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Abstract
Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is 
still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combina-
tion of 10 known clustering algorithms and the omics data from 4 dimensions to identify high-resolution molecular subtypes 
of LUAD. Subsequently, consensus machine learning-related prognostic signature (CMRS) was developed based on subtypes 
related genes and an integrated program framework containing 10 machine learning algorithms. The efficiency of CMRS 
was analyzed from the perspectives of tumor microenvironment, genomic landscape, immunotherapy, drug sensitivity, and 
single-cell analysis. In terms of results, through multi-omics clustering, we identified 2 comprehensive omics subtypes (CSs) 
in which CS1 patients had worse survival outcomes, higher aggressiveness, mRNAsi and mutation frequency. Subsequently, 
we developed CMRS based on 13 key genes up-regulated in CS1. The prognostic predictive efficiency of CMRS was superior 
to most established LUAD prognostic signatures. CMRS demonstrated a strong correlation with tumor microenvironmental 
feature variants and genomic instability generation. Regarding clinical performance, patients in the high CMRS group were 
more likely to benefit from immunotherapy, whereas low CMRS were more likely to benefit from chemotherapy and tar-
geted drug therapy. In addition, we evaluated that drugs such as neratinib, oligomycin A, and others may be candidates for 
patients in the high CMRS group. Single-cell analysis revealed that CMRS-related genes were mainly expressed in epithelial 
cells. The novel molecular subtypes identified in this study based on multi-omics data could provide new insights into the 
stratified treatment of LUAD, while the development of CMRS could serve as a candidate indicator of the degree of benefit 
of precision therapy and immunotherapy for LUAD.
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Introduction

Lung cancer is currently one of the leading causes of 
cancer-related deaths in the world, with approximately 2 
million new cases and 1.76 million deaths annually (Thai 
et al. 2021). LUAD is one of the major histologic sub-
types of lung cancer, accounting for 40% of lung cancers 
(Denisenko et al. 2018). Due to the highly invasive and 
metastatic characteristics of LUAD and the imperfections 
in early detection, patients often have metastatic cancer 
at the time of initial diagnosis, losing the opportunity for 
surgery and leading to unsatisfactory clinical outcomes 
(Lahiri et  al. 2023). In recent years, cancer therapies 
including immune checkpoint blockers (Lentz et al. 2021), 
CAR-T cell therapy (Sterner and Sterner 2021), Tumor-
specific vaccines (Sellars et al. 2022), and so on have made 
promising progress in cancer treatment, which prolonging 
survival time and improving the quality of life of cancer 
patients. However, the intratumor heterogeneity of LUAD, 
the susceptibility to drug resistance, and the side effects 
produced by the drugs make the benefit of treatment vari-
able from patient to patient, and the 5-year survival rate of 
lung adenocarcinoma has remained at about 20% (Passaro 
et al. 2022; Siegel et al. 2021; Zhao et al. 2018; Jin et al. 
2020). Therefore, nowadays, with the vigorous implemen-
tation of precision medicine, identifying unique molecu-
lar features of tumors and exploring novel biomarkers for 
effective stratified treatment and personalized management 
of LUAD patients are crucial for improving the survival of 
lung adenocarcinoma.

Anatomically developed TNM staging systems are 
currently key indicators for clinical decision-making and 
treatment regimen selection (Kay et al. 2017). Although 
the identification of TNM staging provides a relatively 
reliable basis for patient treatment, the high degree of 
intra- and inter-tumor heterogeneity that exists within 
LUAD itself makes the clinical outcomes of even patients 
at the same TNM stage variable (Caso et al. 2020; Yoo 
et al. 2022; Okayama et al. 2012). With the rapid devel-
opment of genomics and high-throughput sequencing 
technologies, more and more biomarkers have begun to 
gradually enter clinical applications, including EGFR 
mutations (Castellanos et al. 2017; Sabbah et al. 2020), 
(tumor mutation burden) TMB (Addeo et al. 2021), PD1/
PD-L1 (Yi et al. 2022; Ai et al. 2020), and so on, which 
have greatly promoted the process of precision tumor ther-
apy (Wu and Qu 2015). However, there is still a number of 
LUAD patients who still fail to derive clinical benefit from 
these approaches, which may be due to the complex and 
variable tumor microenvironment within LUAD (Genova 
et al. 2021; Madeddu et al. 2022). A number of studies 
have shown that the identification of molecular subtypes 

based on comprehensive omics data can be a powerful 
means of stratifying treatment for patients. Bagaev et al. 
summarized tumor microenvironment-related features and 
performed unsupervised consensus clustering to classify 
cancer patients into four tumor microenvironmental sub-
types facilitating the refinement of clinical immunothera-
peutic regimens (Bagaev et al. 2021). Jiang et al. classified 
breast cancer patients into four stable molecular subtypes 
by combining genomics and transcriptomics data, provid-
ing new ideas for stratifying breast cancer patients (Jiang 
et al. 2019). In addition to this, prognostic biomarkers 
generated based on gene expression profiles have been 
widely used to assess the heterogeneity of LUAD. How-
ever, these models are often based on expression data of 
mRNA, microRNA (miRNA), or long-stranded noncod-
ing RNA (lncRNA) with specific phenotypes (e.g., iron 
death (Shao et al. 2023), immunity (Han et al. 2023), and 
cellular pyroptosis (Hu et al. 2023) and so on), and the 
chosen modeling approach is relatively homogeneous, 
which allows for weak generalization of the established 
multigene prognostic signatures, thus limiting their wide 
range of applications. Here, we sought to identify novel 
biomarkers that can facilitate prognostic and therapeutic 
management of LUAD based on a combination of large-
scale multi-omics data and advanced machine learning 
algorithms.

In this study, we combined mRNA expression profiles, 
lncRNA expression profiles, genomic mutations, and epig-
enomic DNA methylation data to identify novel LUAD con-
sensus subtypes using 10 multi-omics integration programs. 
Subsequently, we developed consensus machine learning-
related prognostic signature (CMRS) based on a combined 
framework of subtype related biomarkers and 10 machine 
learning algorithms. CMRS has strong prognostic predictive 
capabilities and demonstrated superior efficiency compared 
to other published prognostic signatures. CMRS can be used 
to assess tumor microenvironment, genome stability, immu-
notherapy, and drug therapies. Overall, our findings provide 
new insights for refining the molecular subtypes of LUAD 
and individualizing, precision therapy.

