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Abstract
The T-box family transcription factor 18 (Tbx18) has been found to play a critical role in regulating the development of the 
mammalian heart during the primary stages of embryonic development while the cellular heterogeneity and landscape of 
Tbx18-positive (Tbx18+) cardiac cells remain incompletely characterized. Here, we analyzed prior published single-cell RNA 
sequencing (scRNA-seq) mouse heart data to explore the heterogeneity of Tbx18+ cardiac cell subpopulations and provide a 
comprehensive transcriptional landscape of Tbx18+ cardiac cells during their development. Bioinformatic analysis methods 
were utilized to identify the heterogeneity between cell groups. Based on the gene expression characteristics, Tbx18+ cardiac 
cells can be classified into a minimum of two distinct cell populations, namely fibroblast-like cells and cardiomyocytes. In 
terms of temporal heterogeneity, these cells exhibit three developmental stages, namely the MEM stage, ML_P0 stage, and 
P stage Tbx18+ cardiac cells. Furthermore, Tbx18+ cardiac cells encompass several cell types, including cardiac progenitor-
like cells, cardiomyocytes, and epicardial/stromal cells, as determined by specific transcriptional regulatory networks. The 
scRNA-seq results revealed the involvement of extracellular matrix (ECM) signals and epicardial epithelial-to-mesenchymal 
transition (EMT) in the development of Tbx18+ cardiac cells. The utilization of a lineage-tracing model served to validate 
the crucial function of Tbx18 in the differentiation of cardiac cells. Consequently, these findings offer a comprehensive 
depiction of the cellular heterogeneity within Tbx18+ cardiac cells.
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Abbreviations
Tbx18+   Tbx18-positive
E  Embryonic
P  Postnatal
ScRNA-seq  Single-cell RNA sequencing
ECM  Extracellular matrix
EMT  Epithelial-to-mesenchymal transition
CPC  Cardiac progenitor cell
TF  Transcription factor

SCENIC  Single-cell regulatory network inference and 
clustering

PCR  Polymerase chain reaction
GRN  Gene regulatory network
t-SNE  T-distributed stochastic neighbor 

embedding
DEGs  Differentially expressed genes
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
EPDCs  Epicardial-derived cells
hiPSCs  Human-induced pluripotent stem cells

Introduction

The heart is the first organ to form and function during mam-
malian embryonic development (Buckingham et al. 2005). 
Although there exists a comprehensive understanding of the 
morphological modifications that transpire in the mamma-
lian heart during embryonic development, additional refine-
ment is necessary for the exploration of gene regulation 
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during the progression of cardiac development. Cardio-
genesis encompasses the cooperative endeavors of diverse 
cell types, such as cardiomyocytes, fibroblasts, and immune 
cells, which engage in synergistic actions (Gancz et al. 2020; 
Filosa and Sawamiphak 2023). Moreover, throughout the 
course of heart development, discernible disparities in the 
gene expression patterns of particular cell types are also 
evident.

The relationship between heterogeneity in gene expres-
sion and variations in cellular developmental processes and 
functional properties has been thoroughly investigated in 
recent years through numerous studies that have analyzed 
gene expression patterns during heart development (Sahara 
et al. 2019; Litvinukova et al. 2020; Churko et al. 2018; 
Carter and Zhao 2020). Concurrently, single-cell RNA 
sequencing (scRNA-seq) has emerged as an innovative 
approach for conducting high-throughput sequencing and 
analysis of RNA at the individual cell level (Zhu et al. 2022). 
This technique offers novel and distinct possibilities for char-
acterizing the cellular composition and transcriptional het-
erogeneity in various cell types during heart development 
(Xiong et al. 2019; Xiong and He 2020; Long et al. 2023).

Studies utilizing scRNA-seq have investigated the spa-
tial and temporal dynamics of gene expression during heart 
development in both human and experimental animal mod-
els, thereby enhancing our comprehension of the intricate 
gene expression network underlying organogenesis (Xiong 
et al. 2019; Jia et al. 2018; Liu et al. 2019). For example, Lit-
vinukova et al. conducted a study that focused on examining 
the cellular heterogeneity of cardiomyocytes, pericytes, and 
fibroblasts in the adult human heart. Their findings revealed 
distinct cellular compositions in various regions of the 
heart, which could potentially be attributed to their diverse 
developmental origins (Litvinukova et al. 2020). DeLaugh-
ter et al. utilized scRNA-seq to discern the transcriptional 
heterogeneity that occurs during the development of car-
diomyocytes (DeLaughter et al. 2016). Similarly, Lescroart 
et al. investigated the region specificity of Mesp1-expressing 
cardiovascular progenitors (Lescroart et al. 2018). In 2022, 
Red-House et al. conducted a study that utilized pulse-chase 
lineage tracing and scRNA-seq to investigate the involve-
ment of Bmp12 and CXCL12/CXCR4 signaling in endo-
cardial angiogenesis (D’Amato et al. 2022). Their findings 
revealed that the differentiation of the endocardium into 
coronary arteries predominantly occurs between embryonic 
days 10.5 to 13.5. Additionally, Anderson et al. employed 
scRNA-seq analysis of fixed cardiomyocytes from develop-
ing mouse hearts at different stages (E16.5, P1, and P5) to 
identify ZEB1 as a crucial factor in both proliferation and 
endoreplication processes (Bak et al. 2023).

