral discs.
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Materials and methods

Animals and surgical procedures

Fifteen adult, male, Swiss albino rats weighing 120–160 g were
entered into the study. All experiments were performed according
to the guidelines for ethical treatment of animals of the Ege
University School of Medicine Animal Care and Use Committee.
The rats were kept in specially prepared cages, where they had rat
chow and water ad libitum in an air-conditioned environment. They
were divided randomly into three groups (five animals in each)
according to the experimental procedures. The first nonoperated
control group consisted of five sham animals.

In the other two groups (operated degeneration and MEL
treatment), after i.m. injection of 50 mg/kg body weight of
ketamine (Alfamine) (EGE VET, İzmir, Turkey) plus 8–10 mg/kg
xylasine (Alfazyne) (EGE VET, İzmir, Turkey) (0.6 ml/kg), the
spines of the rats’ tails were exposed using a posterior approach
under aseptic conditions, and in five consecutive intervertebral
discs between the 5th and 10th vertebral segments of the tails, cuts
were made parallel to the endplates in the posterior annulus fibrosus
[21]. Following surgery, all wounds were closed in a standard
manner with absorbable sutures. At 8 weeks, five of these animals
(MEL treatment group) were given subcutaneous injections of
MEL at a dose of 30 mg per 100 g of body weight daily at 5:00 PM
to 6:00 PM for 4 weeks.

Radiological evaluation

In each experimental group, one animal was examined using a
Hitachi W450 CT scanner to study the density of the cartilage
endplates of the intervertebral discs. The profile of the density
histograms is related to the sum of the pixels with the same degree
of gray as in the CT image. The white pixels represent cortical
tissue, gray pixels cancellous bone, and black pixels water or air. If
either white, gray, or black pixels are prevalent, the profile of the
histogram will be spike-shaped. If the numbers of white, gray, and
black pixels are balanced, the profile will be plateau-shaped [57].
For this reason, histograms concerning normal vertebral bodies
have spike profiles, which indicates prevalently homogeneous
bone. In contrast, plateau profiles are typical of bone in which
cancellous areas and cortical tissue are quantitatively balanced.
Three months after onset of the experiment, all rats were fasted
overnight and then killed by decapitation for subsequent histopath-
ological evaluation.

Histomorphometric analysis

Each spine, including five consecutive intervertebral discs between
the 5th and 10th vertebral segments of the tail, was fixed in 10%
neutral buffered formalin and decalcified in 5% hydrochloric acid.
A midsagittal section was done in each specimen, and each slice
was stained with hematoxylin and eosin for microscopic examina-
tion. The vascular channels in the cranial and caudal cartilage
endplates of the five consecutive intervertebral discs of each animal
in each group were counted. For each endplate region, vascular
channel area was determined using a square grid placed on the
cartilage endplate [6, 53] (Fig. 1). Then it was quantified as a
percentage of the total area of the cartilage endplate, and a mean
value for each disc level was calculated. Thus, a total of 25
measurement values was obtained in every group. All measure-
ments were made by two histologists who were blinded to the
animal groups separately.

Statistical analysis

The results were expressed as mean€SD. Statistical analysis was
performed by one-way analysis of variance (ANOVA), which was

followed by Duncan’s post-hoc test for pairwise comparisons.
P<0.05 was considered as statistically significant.

Results

Radiological findings

In this study, data were collected on CT density from
cartilage endplate regions and vertebral bodies at each
disc level in each animal. In both nonoperated control and
MEL-treated animals, the density histograms showed a
spike profile (Fig. 2a, c). On the other hand, the profile of
the histogram in the operated degeneration group showed
a wide plateau (Fig. 2b). Thus, the addition of MEL
therapy following surgical disc degeneration procedures
apparently caused an increase in the amount of higher
density tissues in the cranial and caudal cartilage endplate
regions.