Materials and methods

Data download and preprocessing of LUAD

We first collected multi-omics data of lung adenocarci-
noma (LUAD) from The Cancer Genome Atlas (TCGA) ( 
https:// portal. gdc. cancer. gov ), including mRNA transcrip-
tome expression (normalized by TPM), lncRNA transcrip-
tome expression (normalized by TPM), DNA methylation 
and somatic mutation. The mRNA and lncRNA transcrip-
tome profiles were obtained from the “TCGAbiolinks” R 

https://portal.gdc.cancer.gov


Functional & Integrative Genomics (2024) 24:118 Page 3 of 18 118

package; somatic mutation data and methylation profiles 
were downloaded from UCSC Xena ( https:// xenab rowser. 
net/ ); and clinical information on TCGA-LUAD patients 
was obtained from the previous study by Bagaev et al. 
(Bagaev et al. 2021). In addition, we obtained the corre-
sponding data information from Gene Expression Omnibus 
(GEO) for four LUAD cohorts, GSE31210, GSE72094, 
GSE68465, GSE166722, two non-small-cell lung can-
cer (NSCLC) immunotherapy cohorts, GSE126044 
and GSE135222, and one single-cell sequencing data, 
GSE148071. Furthermore, there is an immunotherapy 
clinical trial for metastatic urothelial cancer (mUC) from 
http:// resea rch- pub. gene. com/ IMvig or210 CoreB iolog ies. 
The portion of Fig. 1(flow chart) were drawn by using 
pictures from Servier Medical Art (http:// smart. servi er. 
com/). Servier Medical Art by Servier is licensed under 
a Creative Commons Attribution 3.0 Unported License 
(https:// creat iveco mmons. org/ licen ses/ by/3. 0/).

Multi‑omics consensus integration analysis

To efficiently perform downstream clustering analysis, we 
matched 4 dimensions of omics information by sample ID 
and removed LUAD patients without survival informa-
tion. Next, we performed multi-omics consensus typing of 
patients using the multi-omics and visualization of cancer 
subtypes integration R package (“MOVICS”) (Lu et al. 
2021a). The “getElites” function was first used to screen 
for genetic features. For continuous variables (mRNA, 
lncRNA, and methylation), we set the “method” parameter 
of the “getElites” function to “mad” to filter the genes with 
the highest degree of variation (the first 3000 for mRNA 
and lncRNA, and the first 5000 for methylation sites). We 
then set the “method” parameter to “cox” and combined it 
with the clinical data to identify genes with prognostic sig-
nificance in each data dimension P < 0.05. For the muta-
tion data, the number of mutations exceeding 60 in the 

Fig. 1  The flowchart of 
LUAD subtype identification 
and CMRS construction. We 
synthesized 10 multi-omics 
clustering algorithms included 
in the “MOVICS” R package 
to identify new omics subtypes 
of LUAD. Afterward, the 
stable prognostic genes were 
further identified based on the 
subtypes. Using a combination 
of multiple machine learn-
ing algorithms, the prognostic 
signature with the highest 
C-index was screened. Finally, 
a CMRS was constructed based 
on the combination of RSF and 
Survival-SVM. Subsequently, 
we revealed the relationship 
between the CMRS and the 
prognosis, tumor microenviron-
ment remodeling, immuno-
therapy benefit, and potential 
therapeutic agents of LUAD 
through comprehensive analysis

https://xenabrowser.net/
https://xenabrowser.net/
http://research-pub.gene.com/IMvigor210CoreBiologies
http://smart.servier.com/
http://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/)
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TCGA-LUAD patients in this study was used as a threshold 
to filter the genes. Afterward, the outcome data of these four 
dimensions were summarized and included in our study for 
further analysis.

After the initial signature selection, we further deter-
mined the optimal number of clusters for our study using the 
“getClustNum” function in the “MOVICS” package. Sub-
sequently, we applied the “getMOIC” function for cluster 
analysis. Afterward, we integrated the results of the different 
algorithms using the “getConsensusMOIC” function as well 
as the default parameters provided by the “MOVICS” pack-
age to improve the robustness of the clustering and obtained 
the final clustering results through this integration process.

Finally, to test the stability of molecular subtyping, we 
compared the Nearest Template Prediction (NTP) (The top 
100 genes upregulated in CS1 and CS2, respectively, were 
used to perform the NTP) and Partitioning Around Medoids 
(PAM) classifiers to the CSs. Further, the clustering results 
were validated in a validation cohort based on NTP, and the 
survival differences between subtypes were analyzed using 
Kaplan-Meier (K-M) curves analysis.

Analysis of molecular features between LUAD 
subtypes

To investigate the unique molecular feature profiles in the 
CSs, we first used the PROGENy (Schubert et al. 2018) 
method to evaluate the oncogenic-related pathway activity 
in LUAD. Afterward, we obtained the genes that were highly 
expressed in each subtype, setting a threshold of |log2FC| 
> 1 with a P-value < 0.05, and analyzed the heterogene-
ity of invasive features among patients with different sub-
types using the method of Yoo et al. (Yoo et al. 2022); the 
gene sets were mainly obtained from the MSigDB database 
(https:// www. gsea- msigdb. org/ gsea/ msigdb ). Additionally, 
we collected and compared the invasiveness score (IVS) of 
TCGA-LUAD patients in CSs (Yoo et al. 2022).

Transcriptional regulatory networks were constructed by 
“RTN” R package, including candidate regulators associ-
ated with cancerous chromatin remodeling collected from 
Lu et al. (Lu et al. 2021b). The 26 stemness gene sets scores 
of LUAD were calculated using single-sample gene set 
enrichment analysis (ssGSEA), which were obtained from 
the study of Zheng et al. (Zheng et al. 2022); meanwhile, we 
utilized the mRNAsi distributed by Malta et al. calculation 
method to calculate the degree of stemness activity of LUAD 
(Malta et al. 2018).

Concerning the mutational landscape, 1). We calculated 
the TMB for each sample and visualized the genes with 
mutation frequencies above 20%. 2). As described by Lu 
et al, we applied the “deconstructSigs” package to extract 
mutation signatures for each LUAD patient and selected 
mutation signature 1 (age-related), mutation signature 2 

(APOBEC activity-related), mutation signature 4 (smoking-
related), and mutation signature 5 (unknown) for visualiza-
tion, these mutations occur more frequently in LUAD (Lu 
et al. 2021b; Alexandrov et al. 2013); 3). Information on the 
types of mutations produced in LUAD patients was obtained 
from Thorsson et al. to explore the differences in mutation 
types between subtypes (Thorsson et al. 2018).

Comprehensive omics subtype‑derived prognostic 
signature

Next, we constructed a consensus prognostic model for 
LUAD. First, we used the “limma” method in “MOVICS” R 
package to analyze the differences between the subtypes 
and obtained the genes that were up-regulated in CS1 and 
met  log2FC > 1, P-value < 0.05. Next, we performed uni-
variate Cox analysis on the above genes simultaneously in 
TCGA-LUAD, GSE68465, GSE72094, and GSE31210. The 
shared genes that had prognostic significance (P < 0.05) in 
all cohorts were used as candidate genes for the construction 
of prognostic models.