It is worth noting that the heart originates from a diverse range 
of cell lineages that are determined by cardiac progenitor cells 
(CPCs), which play a crucial role in maintaining the cellular and 

functional integrity of the heart (Lalit et al. 2016; Srivastava 2006). 
These CPCs exhibit a heterogeneous nature and can be found in 
various regions of the heart, including the ventricles, atria, epi-
cardium, and pericardium (Le and Chong 2016). The differentia-
tion process of CPCs is contingent upon the expression of specific 
transcription factors (TFs) and genes (Yan and Jiao 2016). Among 
these genes, T-box family transcription factor 18 (Tbx18) has been 
identified as a crucial marker gene for the epicardium and plays a 
vital role in regulating heart development during the early stages 
of embryogenesis in mammals (Ma et al. 2013; Dai and Weber 
2018). Additionally, Tbx18 has been observed to be expressed in 
the interventricular septum, left ventricular myocardium, and sinus 
horns (Christoffels et al. 2009). A comprehensive understanding 
of the cellular heterogeneity of cardiac cells expressing the Tbx18 
gene is essential for further investigation into its expression charac-
teristics. However, there is currently a lack of a relevant systematic 
overview on this topic.

To date, scRNA-seq has been accompanied by a plethora 
of robust analytical techniques that find extensive applica-
tion in cell type identification, trajectory inference, regula-
tory network inference, and analysis of single-cell transcrip-
tome dynamics (Cao et al. 2019; Qiu et al. 2017a; Aibar 
et al. 2017a). Notably, the utilization of single-cell regula-
tory network inference and clustering (SCENIC) has proven 
instrumental in uncovering significant biological insights 
pertaining to the mechanisms governing cellular heteroge-
neity (Sande et al. 2020). Additionally, the employment of 
trajectory analysis through single-cell transcriptomics serves 
as a valuable tool for comprehending the temporal progres-
sion of cell states (Li et al. 2023a). The utilization of these 
analysis methods grounded in independent modalities has 
significantly advanced our comprehension of cellular diver-
sity and developmental landscapes.

In this study, we adopted an unbiased, systematic 
approach to dissecting mouse Tbx18-positive (Tbx18+) 
cardiac cells at single-cell resolution and provided the ref-
erence map of differentiating and mature Tbx18+ cardiac 
cellular transcriptional states in embryonic (E) 7.75 day to 
postnatal (P) 21 day. The potential regulatory role of extra-
cellular matrix (ECM) and epithelial-to-mesenchymal tran-
sition (EMT) signals on Tbx18+ cardiac cell development 
was investigated by performing the bioinformatic analysis 
based on the integrated scRNA-seq datasets. A brief flow of 
the study in this paper is shown in Fig. 1.

Materials and methods

Animals

All procedures involving living mice were approved by the 
Commission of Chongqing Medical University for the Ethics 
of Animal Experiments. The Tbx18-Cre mice were donated 
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Fig. 1  A brief flow chart of this 
study
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by Sylvia M. Evans (Cai et al. 2008). The Rosa26-EYFP Cre 
reporter mice were purchased from Jackson Laboratory (Bar 
Harbor, ME, USA) (Cai et al. 2008; Srinivas et al. 2001). The 
methods of mouse genotyping and primer design were as previ-
ously described (Srinivas et al. 2001). The Tbx18 probe plas-
mids were donated by A. Kispert (Kraus et al. 2001). Homozy-
gous Tbx18-Cre mice were identified by routine polymerase 
chain reaction (PCR). The Tbx18-Cre/Rosa26-EYFP heterozy-
gous mice were generated by crossing single-heterozygous mice. 
As previously described, immunofluorescence was performed 
on cultured cells or heart cryosections to determine lineage spec-
ification (Jing et al. 2016). The investigator was not blinded to 
the group allocation during the experiment.

Single‑cell RNA data source and preparation

Publicly available scRNA-seq data on embryonic and postna-
tal mouse hearts was obtained from multiple sources. The fol-
lowing datasets were included: E7.75 (cardiac crescent region 
from E7.75 mouse embryo, 4326 cells), E8.25 (heart tube region 
from E8.25 mouse embryo, 5664 cells), E9.25 samples (looped 
heart and pharyngeal arch region,11,376 cells) (De Soysa et al. 
“GSE126128,” totally 21,366 cells) (Soysa et al. 2019), E9.5 
to P21 samples (DeLaughter et al. “GNomEx database 272R, 
274R, 275 to 292R, 439R, and 440R,” atria and ventricle from 
E9.5 to P21 mouse heart, totally 1200 cells) (DeLaughter et al. 
2016); and E8.5 to E10.5 samples (Li et al. “GSE76118,” atria, 
ventricle, outflow tract from E8.5 to E10.5 mouse heart, totally 
2233 cells) (Li et al. 2016). Seurat’s standard process was 
conducted (Butler et al. 2018; Stuart et al. 2019). In brief, we 
removed low-quality cells according to the standard, which are 
cells with fewer than 300 unique molecular identifiers (UMIs) 
or mitochondrial gene expression exceeding 25% (Koenig et al. 
2022; Osorio and Cai 2021; Wang et al. 2022). The transcrip-
tome data were normalized using the “SCTransform” func-
tion. The batch effects for samples from different sources were 
removed by the Harmony R package. Screening conditions 
for Tbx18 positive cells were defined as count values greater 
than 0. A total of 1889 cells were used for subsequent bioin-
formatic analysis. The operating environment included a Linux 

operating system, 128G RAM, 16 threads, and R language 4.02 
with installed packages Seurat, SingleR, Celltalk, Tidyverse, 
and Ggplot2.

