
Abstract The rapid development of microarray technol-
ogies has raised many challenging problems in experi-
ment design and data analysis. Although many numerical
algorithms have been successfully applied to analyze
gene expression data, the effects of variations and uncer-
tainties in measured gene expression levels across 
samples and experiments have been largely ignored in
the literature. In this article, in the context of hierarchi-
cal clustering algorithms, we introduce a statistical 
resampling method to assess the reliability of gene clus-
ters identified from any hierarchical clustering method.
Using the clustering trees constructed from the resam-
pled data, we can evaluate the confidence value for each
node in the observed clustering tree. A majority-rule
consensus tree can be obtained, showing clusters that on-
ly occur in a majority of the resampled trees. We illus-
trate our proposed methods with applications to two pub-
lished data sets. Although the methods are discussed in
the context of hierarchical clustering methods, they can
be applied with other cluster-identification methods for
gene expression data to assess the reliability of any gene
cluster of interest.

Keywords Gene expression · Hierarchical clustering ·
Bootstrap · Consensus tree

Introduction

Recent development of microarray technologies has
made it possible to simultaneously measure expression
levels of tens of thousands of genes, and shifted our at-
tention towards an integrated understanding of the gene-
tic networks underlying complex biological phenotypes.
Large-scale gene expression studies have been carried
out to study cell cycle (Eisen et al. 1998), tumor tissues

(DeRisi et al. 1996; Khan et al. 1999), drug targets 
(Debouck and Goodfellow 1999; Marton et al. 1998),
and resequence and mutational analysis (Hacia 1999).
Generally speaking, statistical methods can be developed
to address three types of questions using microarray 
data, which are, in order of complexity:

Which genes are differently expressed among the
samples studied? Which genes are expressed in a coordi-
nated manner across a set of conditions? What are the
global biological pathways?

Although the ultimate goal is to identify genetic net-
work architectures (the third question), the amount of in-
formation required to achieve this goal may be, at this
point, beyond experimental capacity for complex sys-
tems. As a first step towards this ultimate goal, many ex-
isting statistical procedures, most notably a variety of
clustering algorithms, have been applied to analyze mi-
croarray data to identify genes expressed in a coordinat-
ed manner (the second question). These methods include
hierarchical clustering algorithms (e.g., Eisen et al. 1998;
Heyer et al. 1999), principal components analysis (e.g.,
Hilsenbeck et al. 1999; Raychaudhuri et al. 2000), multi-
dimensional scaling methods (e.g., D’Haeseleer et al.
1998), self-organizing maps (Tamayo et al. 1999;
Törönen et al. 1999), and graph-theoretic techniques
(Ben-Dor and Yakhini 1999). They all fall into the unsu-
pervised analysis category in contrast to the supervised
learning algorithms, where there are some pre-defined
classes, either for tissue samples (e.g., Golub et al. 1999)
or for gene groups (e.g., Brown et al. 2000). These clus-
tering methods have been found to work well in practice
because genes with related functions were found to be
enriched in particular clusters (Eisen et al. 1998), normal
tissue samples and tumors can be classified with very
high accuracy using gene expression data (Alon et al.
1999), and similarities and differences among tumors
that cannot be recognized by traditional morphological
examination can be identified through gene expression
data (Anbazhagan et al. 1999; Golub et al. 1999).

Although the above approaches have proved valuable
in gene expression pattern detection, most published
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large-scale studies are quite elusive over the variations in
measured gene expression levels among different sam-
ples and experiments. For glass slide arrays, up to two-
fold differences among replicated experiments are com-
monly observed. Mir and Southern (1999) studied the ef-
fect of structure on nucleic acid heteroduplex formation
by analyzing hybridization of tRNA to a complete set of
complementary oligonucleotides ranging from single nu-
cleotides to dodecanucleotides. They found that major
determinants of hybridization lie in the structure of the
RNA. Their finding is very relevant to gene expression
studies using Affymetrix GeneChip microarrays, where
20 pairs of oligonucleotides corresponding to the same
gene or EST are hybridized to the sample and a single
expression level is derived from these 40 observations.