Next, we selected the TCGA cohort with relatively com-
plete clinical information as the training set and the other 
cohorts as the validation set. We submitted the above prog-
nostic biomarkers to a comprehensive machine learning 
analysis program that integrated 10 classical algorithms: 
CoxBoost, stepwise Cox, Lasso, Ridge, elastic net (Enet), 
survival support vector machine (survival-SVM), general-
ized boosted regression model (GBM), supervised principal 
components (SuperPC), partial least Cox (plsRcox) and Ran-
dom Survival Forest (RSF). After that, we selected the best 
consensus prognostic model (consensus machine learning-
related prognostic signature, CMRS) for LUAD based on the 
average C-index of the 3 GEO-LUAD cohorts.

Prognostic value and potential clinical value 
of CMRS

We first calculated CMRS based on the generated model for 
each LUAD sample in the training and validation sets, after 
which the prognostic significance of CMRS was assessed by 
K-M survival curves. Further, we systematically retrieved 81 
prognostic signatures associated with lung adenocarcinoma 
(Supplementary table.1) and calculated scores for each sam-
ple based on published coefficients (some of these prognos-
tic signatures were excluded due to gene deletions in some 
LUAD cohorts). The ability of all signatures in each cohort 
to predict prognosis was assessed by the C-index. Further, 
to enhance the clinical utility of the CMRS, we constructed 
a nomogram based on CMRS. Calibration curve was plotted 
to characterize accuracy, and decision curves were used to 
calculate the clinical benefit to patients.

https://www.gsea-msigdb.org/gsea/msigdb
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Immune features and mutational heterogeneity 
in different CMRS groups

First, based on the “IOBR”(Zeng et al. 2021) package, we 
collected previously published TME-associated features 
and used the ssGSEA method to calculate enrichment 
scores for each sample and comprehensively analyzed 
tumor microenvironmental differences between samples. 
Similarly, we obtained the 28 immune cell gene sets from 
the study by Charoentong et  al. and used the ssGSEA 
method for estimation and comparison (Charoentong et al. 
2017). Subsequently, we used the method of Thorsson 
et al. (Thorsson et al. 2018) to visualize mRNA expres-
sion of immunomodulators in patients with high and low 
CMRS (median normalized expression levels); expression 
versus methylation (correlation of gene expression with 
DNA methylation beta values); amplification frequency, 
and deletions frequency. Spearman correlation analyses 
were performed to assess the relationship between TMB 
and CMRS. Finally, differences in the type of mutations 
present in patients with high and low CMRS were assessed 
using the Wilcoxon test.

Comprehensive analysis of CMRS‑based 
immunotherapy prediction

For immunotherapy response, we first compared the corre-
lation between immune checkpoints and CMRS, and com-
pared TIP score ( http:// biocc. hrbmu. edu. cn/ TIP/ ) in the 
high CMRS and low CMRS groups. Subsequently, TIDE 
scores as well as immunotherapy response of LUAD patients 
with different CMRS groups were calculated and compared 
by the Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm ( http:// tide. dfci. harva rd. edu/ ). Next, we applied 
CMRS to two NSCLC immunotherapy cohorts to evaluate 
its predictive value for immunotherapy. The IMvigor210 
cohort is a large immunotherapy cohort for mUC and has 
more complete clinical treatment information (Mariathasan 
et al. 2018). In the IMvigor210 cohort, we evaluated the 
predictive efficiency of CMRS in terms of patient survival 
in delayed response to immunotherapy.

CMRS‑based screening of potential therapeutic 
agents

Volcano plots showed differential genes in patients in the 
high and low CMRS groups; subsequent GSEA analysis 
revealed the activation status of oncogenic pathways among 
low CMRS patients. Subsequently, the “oncoPredict” R 
package (Maeser et al. 2021) analysis was used to show the 
differences in drug sensitivity between the different CMRS 
groups. Next, potential therapeutic agents were developed 
for the high CMRS group. 1). we obtained drug sensitivity 

data from CTRP (https:// porta ls. broad insti tute. org/ ctrp) and 
PRISM Repurposing datasets (https:// depmap. org/ portal/ 
prism/), and obtained expression data of cell lines from the 
Cancer Cell Line Encyclopedia (CCLE, https:// sites. broad 
insti tute. org/ ccle/) database; 2). The CTRP and PRISM 
datasets possess AUC values, with lower AUC values indi-
cating increased sensitivity to the compound. Moreover, 
as the common chemotherapeutic agent for LUAD, we 
further selected cisplatin to validate the scientific validity 
and rigor of this approach; 3). We analyzed the differences 
in drug responses between the high CMRS (top 10%) and 
low CMRS (bottom 10%) groups based on the Wilcoxon 
rank-sum test and set the threshold  log2FC > 0.1 to identify 
compound; 4). Next, we further screen compounds with 
negative correlation coefficients between AUC values and 
CMRS (set threshold R < -0.3, Spearman test); 5). Finally, 
we screened potential drugs for use in patients in the high 
CMRS group by the overlap of compounds obtained in 3) 
and 4).

Single‑cell RNA‑seq analysis

We used the “Seurat” R package (Hao et al. 2021) to process 
single-cell RNA-seq data. We selected 18 lung adenocarci-
noma samples from GSE148071 with the following selection 
criteria: a) each cell should express more than 200 genes and 
less than 5000 genes; b) each gene should be expressed in 
at least 3 cells; and c) the content of mitochondrial RNA in 
each cell should be less than 30%. Afterward, we normalized 
the expression values using the “NormalizeData” function. 
Subsequently, 2000 highly variable genes were identified 
using the “FindVariableFeatures” function. These genes 
were then centered using the “ScaleData” function. Next, 
the “RunPCA” function is used to downscale the obtained 
highly variable genes. Finally, we use the “harmony” pack-
age to integrate the data.

Uniform Manifold Approximation and Projection 
(UMAP) analysis was performed to visualize cell popula-
tions. Subsequently, cell subpopulations were manually 
annotated and marker genes of the cells were visualized 
using violin maps.

The “AddModuleScore” function is a function used to 
calculate and add scores for specific gene sets to individual 
cells or clusters of cells. The “AddModuleScore” function 
was used to evaluate the scores of the 13 genes related to 
CMRS.

Statistical analysis

For the comparison of the two groups, the Student's t-test or 
Wilcoxon rank sum test was used for testing. For comparison 
of more than two groups, the one-way ANOVA test or the 
Kruskal-Wallis test was used for testing. Fisher's exact test or 

http://biocc.hrbmu.edu.cn/TIP/
http://tide.dfci.harvard.edu/
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism/
https://depmap.org/portal/prism/
https://sites.broadinstitute.org/ccle/
https://sites.broadinstitute.org/ccle/
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Chi-square test was performed for the categorical variables. 
Patients in each cohort were categorized into high and low 
subgroups based on the median value of the CMRS score, 
and differential expression analysis was performed by the 
“limma” R package. Pearson or Spearman correlation analy-
sis was performed to analyze the correlation between two 
continuous variables. Multi-omics clustering was accom-
plished by the “MOVICS” R package. *p < 0.05, **p < 
0.01, ***p < 0.001, ****p < 0.0001. All statistical analyses 
were performed in R v.4.1.2.