Bioinformatic analysis

Principal component analysis clustering was used for the dimen-
sional reduction. Cluster analysis of samples was performed 
with the R Seurat FindClusters method. The t-SNE algorithm for 
all selected cells was run (Butler et al. 2018; Stuart et al. 2019). 
According to the clustering results, singleR was used to identify 
the cluster’s cell type, and Monocle3 was used for the cell trajec-
tory analysis (https:// cole- trapn ell- lab. github. io/ monoc le3). The 
computational method of SCENIC was used to identify the key 
transcription factors (TFs) and regulatory network cell states 
(Sande et al. 2020; Aibar et al. 2017b) (http:// scenic. aerts lab. 
org). Gene regulatory network (GRN) construction and cell-state 
identification were performed on sc RNA-seq data. A volcano 
plot was used to visualize the results with the R ggplot package, 
and the R pheatmap package was used for heatmap construction 
(Chen et al. 2020). The GRN was visualized using the Network 
Analyzer available in the Cytoscape software (version: 3.9.1).

Immunofluorescence staining

All immunofluorescence staining experiments were performed 
as previously described (Yuan et al. 2021). Cells obtained in cul-
ture and tissues were soaked in 4% paraformaldehyde for fixa-
tion. Tissues were embedded and then cut by cryo-sectioning to 
10 μm. Nonspecific sites were blocked. The following primary 
antibodies were used, including mouse monoclonal anti-cardiac 
troponin T (MSZ-295-P0, Thermo Fisher Scientific, Waltham, 
MA, USA) and rabbit polyclonal anti-Perilipin antibody (1:50, 
ab3526; Abcam, Cambridge, UK). The primary antibodies were 
also rabbit anti-Periostin (ab215199; Abcam), rabbit polyclonal 
anti-Myh11 (ab224804, Abcam) diluted 1:50, mouse monoclo-
nal antibody to Snai1 (sc-271977; Santa Cruz Biotechnology, 
Inc., Santa Cruz, CA, USA), and mouse monoclonal antibody 
to Twist (ab175430, Abcam).

The sections were incubated with Alexa Fluor 594- and 
488-conjugated secondary antibodies. Microscopy was per-
formed with a laser scanning confocal microscope (Leica 
Microsystems Heidelberg GmbH, Germany). The nuclei were 
stained with 4′,6-diamidino-2-phenylindole (DAPI) for 1–5 min.

Results

Single‑cell RNA‑seq landscape of Tbx18+ cardiac 
cells in fetal and neonatal mouse

To investigate the single-cell transcriptomic characteris-
tics and subcluster heterogeneity of Tbx18+ cardiac cells 

Fig. 2  Overview of single-cell landscape in developing and post-
natal mouse Tbx18+ cardiac cells. A The t-SNE plot representation 
of 1889 Tbx18+ cardiac cells was colored by cluster. A total of 10 
different clusters were identified after unsupervised clustering. B 
The identity of each cluster was determined by matching expression 
profiles of clusters with established cell-specific marker genes of 
different cells, including fibroblasts and cardiomyocytes. C, D The 
GO and KEGG enrichment analysis of the C0 cluster. E, F The GO 
and KEGG enrichment analysis of the C6 cluster. G, H The GO and 
KEGG enrichment analysis of the C8 cluster. The “Rich_factor” is 
the ratio of differentially expressed gene numbers annotated in this 
pathway term to all gene numbers annotated in this pathway term. 
The greater the Rich factor, the greater the degree of pathway enrich-
ment. The values of rich factors are expressed as percentages (%)

◂
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Fig. 3  Characterization of C0 and C1 clusters. A The t-SNE plot of 
C0 and C1. B The volcano plot showed DEGs between C0 and C1 
clusters. DEGs upregulated in C0 were marked with blue, and DEGs 

downregulated in C0 were marked with red. C The heatmap showed 
the expression of the ECM-related genes of C0 and C1. D Feature 
plots displaying the marker gene expression of C0 and C1
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during cardiogenesis, we integrated the scRNA-seq datasets 
of Tbx18+ cardiac cells from mouse heart tissue spanning 
embryonic day (E) 7.75 to 18.5 and postnatal day (P) 1 to 
21 for further analysis. In a global view, we identified 1889 
Tbx18+ cells grouped into ten major clusters with t-distrib-
uted stochastic neighbor embedding (t-SNE) analysis of the 
integrated dataset (Fig. 2A). We then generated cluster-spe-
cific marker genes by performing differential gene expres-
sion analysis to define the identity of each cell cluster. The 
heatmap of the top differentially expressed genes (DEGs) 
for each cluster is shown in Fig. S1. We then performed 
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis of the DEGs 
belonging to each cluster. We combined the expression 
level of known markers and the DEG enrichment analysis 
to determine the cell identity of each cluster. We identified 
two major cell types: fibroblast-like cells and cardiomyo-
cytes (Fig. 2B).