Quantitative morphometry

Vascular channel counts The vascular channel counts of
the cranial and caudal cartilage endplates of all groups
were measured. It was found that they were identical. In
other words, there was no significant difference between
the cranial and caudal groups (P=0.54). In the operated
degeneration group, vessel counts were significantly
higher than in the nonoperated control animals (P<0.05)
(Fig. 3a, b). In animals treated with MEL following
degeneration, the counts were found to have decreased
from a mean value of 21.02€3.43 in the operated
degeneration group to a mean of 17.04€2.88 (Fig. 3c).
Thus, the counts from animals treated with MEL were
significantly lower than those from the operated degen-
eration animals (P<0.05) (Table 1).

Fig. 1 Histological section of cartilage endplate with a square grid
used to estimate the area of vascular channels
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Fig. 3a–c The histological appearance of cartilage endplate regions
of nonoperated control (a), operated degeneration (b), and MEL-
treated (c) rats (H&E, original magnification �126 in all groups).
Note that the vascular channel count was highest in the operated
degeneration group

Fig. 2a–c Density histograms of animals in nonoperated control
(a), operated degeneration (b), and MEL treatment (c) groups. Note
spike profile in the MEL-treated group, indicating increased
mineralization and bone growth

Table 1 Mean values of vascular channel counts in the cartilage endplate regions of the intervertebral discs in all groups (IVD
intervertebral disc, VCC vascular channel count, SD mean standard deviation)

Nonoperated control group Operated degeneration group Melatonin treatment group

No. of IVDs 25 25 25
No. of animals 5 5 5
VCCs€SD 11.02€2.47 21.02€3.43 17.04€2.88
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Vascular channel area. The percentage of area of
vascular channels in the cranial and caudal cartilage
endplates were calculated in all animals. As summarized
in Table 2, the percentage of the region of interest was
significantly higher in the operated degeneration group
than in the nonoperated control group (P<0.05). Further-
more, it was significantly lower in the MEL therapy group
than in the operated degeneration group (25.71€5.92 vs
41.91€7.03, respectively) (P<0.05).

Discussion

Histopathological studies have demonstrated that vascu-
lar channels disappear with concomitant degeneration of
the disc in the spines of elderly people with low back
pain [16, 32, 39]. It is well known that the avascular
intervertebral disc relies for nutrition on vascular chan-
nels in the cartilage endplate [11, 14, 15, 29, 32]. On the
other hand, various experimental models have been
described to produce disc degeneration [3, 20, 21, 22, 34,
39, 48, 49, 54]. Some researchers [3, 23] have used direct
action on the intervertebral disc by traumatically dam-
aging the annulus fibrosus. In these experimental models,
the discal height is slightly reduced, as in human disc
herniations. This diminution in height is associated with
protrusions, and the typical intervertebral disc herniation
is posterior, due to variations in structure of the annular
fibers and different types of insertion of the fibers into
the vertebral border [16, 23, 34, 54, 55, 56]. In human
discs, there is similarly decreased cartilage endplate
vascularity in all the experimental herniation models
[51]. In our study, cartilage endplate vascularity was
significantly higher than in nonoperated controls. This
finding is in accordance with those reported for the
human disc by Roberts et al. [42]. According to the
present study, there was no significant difference in the
vascularization between cranial and caudal cartilage
endplates in rats (P=0.54).

The pineal hormone MEL is synthesized in the
pinealocytes of the pineal gland in an endogenous rhythm,
and its secretion is age-dependent in humans. At present,
a number of conditions are said to be improved by
administration of MEL [4, 7, 8, 9, 10, 12, 13, 18, 19, 31,
38, 41, 46, 50]. Postoperative sleep disturbance, which is
related to MEL suppression after surgery, might be
prevented by MEL replacement [7]. Recently, Shilo et al.
[46] suggested that MEL administration to patients in
intensive care units (ICUs) may be indicated in the
treatment of ICU syndrome for sleep induction. It is