Result

Identification and validation of multi‑omics 
consensus molecular subtypes in LUAD

The workflow of this study is shown in Fig. 1. We first 
obtained four dimensions of omics data from TCGA-
LUAD, including mRNA expression, lncRNA expression, 
methylation, and mutation status. The Cluster Prediction 

Index (CPI) and Gaps-statistics algorithms included in 
the “MOVICS” R package were then utilized to derive 
the optimal number of clusters as 2 (Fig. 2A). Next, we 
comprehensively identified 2 comprehensive omics sub-
types (CSs), including CS1 and CS2, using 10 multi-
omics integrated clustering algorithms (Fig. 2B). Subse-
quent silhouette scores also indicated that the clustering 
worked well (Fig. 2C). We found that among the differ-
ent subtypes, LUAD have distinct molecular expression 
patterns across the transcriptome (mRNA and lncRNA), 
epigenetic methylation and somatic mutations that are 
significantly different (Fig. 2D). Notably, in terms of 
the defined immune subtypes, we found that the poor 
prognostic C1 and C2 immune subtypes were more 
enriched in the CS1; in contrast, the favorable prognos-
tic C3 immune subtype was more enriched in the CS2, 
which suggests the existence of distinctly different TME 
attributes among the CSs. Subsequently, survival curves 
revealed a strong correlation between CSs and survival, 
including overall survival (OS) (P = 0.001; Fig. 2E) and 
progression-free survival (PFS) (P = 0.017; Fig. 2F); 

Fig. 2  Consensus subtypes 
for multi-omics integration 
of LUAD. (A) The Cluster 
Prediction Index and Gap 
Statistical Analysis of the multi-
omics clusters. (B) Consensus 
clustering matrix of novel 
prognostic subtypes based on 
10 algorithms. (C) The sample 
similarity of each subgroup was 
assessed by calculating the Sil-
houette score. (D) Comprehen-
sive heatmap of shared subtypes 
including mRNA, lncRNA, 
DNA methylation sites, and 
mutated genes. K-M curve 
analysis of different survival 
outcomes between CSs, includ-
ing OS (E) and PFS (F)
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among them, CS1 patients exhibited a significantly 
poorer prognosis.

Next, we also evaluated the consistency of CSs with the 
nearest template prediction (NTP) and partition around 
medoids (PAM) algorithms in the TCGA cohort (P < 0.001; 
Supplementary Fig. 1 A-B). Further, we simultaneously 
expanded the molecular subtypes into multiple external 
cohorts using both NTP and PAM classifiers and compared 
the results of the two classifiers. The results show that the 
populations obtained by both classifiers are in high agree-
ment, indicating good stability of the molecular subtypes (P 
< 0.001; Supplementary Fig. 1 C-E). In addition, we visual-
ized the NTP classification results and analyzed the survival 
differences. The results showed that in all cohorts, LUAD 
patients with CS1 consistently exhibited poorer survival out-
comes (P < 0.001; Supplementary Fig. 1 F-G).

Distinctive biological features in multi‑omics 
molecular subtypes

Next, we also tried to explore the differences in molecular 
characteristics between the CSs. The results showed that 
there existed differences in the activity of common onco-
genic pathways among different CSs. Among them, EGFR, 
Hypoxia, and PI3K pathways were significantly more active 
in CS1 subtype; p53 pathway was more actively expressed 
in CS2 subtype (Fig. 3A). Consistent with the subtype-
related prognostic results, K-M curves showed that EGFR 
(P < 0.001), PI3K (P = 0.007), and Hypoxia (P < 0.001) 
oncogenic pathways enriched in CS1 were significantly asso-
ciated with poor prognosis (Fig. 3B). Subsequently, we ana-
lyzed the differences in invasiveness characteristics between 
CS1 and CS2; the results showed that CS1 was significantly 
enriched in cell cycle, angiogenesis, EMT, and metastasis 
upregulation-related pathways; CS2 was enriched in tumor 
suppressor gene (TSG) (Zhao et al. 2013), and metastatic 
activity downregulation-related pathways (Fig. 3C). Inva-
siveness score (IVS) is a score developed by Yoo et al. (Yoo 
et al. 2022) to estimate invasiveness activity in patients. Our 
study demonstrated a significantly higher level of IVS in 
CS1 than in CS2 (P < 0.001) (Fig. 3D). Further, we used the 
TCGA comic subtypes as a training set to cluster the patients 
in the GSE166722 cohort into CS1 and CS2 subtypes using 
the NTP method, and we similarly found that patients in the 
CS1 subtype had predominantly invasion attributes, whereas 
those in the CS2 subtype had predominantly indolent attrib-
utes (Fig. 3E). These results suggest that the characteristics 
of CS1 patients mainly include active tumor proliferation 
and invasive features.

We then further investigated the differences in tran-
scriptomics within the CSs, and the differential activity 
of cancerous chromatin remodeling regulators highlighted 
other potential patterns of differential regulation among 

CSs (Fig. 3F). It is suggested that the formation of epige-
netically driven transcriptional networks may be causative 
for the differentiation of these subtypes. Cancer stem cells 
(CSCs) have an important role in inducing tumor metasta-
sis and recurrence (Ayob and Ramasamy 2018). Therefore, 
we analyzed the enrichment of 26 stemness gene sets in 
patients with different CSs. The results showed that most of 
the stemness gene sets including Hs_ESC_Assou, Hs_EC_
Skotheim, and Plurinet were enriched in CS1. The mRNAsi 
was similarly significantly up-regulated in CS1 patients (P 
< 0.001) (Fig. 3G).

We next compared the heterogeneity of mutation patterns 
between CSs, and we found that the TMB was higher in the 
CS1 group, where the classical oncogene TP53 and KRAS 
were more frequently mutated in CS1, and the prevalent 
mutational signature in LUAD showed that there were dif-
ferences in the distribution of mutational signatures between 
different subtypes. (Fig.  3H). Consistently, in terms of 
known mutation types, patients in the CS1 group all had 
more frequent mutations compared to those in CS2 (P < 
0.001) (Fig. 3I).