Specifically, the clusters C0, C6, and C8 were defined as 
fibroblast-like cells, which highly expressed the cardiac fibro-
blast marker gene Col3a1; the stromal cell marker genes Thbs2, 
Thbs1, Cxcl1, Tcf4, and Sparcl1 (http:// bio- bigda ta. hrbmu. edu. 
cn/ CellM arker/ index. html); and the ECM-related genes such as 
Col14a1, Col15a1, Col6a3, Postn, Aspn, and Fndc1 (Fig. S1). 
The GO and KEGG enrichment analysis of the C0, C6, and 
C8 showed enrichment in the extracellular matrix organization, 
collagen-containing extracellular matrix, and focal adhesion 
(Fig. 2C–H). The other predominant cell population consisted of 
cardiomyocytes, specifically C1 and C5, exhibiting high expres-
sion of the myosin heavy chain genes Myh7 and Myh4, both of 
which are widely recognized as conventional markers for car-
diomyocytes. The GO and KEGG enrichment analysis of the C1 
and C5 clusters showed enrichment in the sarcomere, myofibril, 
contractile fiber, and cardiac muscle contraction (Figs. S2B to 
E). Since there was no known marker gene expression, the C2 
and C4 were defined as “unknown 1” cells with high expression 
of Pdcd5, Mir99ahg, and Actg, which related to cell death and 
movement (Han et al. 2021; Xiao et al. 2021). The C3 and C7 
were defined as “unknown 2” cells with high expression of the 
ribosomal protein-encoding genes Rps19 and Rpl27. C9 was 
defined as “unknown 3” cells, which specifically expressed the 
genes Dmrta1, Fgr, Pof1b, Stoml3, Rasgef1a, and Cpa5.

Based on the single-cell transcriptomic data, we deter-
mined the grouping characteristics of these Tbx18+ cardiac 
cells. Our results showed that Tbx18+ cells have the prop-
erties of at least two cell populations, fibroblast-like cells 
(C0, C6, and C8) and cardiomyocytes (C1 and C5). Mean-
while, the expression of the ECM genes, such as fibronec-
tin 1 (Fn1), intracellular hyaluronic acid-binding protein 4 
(Habp4), protein tyrosine phosphatase sigma (Ptprs), agrin 
protein (Agrn), Collagen 1A1, 4A4 (Col1a1, Col4a4), 
laminin subunit gamma 1 protein (Lamc1), and periostin 
(Postn), was shown in the t-SNE plot (Fig. S2A). This result 

suggested that heterogeneity exists within Tbx18+ cardiac 
cells, and the ECM genes were potentially involved in the 
formation of cellular heterogeneity. Cluster analysis iden-
tified that C0 and C1 clusters account for the largest and 
second largest proportion of all Tbx18+ cardiac cells during 
cardiogenesis (477 and 364 cells, respectively), defined as 
the fibroblast-like cells and cardiomyocytes (Fig. 2A, B).

Characterization of C0 and C1 clusters

To further investigate the differences between Tbx18+ cardio-
myocytes and non-cardiomyocytes, we analyzed the transcrip-
tional characteristics of fibroblast cluster C0 and cardiomyocyte 
cluster C1 and explored their roles in cardiac development. The 
t-SNE plot showed the clusters C0 and C1 (Fig. 3A). The vol-
cano plot revealed the top twenty DEGs between the C0 and 
C1 clusters in Fig. 3B. The marker genes of the epicardial cell, 
cardiomyocyte, and fibroblast were selected, with the heatmap in 
Fig. 3C constructed to represent the expression of these marker 
genes in clusters C0 and C1. Interestingly, cluster C0 displayed 
the molecular signature of epicardial cells and fibroblasts. The 
marker genes of epicardial cells (i.e., Wt1, Sox9, Upk3b, and 
Aldh1a2) and fibroblasts (i.e., Fstl1, Col15a1, Bmp1, Lgals1, 
and Lama2) were both highly expressed in cluster C0 (Fig. 3C, 
D). Among these markers, Wt1, Sox9, and Pdgfra were demon-
strated to participate in the EMT of the epicardium (Wagner and 
Wagner 2021; Hong et al. 2022; Xia et al. 2022). The GO analy-
sis showed that cells in this cluster were associated with ECM 
organization, epithelial cell proliferation, epithelial cell migra-
tion, focal adhesion, and regulation of angiogenesis (Fig. S2B 
and C). Since previous studies have confirmed that epicardial 
cells can differentiate into coronary vascular smooth muscle 
cells and cardiac fibroblasts through EMT and cell migration, 
the deduction was made that this cluster could potentially be the 
epicardial-derived cells (EPDCs) undergoing EMT (Sanchez-
Fernandez et al. 2022).

Meanwhile, cluster C1 expressed the cardiomyocyte 
marker genes (i.e., Acta1, Actc1, Tnnt2, Tnnc1, Ryr2, Nppa, 
and Myh6) (Lupu et al. 2020) (Fig. 3C, D), and the DEG 
analysis of C1 showed enrichment in muscle cell devel-
opment and differentiation, cardiac muscle contraction, 
and cardiomyopathy (Fig. S2B and C). Thus, it could be 
potentially identified as the typical cardiomyocytes. This 
result suggested that Tbx18+ cardiac cells may play diverse 
roles by exhibiting specific transcriptional features during 
cardiogenesis.