In essentially all published studies, the observed gene
expression levels are treated as if they were an accurate
measure of the true expression level, and the effects of
measurement errors have seldom been addressed. How-
ever, it is not apparent how variations in the measure-
ments might affect the conclusions drawn from these
studies. For example, if we have identified a group of ten
genes with similar expression profiles, we need to deter-
mine whether this cluster is a real cluster or a superficial
one resulting from random variations in gene expression
measurements. Therefore, it is both desirable and crucial
to assess the reliability and statistical significance of an
individual gene cluster of interest. In this article, as a
first step towards an understanding of the effects of mea-
surement errors on cluster identification, we propose a
resampling method under the hierarchical clustering
framework, the most commonly used approach in micro-
array analysis. Our procedure can be divided into three
steps: we first generate a large number of resampled mi-
croarray data with information on the magnitude of mea-
surement errors; we then use the majority-rule to con-
struct a consensus tree; and lastly, we estimate the confi-
dence value for each branch in the clustering tree from
the original data set. In this article, we describe our
methods and apply them to two published data sets. Al-
though most of the discussion is within the context of hi-
erarchical clustering algorithms, our methods can be ap-
plied to other unsupervised or supervised algorithms to
assess the effects of measurement errors on cluster iden-
tification.

Materials and methods

Hierarchical clustering algorithms

There is a large volume of literature on cluster analysis in statistics
(e.g., Hartigan 1975), and many methods are available in general
statistics packages (e.g., S-Plus, SAS) and specialized programs
(e.g., PHYLIP). The hierarchical clustering methods are common-
ly used because of their simplicity and fast running time. The first
step of a hierarchical clustering algorithm is to select an appropri-
ate mathematical description of similarity. There are many possi-
ble similarity measures that can be used, including euclidean dis-
tance, Pearson correlation coefficient, and rank correlation. The
actual choice should reflect the nature of the biological question

and the technology that was used to obtain the data. After calculat-
ing similarities among all the genes, the second step in a hierarchi-
cal clustering algorithm is to join the two most similar objects into
a single cluster and recompute the similarity matrix. Three com-
mon options for this step are single linkage, average linkage, and
complete linkage. These options differ in how the similarity ma-
trix is recomputed among clusters. The process ends when all the
objects agglomerate to a single cluster. We can use a binary tree to
represent the result of a hierarchical clustering algorithm. It is not
the purpose of this paper to survey all hierarchical clustering
methods available, but rather to illustrate how to use the proposed
resampling method to study the influence of random errors on
cluster identification and make a statistical inference from the re-
sulting clustering tree.

Resampling methods

Statistical resampling methods have been used extensively in ge-
netic research. In the context of phylogenetic analysis, Felsenstein
(1985) proposed using the bootstrap method to estimate the confi-
dence value for each clade in a phylogenetic tree. Although there
has been some criticism of this method (e.g., Hillis and Bull
1993), Efron et al. (1996) showed that Felsenstein’s method is not
biased, and it can be corrected to better agree with standard ideas
of confidence levels and hypothesis testing at the expense of con-
siderably more computation.

Because bootstrap has been well studied in statistics (e.g., 
Efron 1979; Efron and Tibshirani 1993), we describe this method
only briefly here. Suppose we have an original data set with n ob-
servations and we want to make a statistical inference of a popula-
tion parameter from this data set. We first compute a sample statis-
tic to estimate the population parameter. In the typical bootstrap
method (also called nonparametric bootstrap), we sample n obser-
vations at random with replacement from the observed sample.
Using the bootstrap method, some data points will not be included
in the bootstrap data set, some data points will be included only
once, and still others will be included twice or more. We then
compute the sample statistic based on this bootstrap data set. If we
repeat the bootstrap procedure a large number of times, the
amount of variation in the sample statistics calculated from the
bootstrap data sets can be used to assess the uncertainty in our es-
timate of the population parameter.

Because of the nature of gene expression data, we adopt here
the parametric bootstrap method. Suppose we know the uncer-
tainty (standard error) in our measure of gene expression data. The
standard errors can be estimated from replicated experiments in
the study (e.g., Wen et al. 1998) or from previous experiments
with similar conditions. Let xij denote the gene expression for gene
i at condition j and let sij denote our estimated variation for this
measure. In our resampling approach, we “bootstrap” the gene ex-
pression level for each gene under each experimental condition
from the normal distribution N(xij, sij). Simulated data can also be
generated assuming other distributions for the gene expression
measurements. For example, we simulate data from log-normal
distributions in the Discussion section. We then construct a binary
tree (which will be rigorously defined in the next section) by using
a hierarchical clustering algorithm. For a large number of resam-
pled data sets, we can generate a set of binary trees. These trees
can then be used to assess the reliability of the clusters observed in
the original data set as discussed in the following. Note that if we
assume the gene expression measurement follows a non-normal
distribution, we will sample the “new” measurement from this dis-
tribution.