Development of the CMRS based 
on a comprehensive machine learning program

We obtained 234 genes up-regulated in CS1 (Supplementary 
table.2) in TCGA-LUAD, followed by univariate Cox analysis 
in the TCGA, GSE72094, GSE31210, and GSE68465 cohorts 
(Supplementary table.3). Then, screened 87 prognostic genes 
shared among all four LUAD cohorts (Supplementary Fig. 2; 
Supplementary table.4). Next, we submitted these genes to a 
comprehensive machine learning program to construct the con-
sensus machine learning-related prognostic signature (CMRS). 
The TCGA cohort was used as the training set for model con-
struction, and after that, based on the average C-index of the 
test cohort as the ranking of model efficiency, we found that 
the prognostic model developed by the RSF + Survival-SVM 
method has the highest average C-index of 0.668, which can be 
used as the best prognostic CMRS (Fig. 4A). CMRS is mainly 
composed of 13 key genes (Supplementary table.5), and these 
genes were significantly associated with poor prognosis in 
all 4 cohorts (Fig. 4B). We then calculated the CMRS scores 
for each sample in all cohorts and analyzed the correlation 
between CMRS and survival. The results showed that patients 
with low CMRS have poorer clinical outcomes in all cohorts, 
including TCGA-LUAD (Hazard Ratio = 0.27, P < 0.001), 
GSE31210 (Hazard Ratio = 0.15, P < 0.001), GSE72094 
(Hazard Ratio = 0.37, P < 0.001), GSE68465 (Hazard Ratio 
= 0.43, P < 0.001) (Fig. 4C).

Next, we systematically examined the multi-omics phe-
notype of CMRS-related genes in TCGA pan-cancer by 
the “GSCALite” public server ( http:// bioin fo. life. hust. edu. 
cn/ web/ GSCAL ite/ ). The results showed that these genes 

http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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were commonly highly expressed in multiple cancer tissues 
across most cancer types (Supplementary Fig. 3A) and were 
significantly associated with poor prognosis (Supplemen-
tary Fig. 3B). We also found a positive correlation between 
mRNA expression levels and copy number variation (CNV) 
of CMRS genes in most cancer types, especially ECT2 (Sup-
plementary Fig. 3C). Analysis of CNV frequency changes 
showed that CNV of CMRS-related genes have significant 
differences across cancer types (Supplementary Fig. 3D-F). 
Furthermore, we similarly found that the methylation levels 

of CMRS genes in most cancer types were different between 
tumor and normal samples (Supplementary Fig. 4A). Mean-
while, at the pan-cancer level, the methylation levels of these 
genes were negatively correlated with the mRNA expres-
sion levels of these genes (Supplementary Fig. 4B). It is 
worth mentioning that the methylation levels of different 
CMRS-related genes were also correlated with the prognosis 
of patients to some extent (Supplementary Fig. 4C). These 
results suggest that CMRS genes may cause differences in 
survival outcomes by influencing epigenetic changes. In 

Fig. 3  Multi-omics landscape between different subtypes. (A) Heat-
map and subgroup comparisons of LUAD cancer pathway activ-
ity calculated according to the PROGENy method. (B) K-M sur-
vival curve analysis of oncogenic pathways. (C) Association of CSs 
with MSigDB gene sets, including Hallmark, lung cancer-related 
genes, and tumor invasion- or metastasis-related gene sets, using 
Fisher's exact test. (D) Distribution of invasiveness score (IVS) of 
TCGA-LUAD within different CSs. (E) Estimation of subtypes of 
the GSE166722 cohort using the NTP method (where acinar (AC), 
micropapillary (MP), papillary (PAP), and solid (SOL) are patho-

logically aggressive histologic subtypes; MIA, AIS, and lepidic pre-
dominant (LPA) for noninvasive or minimally invasive subtypes). (F) 
Heatmap of potential regulatory factor activity associated with  can-
cerous chromatin remodeling. (G) Heatmap of the distribution of the 
26 stemness scores in different subtypes and comparative mRNAsi 
grouping. (H) Landscape of genomic alterations in CSs. Distribu-
tion of TMB, the relative contribution of the mutation signatures, and 
mutated genes with mutation frequencies greater than 20% are shown 
in the top-to-bottom panels. (I) Comparison of the eight mutation 
types across subtypes
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addition, we found that CMRS genes could generally acti-
vate the Cell Cycle pathway and had a significant inhibi-
tory effect on the hormone AR pathway (Supplementary 
Fig. 4D-E). In terms of mutation patterns, we found that 
these genes are more commonly mutated mainly in cancers 
such as UCEC, SKCM, COAD, and STAD (Supplementary 
Fig. 5A-B).

Comparison of CMRS with published prognostic 
signatures in LUAD

In recent years, with the rapid development of high-through-
put sequencing, it has made possible stratified treatment 
strategies for tumors and precise and personalized treatment 
for patients (Reel et al. 2021). A large number of studies 
have been conducted to develop prognostic signatures based 
on machine learning methods to predict cancer prognosis 
(Greener et al. 2022). Therefore, here, we collected a total 
of 81 prognostic signatures for LUAD (Supplementary 
table.1) to compare the predictive accuracy of CMRS and 

these models. Among them, some signatures in the LUAD 
cohort were excluded due to the lack of constituent genes for 
prognostic signatures. We compared the average C-index of 
CMRS and 81 prognostic signatures in the TCGA-LUAD, 
GSE31210, GSE72094, and GSE68465 cohorts, and we 
found that CMRS is the 6th in the TCGA cohort, the 2nd 
in GSE31210, and the 1st in GSE72094 and GSE68465. 
This revealed the robustness of CMRS (Fig. 5A). Notably, 
some of the prognostic signatures had high C-index in the 
TCGA-LUAD cohort, but performed poorly in the other 
cohorts, which may be caused by the overfitting that these 
prognostic signatures are produced by training in TCGA. 
We then explored the association between CMRS and com-
mon clinicopathologic features, and we found that men and 
advanced lung adenocarcinoma patients were predominant 
in low CMRS (Fig. 5B).

Next, to better predict the clinical outcomes of LUAD, 
we developed a nomogram based on CMRS, clinical stage, 
age, gender, and smoking status (Supplementary Fig. 6A). 
The calibration plot showed high agreement between the 

Fig. 4  Prognostic value of 
CMRS. (A) Multiple machine-
learning models were built by 
synthesizing machine-learning 
frameworks. The C-index of 
each model was calculated from 
the TCGA-LUAD, GSE31210, 
GSE72094, and GSE68465 
cohorts and sorted by the aver-
age C-index of the validation 
set (GSE31210, GSE72094, and 
GSE68465). (B) Forest plot of 
univariate Cox regression analy-
sis of key genes in the training 
and validation cohorts. (C) 
Survival analysis plot of CMRS 
in TCGA-LUAD, GSE31210, 
GSE72094 and GSE68465 
cohorts
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predicted and ideal curves (Supplementary Fig. 6B). The 
DCA curves also show that the nomogram has a good pre-
dictive benefit (Supplementary Fig. 6C).