The temporal transcriptional heterogeneity 
of Tbx18+ cardiac cells

The classification of heterogeneity within a cell population 
encompasses two distinct categories, namely cellular hetero-
geneity and temporal heterogeneity. In the context of heart 

http://bio-bigdata.hrbmu.edu.cn/CellMarker/index.html
http://bio-bigdata.hrbmu.edu.cn/CellMarker/index.html
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development, the expression of numerous genes occurs in 
a time-specific manner, resulting in variations in the tran-
scriptional state of cells belonging to the same population 
at different time points, commonly referred to as temporal 
heterogeneity (Kwon et al. 2019). It is important to note 
that the presence of both cellular and temporal heterogene-
ity within a cell population does not preclude their simulta-
neous occurrence. To identify the temporal-specific genes 
and temporal heterogeneity of Tbx18+ cardiac cells, we 
partitioned the samples into three subtypes according to the 
embryonic developmental stage from which they originated. 
The Tbx18+ cardiac cells were grouped into three distinct 
clusters: MEM stage represented the early and middle stage 
of Tbx18+ cardiac cells from E7.75 to E14.5; ML_P0 stage 
represented the late embryonic and early postnatal stage 
of Tbx18+ cardiac cells from E18.5 to P0; P stage repre-
sented late postnatal Tbx18+ cardiac cells from P3 to P21 
(Fig. 4A). According to prior research, the timepoints of 
E14.5 and E18.5 corresponded to the formation of the pri-
mary structures of the heart and the maturation of cardio-
myocyte and fibroblast functionality, respectively (Gu et al. 
2022; Cui et al. 2019).

Heatmap analysis of the top DEGs expressed in different 
subgroups demonstrated huge differences in gene expres-
sion among these subgroups (Fig. 4B). The GO and KEGG 
enrichment analyses revealed that the DEGs of MEM stage 
cells were enriched in muscle tissue development, muscle 
cell differentiation, constituent of ribosome, and metabolic 
process, which were concerning cardiomyocyte development 
and metabolism (Fig. S3A and B). DEGs of the ML_P0 
stage cells were enriched in extracellular matrix structural 
constituent, collagen-containing extracellular matrix, and 
ECM-receptor interaction (Fig. S3C and D). DEGs of the P 
stage cells were enriched in the collagen-containing extracel-
lular matrix, focal adhesion (Fig. S3E and F). Based on the 
results obtained from heatmap analysis, as well as GO and 
KEGG enrichment analysis, it is noteworthy that the gene 
expression profiles of ML_P0 stage and P stage cells exhibit 
a remarkable similarity. Conversely, discernible disparities 
in gene expression levels were observed between the MEM 
stage and the aforementioned ML_P0 stage and P stage. 
These findings suggest that the time interval spanning from 

E14.5 to E18.5 may serve as a transitional stage, potentially 
facilitating alterations in gene expression patterns within 
Tbx18+ cardiac cells.

We next plotted the expression profile of the ECM and 
cardiomyocyte marker genes in clusters of different stages. 
The feature plots showed that cardiomyocyte marker genes 
Myl7, Bex4, and Mif were expressed at higher levels in 
the cluster of MEM stage. ECM genes Fndc1, Aspn, Dpt, 
Abca8a, Ly6c1, and Adamts4 were expressed at higher lev-
els in the cluster of ML_P0 and P stage (Fig. 4C). The trends 
of marker genes in each cluster were plotted as shown in the 
violin plot (Fig. 4D). The expression levels of Myl7, Bex4, 
and Mif decreased with the development of the mouse heart, 
while the expression levels of ECM genes increased with the 
development of the mouse heart.

To further explore the temporal dynamics of Tbx18+ car-
diac cells during heart development, we arranged these indi-
vidual cells from the identified ten clusters by Monocle 3 
(Qiu et al. 2017a, b) (Fig. 4E). When combined with the real 
development time point (Fig. 4F), the result demonstrated 
that the subgroup proportions of Tbx18+ cardiac cells 
changed dynamically with heart development. To elucidate 
the molecular dynamics in each cluster, we further analyzed 
the gene expression patterns of all genes along the trajec-
tory of cardiac development and identified fifteen genes 
with dynamic expression changes. The trends and distribu-
tion of single gene expression in each cluster were plotted 
(Figs. 4G–I and S4A to C). The genes related to CPC dif-
ferentiation, cardiomyocyte development and function, and 
angiogenesis (Bnip2l, Cbx3, Fabp3, Hmgb1, Hspd1, Mpc1, 
Pgam1, and Zfas1) gradually increased along pseudotime 
progression, highly expressed in cells at E7.75 to E9.25. The 
genes related to cell apoptosis and movement, cell migration, 
and epithelial cells (Hmgn2, Mir99ahg, Pdcd5, and Rab11b) 
reached the peak in the middle stage of pseudotime, highly 
expressed in cells at E10.5. The genes related to epicardial 
EMT, cardiac angiogenesis, and mitochondrial function 
(Mpv17, Nphs1, and Prmt1) gradually decreased along 
pseudotime progression, highly expressed in cells at E11.5 
to P21. When combined with the gene expression profiles 
and DEG analysis of three defined developmental stages, 
it was suggested that Tbx18+ heart cells have multiple cell 
biological processes in mouse heart development. The early 
stage involved CPC differentiation and cardiomyocyte devel-
opment, while the late stage involved ECM gene enrichment 
and epicardial EMT signals.