shown to play an important role as a protective agent
against a wide variety of processes that damage tissues by
free radicals [4, 8, 10, 19, 31, 41, 50]. At present, it is
speculated that the antioxidative enzymes such as super-
oxide dismutase, glutathione peroxidase, and glutathione
reductase are also stimulated by MEL [41]. Experimental
data provide information supporting the use of MEL in
the treatment of neurodegenerative disorders and oxida-
tive neuronal damage following ischemia or trauma [8,
12, 19, 31, 50]. Several authors claimed that it has clinical
application in the neuroimmunotherapy of advanced
cancer patients [5, 24, 35, 36]. On the other hand, Lissoni
et al. [26] suggested that the concomitant administration
of MEL during chemotherapy may prevent some chemo-
therapy-induced side effects. A few recent publications
indicated an effect of MEL in bone metabolism [1, 27, 33,
35, 36, 37, 43, 44]. However, its role in bone mineral-
ization is not yet clearly established. The current inves-
tigation was undertaken to study the effects of MEL on
endplate vascularity of degenerated intervertebral discs. It
is apparent that the rat is a useful experimental model for
investigating these effects. To the authors’ knowledge, no
such study yet exists.

In the current study, exogenous MEL treatment
decreased the vascularization of the cartilage endplate
of degenerated intervertebral discs. This suggests that
MEL has a positive effect on osteoblastic activity in the
bone, causing mineralization of matrix and bone growth.
The density histograms of the animals in all groups were
compatible with the histopathological findings. In our
present study, a direct action of MEL could be responsible
for osteogenesis and increased bone mineral density
following exogenous MEL administration. It is likely that
MEL’s receptors in the craniospinal axis play a role in the
effects we observed.

In the last decade, a number of studies confirmed that
MEL is a broad-spectrum antioxidant and a potent
endogenous free radical scavenger [1, 4, 8, 10, 31, 41,
50]. It is possible that these effects of MEL may have
protected the bone and cartilage cells of free radical-
mediated toxicity and thus caused the higher density of
the bones in the treated group in the current experiment.
At present, there is experimental evidence of a role of
MEL in immunological reactions and inflammation [25,
26, 28, 40]. Lissoni et al. [25] reported that it may inhibit
the acute inflammatory reaction and contribute to gener-
ation of the immune reaction by removing the immuno-
suppression related to the activation of the inflammatory
response. The data from the present study suggest that

Table 2 Mean values for area percentages of vascular channels in the cartilage end-plate regions of the intervertebral discs in all groups
(IVD intervertebral disc, VC vascular channel, SD mean standard deviation)

Nonoperated control group Operated degeneration group Melatonin treatment group

No. of IVDs 25 25 25
No. of animals 5 5 5
VC area € SD (%) 34.07€8.80 41.91€7.03 25.71€5.92
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bringing MEL to a normal level may regulate the immune
systems of the treated animals.

Furthermore, it can indirectly influence bone metab-
olism by the secretion of some hormones with osteoin-
ductive activity. One such hormone is estrogen; it has
been shown that estrogen deficiency is associated with
bone degradation and advanced vertebral osteoporosis
[30], and its secretion might be stimulated by MEL. Other
hormones that could affect osteoblast cells and bone
blood flow may include progesterone, thyroxine, andro-
gen, cortisol, and calcitonin [2]. However, it remains to be
investigated whether MEL’s receptors are involved in the
MEL-regulated secretion of these hormones. At present, it
remains to be investigated whether such effects are
involved in the pathogenesis of different kinds of
osteoporosis.

How strong is the evidence presented here? The
current study has certain limitations. First, the sample size
was not large, although five consecutive intervertebral
discs of each animal in each group were investigated.
Second, not all the animals in the study could be
examined because CT is expensive. Third, the orientation
of the disc within the body differs between rats and
humans, rats being quadrupedal and humans bipedal.
Also, measurement of the collagen content of interverte-
bral disc tissue would provide some data regarding bone
mineralization, as it is considered to play a regulatory role
in osteoblastic growth and differentiation [45]. Future
studies will involve use of the serum osteocalcin level as
an indicator of osteoblast function in the investigation of
effects of MEL on cartilage endplate and vertebral bodies.
Thus it could be proven if MEL has an inhibitory effect
on the disc degeneration process.

In conclusion, our results suggest that exogenous MEL
may play an osteoinductive role in bone formation and
that MEL deficiency might be a pathophysiological
mechanism in degenerative spinal diseases. Based on
our results, it is thus possible to postulate that MEL
treatment can be utilized to improve some disorders such
as postmenopausal and senile osteoporosis. However,
further experimental and clinical studies are needed
before MEL can be widely recommended, because of
many unanswered questions.
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