CMRS is associated with the reshaping of the tumor 
microenvironment

The heterogeneity of the tumor microenvironment is con-
sidered to be one of the important factors affecting cancer 
patients and anticancer therapy (Xiao and Yu 2021). Here, 
we evaluated the tumor microenvironment of LUAD using 
the “IOBR” R package (Zeng et al. 2021). As expected, we 
found significant differences in TME signatures between the 
high and low CMRS groups, where signatures associated 
with tumor proliferation and metastasis including DDR, 
CellCycle_Reg, CellCycle, and EMT2 were more enriched 
in the low CMRS group, which partly explains why the 
prognosis of the low CMRS group was worse than that of 
the high CMRS group (Fig. 6A; Supplementary Fig. 7A-C). 
In terms of immune cell infiltration, we found that immune 

cells such as Type 17 helper cells, Plasmacytoid dendritic 
cells, Immature B cells, and Activated B cells were more 
active in the high CMRS group, whereas Activated CD4 T 
cell and CD56bright natural killer cell were significantly 
enriched in the low CMRS group. (Fig. 6B).

In the field of cancer therapy, targeted therapies against 
immunomodulators (IM) have been widely put into clini-
cal trials, demonstrating the importance of IM for antican-
cer therapy. We evaluated the correlation between IM and 
mRNA expression, mRNA expression and methylation, 
amplification frequency and deletion frequency under dif-
ferent CMRS groups based on the protocol of Thorsson et al. 
The results showed that IM differed significantly in different 
CMRS groups. mRNA expression of immune checkpoints 
including CD276, CD274, and PDCD1LG2 were highly 
expressed in the low CMRS group; the expression of most 
of the antigen-presenting molecules including the HLA fam-
ily was up-regulated in the high CMRS group; which implies 
that immune cells in the high CMRS group tended to be 
more immunoreactive. In addition, the methylation levels 

Fig. 5  Comparison between 
consensus machine learning-
related prognostic signature 
(CMRS) and 81 prognostic 
signatures. (A) Comparison of 
C-index between CMRS and 
81 published LUAD signatures 
(some prognostic signatures 
were excluded due to genetic 
incompleteness within the 
cohort). (B) The stacked plot of 
the distribution of CMRS versus 
clinicopathologic features (Chi-
square test)
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of CD40, CD27, and CTLA4 showed a negative correla-
tion with mRNA expression levels, suggesting epigenetic 
silencing of these immune genes. The occurrence of CNV 
also affects the function of IM. We found that the low CMRS 
group exhibited higher frequent amplification and deletion 
of IM genes compared to the high CMRS group, suggest-
ing that more pronounced genomic instability exists in the 
low CMRS group: IM genes including TIGIT, PDCD1, 
and LAG3 had higher amplification frequencies in the low 

CMRS group; meanwhile, IM genes including IL13, IL2, 
IL4, IFNA1 and IFNA2, which can activate T cell functions, 
showed frequent deletions in the low CMRS group (Fig. 6C).

Next, to gain a deeper understanding of the relation-
ship between CMRS and the defined classification of TME 
subtypes. We found that CMRS scores were higher in the 
IE/F subtype and lower in the D subtype (Fig. 6D); among 
the immune subtypes defined by Thorsson et al. (Thorsson 
et al. 2018), CMRS scores were higher in the C3 subtype 

Fig. 6  Association of CMRS with molecular features of the tumor 
microenvironment. (A) Differences in the distribution of TME signa-
tures between patients with high and low CMRS. (B) Differences in 
immune cell infiltration between patients with high and low CMRS. 
(C) From top to bottom: mRNA expression (median expression level 
after normalization using scale); correlation between mRNA expres-
sion and methylation; amplification frequency (difference between 
the proportion of samples in a given CMRS group in which ampli-
fication of IM occurs versus the proportion of all samples in which 
amplification occurs); deletion frequency (the difference between the 

proportion of samples in a given CMRS group in which IM under-
goes deletion and the proportion of deletions in all samples). (D-E) 
Distribution of CMRS expression in known TME subtypes: Bagaev 
et  al: IE/F (Immune-enriched, fibrotic), IE (Immune-enriched, non-
fibrotic), F (Fibrotic), and D (Immune-depleted); Thorsson et al: C1 
(Wound Healing), C2 (IFN-γ Dominant), C3 (Inflammatory), C4 
(Lymphocyte Depleted) and C6 (TGF-β Dominant). (F) Scatter plot 
of the correlation between CMRS and TMB. (G) Boxplot of mutation 
type distribution between different CMRS groups
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and, relatively, lower in the C1 and C2 subtypes (Fig. 6E). 
Notably, the C3 subtype mainly showed low to moderate 
proliferation of tumor cells and low mutational variability. 
In contrast, C1 and C2 subtypes of tumors are character-
ized by high proliferation, high mutation rates, and suscep-
tibility to immune escape. Thus, we further analyzed the 
correlation between CMRS and genomic instability. As 
expected, CMRS showed a negative correlation with TMB 
(R= -0.33, P < 0.001) (Fig. 6F). And all common mutation 
types appeared more frequently in the low CMRS group (P 
< 0.05) (Fig. 6G). Overall, CMRS can be a highly efficient 
indicator for assessing the reshaping of the tumor microen-
vironment, immune cell infiltration, and mutation frequency 
in LUAD, and the abnormalities of immune function and fre-
quent mutations may also be one of the reasons why patients 
with low CMRS have a shorter survival time.

CMRS can efficiently predict immunotherapy 
response

Considering the relevance of CMRS to the immune micro-
environment, we next explored and evaluated the role of 
CMRS in immunotherapy. We analyzed the correlation 
between CMRS and common immune checkpoints in four 
LUAD cohorts. The results showed that CMRS showed 
a negative correlation with immune checkpoints in all 
cohorts (Supplementary Fig. 8A). In addition, Tracking 
Tumor Immunophenotype (TIP) analysis also revealed dif-
ferences in anti-tumor immune processes between high and 
low CMRS groups (Supplementary Fig. 8B), suggesting 
the potential immunotherapy predictive ability of CMRS. 
Further, we evaluated the TIDE scores and immunotherapy 
response rates of these four LUAD cohorts using the TIDE 
algorithm analysis. The results showed that CMRS showed 
a negative correlation with TIDE in all cohorts (Fig. 7A), 
and high CMRS exhibited a better therapeutic effect to 
immunotherapy (P [Chi-square test] < 0.001). (Fig. 7B). 
Subsequently, we evaluated the predictive efficacy of 
CMRS in two NSCLC cohorts receiving immunother-
apy, and results showed that patients in the high CMRS 
group tended to exhibit longer progression-free survival 
time after receiving immunotherapy, (GSE126044, P = 
0.0267; GSE135222, P = 0.0301) (Fig. 7C). Furthermore, 
we followed another large mUC immunotherapy cohort 
(IMvigor210) to assess the predicted generalization abil-
ity of immunotherapy for CMRS. We found that in the 
IMvigor210 cohort, CMRS still showed better immuno-
therapy efficacy prediction, which means patients in the 
high CMRS group had better survival outcomes, although 
the P-value was not significant (Fig. 7D). Considering 
the possible delayed clinical effects of immunotherapy. 
We further compared the difference in long-term survival 

(LTS) between patients in the high and low CMRS groups 
after 3 months of immunotherapy (Fig.  7E), and also 
assessed the restricted mean survival (RMS) of patients at 
6 and 12 months (Fig. 7F); the results consistently showed 
that the patient group with higher CMRS showed better 
prognostic outcomes, with the benefit of immunotherapy 
obtained greater.