This result demonstrated that the transcriptional profile 
of Tbx18+ cardiac cells differed at different developmental 
stages. Tbx18+ cardiac cells in the early embryonic stage 
exhibited CPC and cardiomyocyte transcriptional proper-
ties, while Tbx18+ cardiac cells in the late embryonic stage 
exhibited EPDC transcriptional properties. Furthermore, 
the ECM genes and epicardial EMT genes had similar 

Fig. 4  The temporal transcriptional heterogeneity of single-cell 
Tbx18+ cardiac cells. A The t-SNE plot representation of 1889 
Tbx18+ cardiac cells was colored by stages. B The heatmap showed 
the expression of the cardiac and ECM marker genes per stage for all 
Tbx18+ cardiac cells. C Feature plots displayed the cardiac and ECM 
marker gene expression per stage for all Tbx18+ cardiac cells. D Vio-
lin plots displayed the cardiac and ECM marker gene expression per 
stage for all Tbx18+ cardiac cells. E, F The single-cell trajectory of 
Tbx18+ cardiac cells constructed by Monocle3. E was colored by 
identified clusters. F was colored by real-time points. G–I Expression 
trend of selected DEGs along the pseudo-timeline

◂
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expression trends during Tbx18+ cardiac cell development, 
suggesting that the two may be synergistic in the specific 
developmental period, which was consistent with the former 
results in Fig. 3.

Transcription factor network analysis of cellular 
heterogeneity in Tbx18+ cardiac cells

We used the SCENIC algorithm to map the GRNs governing 
the Tbx18+ cell states (Bak et al. 2023; Lalit et al. 2016). 
The regulon activity analysis of heart tissue samples from 
the E7.7.5 to P21 delineated four transcription-factor-driven 
regulon groups. Ultimately, 388 regulons were identified 
according to the binary regulon activity and showed dis-
tinct differences among Tbx18+ cardiac cells from subcel-
lular clusters. The results of the SCENIC analysis provided 
further evidence that these Tbx18+ cells were divided into 
distinct cell states and identified possible candidate tran-
scription factors (TFs) that may maintain transcription pro-
grams during cardiac development (Fig. 5A). Furthermore, 
based on the identified temporal-specific genes’ expression 
characteristics, the S1–S4 correspond to different periods of 
cell development, respectively (S1: e7.75–e9.5; S2: e10.5, 
e11.5; S3: e14.5, e18.5; S4: P0–P21) (Fig. 5B, C).

The regulon activity matrix revealed their differential 
expression of TFs in distinct cell states. TFs Hoxb1, Ybx1, 
Sap30, E2f4, Traf4, and Hmga1 were found to be key tran-
scriptional regulators of the S1 cluster. Hoxb1 played a 
crucial role in patterning CPCs, and the TFs Ybx1, Sap30, 
E2f4, Traf4, and Hmga1 were essential for cardiomyocyte 
proliferation during cardiac development (Stefanovic et al. 
2020; Stefanovic et al. 2020; Varma et al. 2023; Teittinen 
et al. 2012; Dingar et al. 2012; Li et al. 2023b). These TFs 
of S1 were in accordance with the expression characteris-
tics of cardiac progenitor-like cells. TFs Hdac2, Smad2, 
Meis1, Tbx5, Srf, and Gata4 were enriched in the S2 clus-
ter. Hdac2 and Gata4 coordinately regulated cardiomyocyte 
proliferation during embryonic development (Trivedi et al. 
2010). Smad2 was related to  Ca2+ signaling in cardiomyo-
cytes (Duran et al. 2018). Meis1 was identified as a criti-
cal transcriptional regulator of cardiomyocyte proliferation 
(Mahmoud et al. 2013). Srf played a vital role in the struc-
tural and transcriptional maturation of cardiomyocytes (Guo 
et al. 2020). Tbx5 was required in embryonic cardiomyo-
cytes for proliferation (Trivedi et al. 2010). The TFs Gtf3c2, 