Consensus tree

From the binary trees constructed using the resampled data, we
can define a consensus tree made up of all those nodes that appear
in a majority of these resampled trees (Margush and McMorris
1981; Felsenstein 1985). The definition of the majority-consensus
tree is given below following Margush and McMorris (1981).
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First, we must give a more rigorous representation of a tree
and a binary tree. If S={1,2,...,n} is a set of n objects (e.g., genes
or tissue samples), then an n-tree is a type of hierarchical classifi-
cation of S with the following definition:

Definition (Margush and McMorris 1981)

Let P(S) denote the set of all subsets of S. An n-tree is a subset T
of P(S) satisfying the following three conditions:

1. S ∈ T, Φ∉ Τ.

2. {i}∈ T for all i ∈ S.

3. If A, B∈ T with A∩ B≠Φ, then A�B or B�A.

Definition

An n-tree T is a binary tree if for any subset A ∈ B and |A|≠1, then

�A1∈ T and A2∈ T satisfy A=A1∪ A2.

Trees generated from hierarchical clustering algorithm are n-trees,
especially they are binary trees. For example, the tree in Fig. 1 
is an n-tree with S={1,2,3,4,5} and T={{1},{2},{3},{4},{5},
{2,3},{2,3,5},{1,4},S}. The subsets A ∈ T are called nodes of T. In
this example, there are nine nodes: {1}, {2}, {3}, {4}, {5}, {2,3},
{2,3,5}, {1,4}, and S. A node is nontrivial if and only if it does
not contain exactly one object in S nor all the objects in S, i.e. S it-
self. In this example, there are three nontrivial nodes. In general,
there are 2|S|–1 nodes and |S|–2 nontrivial nodes for a binary tree,
where |S| is the number of objects in the set S. The tree T given in
Fig. 2 is an n-tree with S={1,2,3,4,5,6}. Because there is a node
A={2,3,5,6} in T with four objects that cannot be partitioned into
two mutually exclusive sets, it is not a binary tree. 

After resampling the original data set m times, we get a set of
m trees. Let T={T1, T2,...,Tm} be a collection of these trees. We use
the majority rule to extract the common features among these
trees.

Definition (Margush and McMorris 1981)

The majority rule of T, denoted by M(T), is the subset of P(S)
where A ∈ M (T) if and only if A ∈ Ti for more than half of the Ti.

Now we can define the consensus tree as M(T) as follows:

Theorem (Margush and McMorris 1981)

If T={T1,T2,...,Tm} is a collection of n-trees, then M(T) is an n-
tree, we call it the consensus tree of T. If we let d(T1,T2) be the
number elements in the symmetric difference of T1 and T2 [that is,
d(T1,T2) counts the number of elements T1 and T2 disagree on],
then the set of all n-trees together with d form a metric space, and
a nice feature of the consensus tree is that M(T) satisfies the fol-
lowing condition:

(1)

Furthermore, if |T| is odd, then M(T) is the unique n-tree which
satisfies the above condition.

This theorem indicates that the consensus tree M(T) is also a
hierarchical classification of S. Furthermore, under the metric d,
M(T) itself can be considered an optimal consensus classification
of a collection of classifications which are estimated from the re-
sampled data sets.

Confidence values in the clustering tree

The consensus tree has clusters that only show up in the majority
of n-trees obtained through resampling. In addition to this consen-
sus tree, we can define confidence values in the original clustering
tree (Felsenstein 1985) through the resampled trees.

Definition

Let T={T1,T2,...,Tm} be a collection of n-trees. The confidence
value for a node A in the original tree T0 is the percentage of times
that A is also a node in Ti, for i=1,2,...,m, the set of n-trees ob-
tained through resampling.

Efron et al. (1996) showed that Felsenstein’s method provides
a reasonable first approximation to the actual levels of the ob-
served clades. They also discussed possible corrections that can be
made to better agree with standard ideas of confidence levels and
hypothesis testing in statistics.