Screening for potential therapeutic drugs based 
on CMRS

Next, we further analyzed the differences in biological 
functions present between patients in the high CMRS and 
low CMRS groups. (Fig. 8A) showed the differential gene 
distribution present between the different CMRS groups. 
GSEA analysis revealed the presence of significant activa-
tion of oncogenic pathways including cell cycle, hypoxia, 
EMT, and angiogenesis-related oncogenic pathways in 
low CMRS (Fig. 8B). Subsequent drug sensitivity analysis 
showed that patients with low CMRS demonstrated sig-
nificantly higher sensitivity to commonly used anticancer 
drugs compared to patients with high CMRS (Fig. 8C). 
Considering that chemotherapeutic agents are primarily 
therapeutic mechanisms that target the ability of cells to 
divide and proliferate (Dasari and Tchounwou 2014), we 
believe that this result (Fig. 8C) may be related to the 
highly proliferative malignant nature of tumors in patients 
with low CMRS. Next, in order to better treat LUAD in 
the high CMRS group. We screened potential therapeutic 
agents for the high CMRS group. To ensure the robustness 
of our approach, we used cisplatin, a chemotherapeutic 
agent widely used in lung adenocarcinoma, as a mean of 
verifying that the sensitivities derived from the algorithm 
were consistent with established clinical approaches. A 
previous study showed that ERCC1 is a prognostic bio-
marker for patients with advanced non-small cell lung can-
cer receiving cisplatin chemotherapy (Ceppi et al. 2006), 
and our algorithm gave similar results (Fig. 8D), which 
means it was shown that patients with lower expression 
of ERCC1 demonstrated better therapeutic outcomes to 
cisplatin treatment. This result demonstrates the accuracy 
of our algorithm. (Fig. 8E) demonstrates our workflow to 
explore potential drugs for patients with high CMRS. After 
systematic screening, we finalized 2 CTRP-derived drugs 
(neratinib, oligomycin A; Fig. 8F) and 4 PRISM-derived 
drugs (prednisolone, BIBU-1361, aspirin, and RITA; 
Fig. 8G). The estimated AUC values of these drugs were 
not only significantly negatively correlated with CMRS, 
but also significantly lower in the high CMRS group, and 
may be able to serve as potential therapeutic agents for 
LUAD patients in the high CMRS group.
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Single‑cell sequencing analysis of CMRS‑related 
genes

Next, we further analyzed the cellular localization of CMRS-
associated genes in a single-cell dimension. We first acquired 
18 lung adenocarcinoma samples within GSE148071. We 
clustered and annotated the cells and visualized them in a 
dimensionality reduction using the UMAP method. The 
results showed that the cells were categorized into 21 cell clus-
ters (Fig. 9A) and annotated into 7 major classes (Fig. 9B), 
including Epithelial cells, Myeloid cells, B-cells, Fibroblasts, 
T-cells, Endothelial cells as well as other cells. (Fig. 9C) 
shows the biomarkers for each cell type. After that, we con-
sidered the expression distribution of the 13 genes that make 
up the CMRS, and we found that most of the genes were 

predominantly distributed in epithelial cells, and some of the 
genes, including SLC2A1 and TXNRD1, were also activated 
in Myeloid cells (Fig. 9D). Subsequently, we calculated these 
genes as CMRG_score using the function “AddModuleScore” 
and used UMAP plots for visualization (Fig. 9E). In addition, 
we found that CMRG_score was more actively expressed 
mainly in epithelial cells (Fig. 9F). (Fig. 9G) shows the distri-
bution of CMRG_score expression in each sample.

Discussion

Cancer occurs as a result of the interaction of multiple 
factors, including gene mutations, epigenetic variants, 
changes in cellular identity, chronic inflammation and tumor 

Fig. 7  Predictive value of CMRS in immunotherapy. (A) Scatter-
plot of correlation between CMRS and TIDE score in the 4 LUAD 
cohorts. (B) Relationship between high and low CMRS and response 
to immunotherapy in the 4 LUAD cohorts, Chi-square test was used. 
(C) K-M plot of CMRS in predicting patient progress-free survival 
(PFS) in two NSCLC immunotherapy cohorts (GSE126044 and 

GSE135222). (D) Survival plot of CMRS in an immunotherapy 
cohort (IMvigor210) of mUC. (E) The difference in the long-term 
survival (LTS) between the high CMRS group and the low CMRS 
group after 3 months of treatment. (F) Difference in the restricted 
mean survival (RMS) at 6 and 12 months of treatment in the high and 
low CMRS groups
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microenvironment (Jassim et al. 2023). Therefore, compre-
hensive analysis of multidimensional comprehensive omics 
data from patients will contribute to our further understand-
ing of disease-specific regulatory mechanisms (Oh et al. 
2021). Currently, most of the comprehensive omics studies 
on LUAD have focused on individual dimensions of com-
prehensive omics data, such as mRNA expression, mutation 
status of genes, etc. (Feng et al. 2023); meanwhile, the selec-
tion of clustering methods based on comprehensive omics 
data is also different, which may make it limited to a certain 
extent when applied on a large scale (Ma et al. 2022).