Nanog, and Sox12 were the key transcriptional regulators 
of the S3 cluster. Nanog was positively expressed in myo-
cardial cells, Gtf3c2 was associated with acute myocardial 
infarction, and Sox12 was involved in cardiac development 
(Gao et al. 2016; Luo et al. 2014). Their differential expres-
sion of TFs in S2 and S3 corresponded to the characteris-
tics of CPCs and cardiomyocytes. TFs Fos, Egr3, Cebpd, 
Cebpb, Irf7, Irf9, Hoxa5, Prrx1, Twist1, Junb, and Ets2 
were enriched in the S4 cluster. C/EBP transcription fac-
tors mediated epicardial activation during heart development 
and injury (Huang et al. 2012). Twist was associated with 
the epicardial EMT process (Yang et al. 2016). Fos, Egr3, 
Ets2, Irf7, and Prrx1 were associated with cardiac fibrosis 
and fibroblasts (Palomer et al. 2020; Teng et al. 2020; Islas 
et al. 2012; Jiang et al. 2014; Wang et al. 2022). Junb, Irf9, 
and Hoxa5 were related to vascularization (Yoshitomi et al. 
2021; Zhang et al. 2014; Jing et al. 2021). These transcrip-
tion characteristics of the S4 cluster were mostly similar to 
those of epicardial and stromal cells. To further analyze and 
validate the transcriptional regulators and their target genes, 
we constructed the regulon specificity score (RSS) map to 
show each stage’s top five specific regulons in Fig. S5. By 
combining regulon activity heatmap (Fig. 5A), RSS maps 
(Fig. S5A to D), regulon expression maps (Figs. S5E, F, and 
S6), and previous research, the TFs Hoxb1 (S1), Gata4 (S2), 
Gtf3c2 (S3), Cebpd (S4) and Twist1 (S4) were chosen to 
construct representative GRNs of each stage in Fig. 6A–E. 
Based on the GRNs, Aldh1a2, C1ql1, Cacng7, Cdx1, Fgf15, 
Hoxa1, Osr1, Tbx1, Tead3, Zic3, and Sfrp5 were enriched 
in Hoxb1 GRN, and these genes participated in the cardio-
vascular formation during embryogenesis (Stefanovic et al. 
2020; Beecroft et al. 2021; Liu et al. 2017; Toran et al. 2019; 
Chu et al. 2014; Vincentz et al. 2005; Zhou et al. 2015; 
Martucciello et al. 2020; Han et al. 2020; Bellchambers 
and Ware 2021; Fujii et al. 2017). The genes Gata5, Gata6, 
Tbx20, Tbx5, Wnt2, Igfbp5, Myl7, Wnt2b, Hey2, Epha3, 
Sfrp5, Casz1, Hand2, Bmp10, and Meis1 were enriched in 
the Gata4 GRN, and these genes participated in the car-
diomyocyte proliferation and the cardiomyocyte cell cycle 
(Mahmoud et al. 2013; Singh et al. 2010; Lu et al. 2017; 
Gharibeh et al. 2021; Jia et al. 2019; Onizuka et al. 2012; 
Song et al. 2013; Sun et al.  2020, 2022a; Steimle et al. 2018; 
Gibb et al. 2018; Stephen et al. 2007; Qiu et al. 2017c; Xia 
et al. 2019; Qu et al. 2019). Mark4, Myl6b, Mef2b, Ipo7, 
Tesk2, Plcd4, Nek6, Nfatc2, and Nol3 were enriched in 
Gtf3c2 GRN, and these genes were involved in cardiomyo-
pathy and myocardial injury (Yu et al. 2021; Galindo et al. 
2022; Zhong et al. 2021; Dang et al. 2020; Berg et al. 2017; 
Charron et al. 2015; Qin et al. 2014; Bourajjaj et al. 2008; 
Xu et al. 2022). The genes Adamts9, Fosl1, Fosl2, IL-6, 
Osmr, Ptx3, Junb, and Zfp36l2 were enriched in the Cebpd 
GRN, and these genes were involved in the cardiac remod-
eling, cardiac fibrosis, vascularization, and ECM remodeling 

Fig. 5  Transcription factor network analysis of cellular heterogeneity 
in Tbx18+ cardiac cells. A The binary active heatmap (left) showed 
the activity of regulons in each cell. Black indicated active, and white 
indicated inactive. The selected regulons were shown in different 
colored rectangular frames (middle). The enriched motif logos were 
shown on the right. B The t-SNE plot showed cells colored by cell 
states. C The t-SNE plot showed cells colored by developmental 
stages
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(Kern et al. 2010; Wu et al. 2021a, b, c; Kumar et al. 2019; 
Farini et al. 2020; Seidenberg et al. 2021). The genes Snai1, 
Prrx1, Mfap4, Igfbp4, Frzb, Emilin1, Sox9, St3gal4, Tpbg, 
Gli3, Hapln1, IL11ra1, Lrig3, Lrp1, Pdgfrb, and Sfrp2 
were enriched in the Twist1 GRN, and these genes were 
associated with EMT, cardiac morphogenesis, cellular dif-
ferentiation, cardiovascular fibrosis, angiogenesis, cardiac 
development, cardiac regeneration, ventricular remodeling, 
epicardium, and intramyocardial adipocytes, respectively 
(Wang et al. 2022; Al-Hattab et al. 2018; Jiang et al. 2021a, 
b; Sun et al. 2022b; Dorn et al. 2021; Wu et al. 2020). The 
transcription factor regulatory network of Tbx18+ heart 
cells was time-specific and existed a transition from CPC 
properties to epicardial/stromal cell characteristics during 
cardiogenesis. At the same time, this result confirmed the 
existence of epicardial EMT in Tbx18+ cardiac cells at the 
late developmental stage from the perspective of transcrip-
tional regulation.

Lineage tracing of Tbx18+ cardiac cells

In mice, genetic lineage studies can assess precursor cells’ 
contribution to a mature tissue or organ. For the proepicar-
dium/epicardium, such an effort has now been undertaken 
by Cai et al. based on the observation that the transcrip-
tion factor gene Tbx18 was expressed at high levels in these 
embryonic tissues (Cai et al. 2008).