Results

In this section, we apply the resampling method to two
published data sets. The goal is to examine the effects of
possible measurement errors on the clusters identified in
the two articles in which these two data sets were origi-
nally analyzed. Before performing the bootstrap proce-
dure, we must know the variability of the measured gene
expression levels. In the first example, this variability
can be estimated from the replicated experiments. How-
ever, if there is a lack of knowledge on the degree of
variability, we may vary the magnitude of variability and
examine the effects on the consensus tree constructed as
well as the confidence level for each node in the original

d M T d M T
T M T

( ), min ( , ).
:

T
T Missan–tree T

( )∑ = ∑
∈ ∈

Fig. 1 A binary tree with five objects. Using the notation intro-
duced in the text, this tree has S={1,,2,3,4,5} and T={{1},
{2},{3},{4},{5},{2,3},{2,3,5},{1,4},S}

Fig. 2 An n-tree with six objects. This tree is not a binary tree
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Fig. 3 The clustering tree for the data set in Wen et al. (1998),
with the distance for each node
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tree. This approach will be utilized in our analysis of the
second data set.

Temporal gene expression mapping of central nervous
system development

In their study of rat central nervous system development,
Wen et al. (1998) used reverse transcription-coupled
PCR (RT-PCR) to produce a temporal map of fluctua-
tions in mRNA expression of 112 genes. Using distance
matrices for the pairwise comparison of these genes,
they distinguished six gene clusters. They noted that
genes belonging to distinct functional classes and gene
families map to particular expression files. Their data set
is available at http://rsb.info.nih.gov/molphysiol/PNAS/
GEMtable.html. In the table provided by the authors,
there are raw ratio-metric RT-PCR data from triplicate
experiments and the standard error for each gene. The
gene expression levels used in our analysis were the av-
erage from the three replicated experiments and the stan-
dard errors were also estimated from the same three ex-
perimental measurements. This data set suits our illustra-
tion purpose well because of the availability of the 
estimate of variation in the observed gene expression
levels.

Wen et al. (1998) normalized the expression level of
each gene at each condition according to the highest ex-
pression level for this gene under all nine conditions
studied. For each gene, they further derived eight slopes
(the difference between gene expression levels) between
each pair of consecutive time points. This results in 17
observations (between –1 and 1) for each gene, including
the nine observations and eight slopes. Wen et al. (1998)
then calculated the Euclidean distance based on these 17
points and used the FITCH program in PHYLIP (Felsen-
stein 1993) to identify clusters among these 112 genes.
In our analysis, we created the same distance matrix as
that used by Wen et al. (1998). We then used the hierar-
chical clustering method with the average-linkage option
in tree construction. The resulting clusters are similar to
the clusters generated by Wen et al. (1998). This original
tree with distances is plotted in Fig. 3. The coefficient of
variation (standard error/mean) varies among the 112
genes and nine time points. When the coefficients of
variation of all nine time points are averaged for each
gene, nAChRa3 has the largest average value (0.40). The
average over all 112 genes is 0.15. Using the standard er-
rors from the data set, we generated 1,000 resampled da-
ta sets and the corresponding 1,000 binary trees. The
consensus tree is plotted in Fig. 4. We can see that after
considering random variations in gene expression levels,
only a few nodes in the original clustering tree show up
in the majority of the resampled trees. The confidence
value for each node in the original tree is shown in
Fig. 5. Many nodes have very low confidence values,
and this suggests that the clusters identified are not very
reliable and extra caution is needed to interpret the bio-
logical meaning of the identified clusters. We have also

Fig. 4 The majority-rule consensus tree derived from 1,000 re-
sampled trees for the data set in Wen et al. (1998). The number on
each node in the tree represents the number of times (out of a total
of 1,000) that node was present in the resampled trees
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Fig. 5 The clustering tree for the data set in Wen et al. (1998)
with a scale to indicate distances among nodes. The number on
each node in the tree represents the number of times (out of a total
of 1,000) that node was present in the resampled trees. The confi-
dence value can be estimated by dividing this number by 1,000
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Fig. 6 The clustering tree for the data set in Alon et al. (1999)
with the distance for each node

Normal and tumor colon tissue clusters

In a study of 40 colon tumor and 22 normal colon tissue
samples, Alon et al. (1999) studied gene expression 
levels of more than 6,500 human genes and expressed
sequence tags (ESTs) on Affymetrix oligonucleotide 
microarrays. These arrays contain about 65,000 features,
each containing approximately 107 strands of a DNA 
25-mer oligonucleotide. Sequences from about 3,200
full-length human cDNAs and 3,400 ESTs that have
some similarity to other eukaryotic genes are represented
on a set of chips (Alon et al. 1999). They did two-way
clustering in their analysis: classified genes into func-
tional groups and classified tissues based on their ex-
pression similarity. Alon et al. (1999) found coherent
patterns of genes whose expression is correlated, and ar-