Here, we successfully identified two LUAD subtypes 
with different molecular features by integrating multidi-
mensional comprehensive omics data and combining 10 

advanced clustering algorithms, and the stability and prog-
nostic variability of the subtypes were validated in different 
cohorts. Among them, patients with CS1 have higher tumor 
invasive, more mutation frequency, and generalized activa-
tion of oncogenic pathways, which ultimately constituted 
the poor clinical outcome of CS1. Notably, we found that 
patients with the CS1 molecular subtype were predomi-
nantly enriched for the C1 (Wound Healing, characterized 
by elevated expression of angiogenic genes and a high rate 
of tumor proliferation) and C2 (IFN-γ Dominant, charac-
terized by a high degree of lymphocytic infiltration, M1 
macrophage infiltration, and a high rate of tumor prolifera-
tion) immune subtypes. This suggests that although there is 
a strong immune response within the TME in CS1 patients, 

Fig. 8  Potential drug screening for patients. (A) Volcano plot show-
ing differential gene distribution between patients in different CMRS 
groups. (B) GSEA analysis shows significantly activated oncogenic 
pathways in patients with low CMRS group. (C) Distribution of drug 
 IC50 values in different CMRS groups (analyzed using “oncoPredict” 
R package). (D) To validate the feasibility of the computational algo-
rithm by predicting the relationship between ERCC1 expression and 

cisplatin sensitivity. (E) The computational pipeline is used to screen 
potential drugs for patients in the high CMRS group. The results of 
correlation analysis and differential drug response analysis of (F) 
CTRP-derived compounds and (G) PRISM-derived compounds, and 
the lower values on the estimated AUC in boxplots imply greater 
drug sensitivity



Functional & Integrative Genomics (2024) 24:118 Page 15 of 18 118

the high proliferation rate and high mutation frequency of 
tumor cells result in the inability to control tumor progres-
sion even with an active immune response; in contrast, CS2 
patients predominantly enriched the C3 (Inflammatory, 
mainly characterized by elevated Th17 and Th1, and a lower 
proliferation rate) immune subtype; this implies that CS1 
and CS2 patients may have different degrees of benefit when 
treated with targeted immune responses. Overall, the com-
prehensive omics subtypes identified in this study may be of 
possible value for precise stratification of LUAD.

Machine learning algorithms are currently the dominant 
means of building efficient predictive markers (Lee et al. 
2021). We constructed an efficient prognostic signature 
(CMRS) by an integrated program containing 10 machine-
learning algorithms (Wang et al. 2022). For the 13 genes 
constituting the CMRS, we detailed them in (Supplementary 
table.5). Compared to most existing prognostic signatures 
for LUAD, CMRS demonstrate robust and stable prognostic 
prediction efficiency. Overfitting is an important issue that 
cannot be ignored by machine learning algorithms when 

constructing models, i.e., they show good performance in the 
model training set, yet fail to achieve satisfactory predictions 
in the external cohort (Deo 2015). Considering that cohorts 
originating from TCGA，which are often used as training 
sets, this partly explains why the performance of some of 
the prognostic signatures is superior to CMRS in the TCGA 
cohort but does not show good efficiency in other LUAD 
cohorts. In addition, the nomogram constructed based on 
CMRS and clinicopathologic features also showed good effi-
ciency in survival prediction, which is expected to be useful 
as a prognostic indication for LUAD patients.

In terms of tumor microenvironment expression patterns, 
we identified significant TME heterogeneity between the 
high and low CMRS groups. Among them, not only cell 
proliferation and EMT-related signatures were significantly 
enriched in the low-CMRS group, but also immune check-
points including CD274 (PD-L1), CD276, PDCD1, and 
TIGIT were actively expressed in the low-CMRS group; 
these results imply that the low-CMRS group had higher 
proliferation rates, more malignant characteristics of the 

Fig. 9  ScRNA-Seq reveals 
CMRS-related gene expression 
patterns. UMAP plots of 21 cell 
clusters (A) and 7 major cell 
types (B). (C) Violin plots of 
cellular markers. (D) UMAP 
plot of expression distribution 
of CMRS constituent genes. (E) 
Calculation of the expression of 
(comprehensive omics subtypes 
related genes score) CMRG_
score in major cell types based 
on “AddModuleScore” function. 
Expression distribution of 
CMRG_score in cell types (F) 
and samples (G)
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tumor cells and the immune microenvironment was biased 
towards immunosuppression. Furthermore, the amplifica-
tion and deletion of IM genes, which are prevalent in the 
low-CMRS group, largely lead to the abnormal function 
of the immune system and thus the inability to control the 
malignant progression of the tumors (Gubin and Vesely 
2022; O'Donnell et al. 2019). This phenomenon implies that 
patients in the low-CMRS group may not be able to ben-
efit well from immunotherapy. We verified this speculation 
under the subsequent TIDE algorithm. Compared with the 
low CMRS group, the high CMRS group showed a better 
immunotherapy response rate. Similar results were validated 
in an independent NSCLC immunotherapy cohort and a 
large mUC immunotherapy cohort. These results consist-
ently suggest that CMRS may serve as strong evidence for 
identifying immunotherapy-sensitive populations.

GSEA analysis showed that there was a generalized acti-
vation of pathways related to EMT, cell cycle and angio-
genesis in the low CMRS group. This is consistent with the 
phenotype of high proliferation rate in low CMRS. Further-
more, in terms of clinical treatment, the low-CMRS group 
demonstrated sensitivity to common chemotherapeutic 
agents such as Docetaxel and Cisplatin. It is well known 
that the mechanism of action of chemotherapeutic agents 
is mainly to inhibit tumor development by hindering cell 
division and proliferation (Dasari and Tchounwou 2014; 
Jin et al. 2023). Therefore, we believe that it may be the 
high proliferative characteristics of tumor cells in the low-
CMRS group that make patients in the low-CMRS group 
more likely to benefit from chemotherapeutic agents. After-
ward, in order to expand the clinical treatment scope of the 
high CMRS group. We screened neratinib, oligomycin A, 
and other drugs as potential agents targeting the high CMRS 
group based on the protocol summarized in previous studies 
(Yang et al. 2021). Among them, Neratinib, as a tyrosine 
kinase inhibitor, has been mainly used in the treatment of 
breast cancer, and it can achieve anticancer effects by block-
ing the transduction of HER1, HER2, and HER4 signal-
ing pathways (Guo et al. 2023). A study on oligomycin A 
has shown that Oligomycin A can be effective by inducing 
apoptosis in Hela cells mediated by TRAIL (He et al. 2013). 
More clinical trials are needed in the future to confirm the 
potential role of these drugs in the therapeutic field of LUAD 
in the high CMRS group.

Overall, in this study, the novel molecular subtypes and 
robust prognostic signature identified, which are promising 
in terms of clinical implications for LUAD. However, the 
limitations of this study should also be recognized. First, all 
samples in this study were retrospective, and future valida-
tion for CMRS should be performed in prospective multi-
center cohorts. Second, further experimental exploration is 
still needed for the specific mechanisms between CMRS-
related genes and tumor progression. Third, the effects of 

potential drugs screened based on CMRS in LUAD still need 
to be confirmed by further clinical trials.

Conclusion

In summary, this study identified two molecular subtypes 
with different molecular feature heterogeneity in LUAD 
through multi-omics consensus clustering, which may be 
able to drive the refinement of stratified and precise treat-
ment of LUAD. The CMRS developed by the framework of 
machine learning algorithms has a strong prognostic predic-
tion capability and demonstrated the good ability to identify 
immunotherapy-sensitive populations. This study may help-
ful for the early diagnosis and the personalized treatment in 
LUAD.
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