The scRNA-seq showed that the Tbx18+ cardiac cells had 
CPC and epicardial cell properties during heart develop-
ment. To further assess and characterize the Tbx18+ cardiac 
cells in cardiogenesis, we performed lineage tracing follow-
ing Tbx18 gene expression of the heart tissue in the Tbx18-
Cre/Rosa26-EYFP heterozygous mice model after E10.5, in 
which Tbx18-Cre mice crossed with Rosa26-EYFP reporter 
mice were used. The cardiomyocyte marker cTnT and EYFP 
were co-expressed (Fig. 6G). The vascular smooth muscle 
cell marker Myh11 and EYFP were co-expressed in the 
blood vessels (Fig. 6I). The adipocyte marker Perilipin and 
EYFP were co-expressed in the epicardial adipose tissue 
(Fig. 6J). The fibroblast marker Postn and EYFP were co-
expressed in the fibrous tissue of the heart (Fig. 6H). The 
regulon Twist1 and EYFP were co-expressed in the blood 
vessels. The EMT signaling molecules Snail and EYFP 
were co-expressed in the epicardium. The immunofluores-
cence result suggested that the Tbx18+ cardiac cells could 
differentiate into vascular smooth muscle cells, fibroblasts, 

adipocytes, and a few working cardiomyocytes, and the 
process may be related to EMT. The Tbx18+ cardiac cells 
exhibited the characteristics of epicardial progenitor cells 
in the lineage tracing model, in line with the GO analysis 
of EPDCs C0 at the MEM stage (Fig. 6F). The DEGs were 
enriched in cardiac EMT, smooth muscle differentiation, 
angiogenesis, and fat cell differentiation (Fig. 6F).

Discussion

The cardiac cellular heterogeneity may be caused by the 
spatiotemporal expression heterogeneity of genes among 
cardiac cell subsets (Galdos and Wu 2019). Asp et al. con-
structed a comprehensive transcriptional landscape of cell 
types during the developmental stages of the embryonic 
heart by combining three different technologies, spatial 
transcriptomics (ST), scRNA-seq, and in situ sequencing 
(ISS), and they investigated spatiotemporal gene expression 
patterns of the developing human heart at the cellular level 
(Asp et al. 2019). Therefore, the differential activation and 
repression of related genes were indispensable for cardiac 
cell development.

In the past 10 years, there have been several controversies 
about the gene Tbx18. The Tbx18+ epicardial cells used to 
be considered the progenitor pool except for the first and 
second heart field progenitor cells, but some researchers 
found defects in this view (Christoffels et al. 2009; Cai et al. 
2008). There is no dispute about the vital role of Tbx18 in 
cardiovascular development (Ma et al. 2013). Recent studies 
have found that the Tbx18 gene can conduct human-induced 
pluripotent stem cells (hiPSCs) to differentiate into pace-
maker-like cells, and spatiotemporal analysis showed that 
the Tbx18 expression was found in mural cells of both epi-
cardial and non-epicardial origin (Dai and Weber 2018; Jing 
et al. 2016; Gorabi et al. 2019). Asp et al. (2019) found the 
Tbx18 expressed in the epicardial cells and EPDCs using the 
ISS. These findings suggested that the cardiac cells express-
ing Tbx18 have different cellular compositions.

This study investigated the transcriptional and tempo-
ral heterogeneity in developing Tbx18+ cardiac cells by 
scRNA-seq. We found that the Tbx18+ cardiac cells could 
be divided into at least two cell types with distinct gene 
expression signatures: fibroblast-like cells and cardiomyo-
cytes. An in-depth study of two representative clusters com-
pared the transcriptional profiles between cardiomyocytes 
and non-cardiomyocytes. The transcriptional heterogene-
ity was demonstrated to exist in the Tbx18+ cardiac cells 
during cardiogenesis, and the ECM and EMT genes were 
potentially involved in the process. The Tbx18+ cardiac 
cells’ temporal heterogeneity was next studied, and the tran-
scription factor network analysis was constructed. Dynamic 
changes in gene expression levels and transcriptional 

Fig. 6  The gene regulatory network and immunofluorescence results. 
A–E The gene regulatory network analysis using SCENIC identi-
fies critical nodes driving the S1–S4 stages. F The GO enrichment 
analysis of the C0 cluster at the MEM stage. G–L EYFP and Ctnt 
(G), Postn (H), Myh11 (I), Perilipin (J), Twist1 (K), and Snail1 (L) 
expression, detected by immunofluorescence in the heart of Tbx18-
Cre/Rosa26-EYFP heterozygous mouse
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regulatory networks contributed to the temporal heterogene-
ity of Tbx18+ cardiac cells. For example, the ECM and EMT 
genes showed increased expression in the late developmental 
stage of Tbx18+ cardiac cells. The lineage-tracing model 
showed that Tbx18 participated in heart cell differentiation 
into vascular smooth muscle cells, fibroblasts, adipocytes, 
and cardiomyocytes. The Tbx18+ cardiac cells exhibited 
the characteristics of epicardial progenitor cells during car-
diogenesis, consistent with the previous study (Sanchez- 
Fernandez et al. 2022).

There are also several limitations to the present study. For 
example, although the original plan was to include as many 
datasets as possible, only three datasets met the criteria and 
were analyzed. Undoubtedly, more scRNA-seq datasets will 
improve the accuracy of current results. In addition, results 
in this study were obtained through integrated analysis of 
scRNA-seq data and lineage-tracing model; the identified 
temporal-specific genes during cardiogenesis need to be 
further validated.

Conclusion

In this paper, we provided a reference map of Tbx18+ car-
diac cellular transcriptional states between E7.75 and P21 
to understand better the temporal transcriptional heteroge-
neity and the properties of Tbx18+ cardiac cells in cardio-
vascular development. Moreover, these findings indicated 
that ECM and EMT signals potentially played a key role 
during Tbx18+ cardiac cell development and may also par-
tially explain the regulatory mechanisms underlying heart 
cell differentiation.
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