applied the resampling method using the FITCH pro-
gram in PHYLIP. The results were essentially the same
as those obtained using the hierarchical clustering algo-
rithm. 
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gued that this suggests a high degree of organization un-
derlying gene expression in these tissues. Two thousand
genes with the highest minimal intensity across the 
samples are available from the web (http://www.molbio.
princeton.edu/colondata). Among the 2,000 genes, three
ESTs (HSAC07, UMGAP, and i) were listed four times
with the same name and identical expression levels. Af-
ter removing nine duplicates for these three ESTs, we got
a data matrix with 62 columns and 1,991 rows. Every

column in this matrix represents a tumor or normal tissue
sample, and every row corresponds to a gene or an EST.
Alon et al. (1999) used the deterministic-annealing algo-
rithm in their analysis. When we used the correlation 
coefficient as the similarity measure and the average-
linkage hierarchical clustering method to classify the
normal and tumor colon tissues, we obtained essentially
the same tree structure. This original tree with distances
is shown in Fig. 6.

Fig. 7A–D The majority-rule
consensus tree derived from
1,000 resampled trees for the
data set in Alon et al. (1999)
when the value of ƒ is set at
different levels. The number on
each node in the tree represents
the number of times (out of a
total of 1,000) that node was
present in the resampled trees.
A ƒ=0.01; B ƒ=0.10;
C ƒ=0.20; D ƒ=0.40
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Unlike the data by Wen et al. (1998), where the stan-
dard error for the average gene expression was estimated
from triplicates, there was no indication of the level of
variation in the observed expression level for each gene
in each tissue sample in the data set. We assessed the ef-
fects of measurement errors on the resulting tree structure
by varying the standard errors to generate the resampled
data sets. Our assumption was that the standard error sij
for the ith EST in the jth condition is proportional to the

observed signal xij, i.e. sij=ƒ×xij, where ƒ can be varied at
many levels. To be less arbitrary, we began with small ƒ
values in the resampling and increased it in relatively
small increments. For each fixed ƒ value, we resampled
the data set and constructed a binary tree 1,000 times.
The consensus trees produced with different ƒ are plotted
in Fig. 7A–D for ƒ values ranging from 0.01, 0.1, 0.2, to
0.4. The corresponding confidence values for the nodes in
the original tree were estimated and shown in Fig. 8A–D.

Fig. 7B
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When ƒ is relatively small (ƒ<0.10), it can be seen that
most clusters have only tumor tissues or normal tissues,
with the exception of tissue samples labeled n36, T33,
and T36. These samples have abnormal muscle indexes
described by Alon et al. (1999). As we increased the
magnitude of errors in the observed gene expression lev-
els, this tree became less reliable. When ƒ>0.70, the con-
sensus tree had only the trivial nodes. Therefore, it is use-

ful to get the whole spectrum of outcomes for possible
variation in the data by varying the magnitude of ƒ val-
ues. As discussed above, we can measure the difference
between the original tree and the consensus tree by
d(T0, M) defined as the number of elements the original
tree T0 and the consensus tree M disagree on. For exam-
ple, through 1,000 resamplings, d(T0, M) is 33 when
ƒ=0.1 and is 42 when ƒ=0.2. 

Fig. 7C Fig. 7D
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Discussion

With microarray-based genomic surveys becoming more
feasible, numerous methods have been developed to
mine the potential information in these massive data sets.

One area that has often been ignored in microarray data
analysis is the variability in gene expression levels. After
many gene clusters are identified from large-scale gene
expression data, we must be able to investigate the reli-
ability of the observed clusters. In this article, we have

Fig. 8A–D The clustering tree
for the data set in Alon et al.
(1999) when the value of ƒ is
set at different levels. The scale
indicates distances among
nodes. The number on each
node in the tree represents the
number of times (out of a total
of 1,000) that node was pres-
ent in the resampled trees. The
confidence value can be esti-
mated by dividing this num-
ber by 1,000. A ƒ=0.01;
B ƒ=0.10; C ƒ=0.20;
D ƒ=0.40
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proposed a resampling method that fits this need. To ap-
ply this method, some estimate of the uncertainty in gene
expression measurement is needed. Such estimates can
either be obtained from repeated experiments or from pi-
lot studies on the variation of the measurements. For

each resampling, a set of “new” observations are gener-
ated by replacing the true observation for each gene un-
der each condition with a random variable sampled using
the observed expression level and the estimated uncer-
tainty in gene expression measurement. Each “new” data

Fig. 8B
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set leads to a “new” tree describing the relationships
among the genes. A consensus tree can be constructed
from these resampled trees using the majority rule. If
there is a need to study a particular gene cluster, the sig-
nificance of this cluster can be estimated using the per-

centile method and a confidence value can be assigned to
each node in the original clustering tree. Our proposal is
in spirit similar to the bootstrap method proposed by 
Felsenstein (1985) for phylogenetic analysis. We have
developed a computer program to cluster genes, resam-

Fig. 8C
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ple data, construct consensus tree, and assess the confi-
dence value of each node in the tree. For the analysis of
Alon’s data set with 62 conditions and 1,991 genes, it
took less than 10 min for 1,000 resamplings on a per-
sonal computer with Windows NT system having one

Pentium III 500 MHz processor and 256 megabytes
memory.

If a more accurate estimation of a statistic of interest,
such as the confidence value, is desired, we must in-
crease the number of resamplings. However, from our

Fig. 8D
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experience, resampling more than 1,000 times is usually
not necessary for most practical purposes. This is con-
sistent with the observations by Efron et al. (1996). Al-
though this resampling method is not biased (Efron 
et al. 1996), the estimate of confidence values can be

corrected to better correspond to the standard ideas of
confidence levels and hypothesis testing. Detailed dis-
cussion on this method was described in Efron et al.
(1996). The basic idea is to bootstrap on the bootstrap
samples. Although this bias-correction method is very

Fig. 9 Clustering tree for the
randomly permuted data set 
in Alon et al. (1999) when the
value of ƒ is set at 0.10. The
scale indicates distances 
among nodes. The number on
each node in the tree repres-
ents the number of times (out
of a total of 1,000) that node
was present in the resampled
trees. The confidence value 
can be estimated by dividing
this number by 1,000
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appealing, a large amount of extra computation is 
needed.

To understand the structure of the consensus tree
when there are no inherent clusters in the data, the initial
gene expression measurements can be randomized across
all conditions (samples) or across all genes and then be
analyzed using the same procedure. When we apply this
method to the normal and tumor colon tissue data (Alon
et al. 1999), for each gene, we randomly permuted the
gene expression levels among the samples independently
from other genes. This procedure will break any cluster-
ing in the data. One such example is shown in Fig. 9,
where the original tree constructed from the permuted
data is shown with confidence values estimated through
1,000 resampings when the error rate was set at ƒ=0.1. It
is apparent that the confidence values are much lower
than those in Fig. 7B. In addition, the normal and tumor
colon tissue samples are no longer clustered. The struc-
ture from this permuted tree further suggests that the
clusters observed in the original tree represent true clus-
ters.

To investigate how sensitive the analysis is to the
normality assumption, we performed simulations as-
suming gene expression measurements follow log-nor-
mal distributions. That is, the log transformed gene ex-
pression levels follow normal distributions. For the da-
ta set in Wen et al. (1998), we select the parameters in
the log-normal distribution so that the mean and stan-
dard deviation of the log-normal distribution are equal
to the observed mean xij and the observed sij, respec-
tively. The consensus tree and the confidence values
are estimated by using the same procedure as described
in the previous section. When we “bootstrap” from the
log-normal distribution for each gene under each condi-
tion, the obtained consensus tree is shown in Fig. 10,
and the original tree with the estimated confidence val-
ues are shown in Fig. 11. They are all essentially the
same as those using the normality assumption for this
particular data set. 

In summary, we have proposed a parametric boot-
strap resampling method to incorporate information on
variations in gene expression levels to assess the reli-
ability of gene clusters identified from large-scale gene
expression data. Our approach can distinguish gene
clusters with high confidence values from those with
low confidence values. Although our discussion has fo-
cused on the hierarchical clustering methods, this re-
sampling method can also be combined with other
methods (e.g., k-means and self-organizing-maps) to
prioritize gene clusters according to strength of evi-
dence in the data for further biological studies of the
functions of these genes. The generalizations of our re-
sampling methods to other clustering algorithms will be
reported in a future study.

Fig. 10 The majority-rule consensus tree derived from 1,000 re-
sampled trees for the data set in Wen et al. (1998) when the mea-
surements were assumed to follow log-normal distributions. The
number on each node in the tree represents the number of times (out
of a total of 1,000) that node was present in the resampled trees
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Fig. 11 The clustering tree for the data set in Wen et al. (1998) with
a scale indicating distances among nodes. The number on each node
in the tree represents the number of times (out of a total of 1,000)
that node was present in the resampled trees when the measure-
ments were assumed to follow log-normal distributions. The confi-
dence value can be estimated by dividing this number by 1,000
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