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Abstract
Staphylococcus sciuri (also currently Mammaliicoccus sciuri) are anaerobic facultative and non-motile bacteria that cause signifi-
cant human pathogenesis such as endocarditis, wound infections, peritonitis, UTI, and septic shock. Methicillin-resistant S. sciuri 
(MRSS) strains also infects animals that include healthy broilers, cattle, dogs, and pigs. The emergence of MRSS strains thereby 
poses a serious health threat and thrives the scientific community towards novel treatment options. Herein, we investigated the 
druggable genome of S. sciuri by employing subtractive genomics that resulted in seven genes/proteins where only three of them 
were predicted as final targets. Further mining the literature showed that the ArgS (WP_058610923), SecY (WP_058611897), and 
MurA (WP_058612677) are involved in the multi-drug resistance phenomenon. After constructing and verifying the 3D protein 
homology models, a screening process was carried out using a library of Traditional Chinese Medicine compounds (consisting 
of 36,043 compounds). The molecular docking and simulation studies revealed the physicochemical stability parameters of the 
docked TCM inhibitors in the druggable cavities of each protein target by identifying their druggability potential and maximum 
hydrogen bonding interactions. The simulated receptor-ligand complexes showed the conformational changes and stability index of 
the secondary structure elements. The root mean square deviation (RMSD) graph showed fluctuations due to structural changes in 
the helix-coil-helix and beta-turn-beta changes at specific points where the pattern of the RMSD and root mean square fluctuation 
(RMSF) (< 1.0 Å) support any major domain shifts within the structural framework of the protein–ligand complex and placement 
of ligand was well complemented within the binding site. The β-factor values demonstrated instability at few points while the radius 
of gyration for structural compactness as a time function for the 100-ns simulation of protein–ligand complexes showed favorable 
average values and denoted the stability of all complexes. It is assumed that such findings might facilitate researchers to robustly 
discover and develop effective therapeutics against S. sciuri alongside other enteric infections.

Keywords  Staphylococcus sciuri · Druggable targets · TCM library · Subtractive genomics · Molecular docking · MD 
simulation

Introduction

Staphylococcus sciuri was found by Kloos et al. (1976) after 
the genus Staphylococcus was defined in 1880. Staphylo-
cocci are Gram-positive, anaerobic facultative, catalase-
positive but oxidase-negative non-motile bacteria with pep-
tidoglycan and teichoic acid in their cell walls (Zimmerman 
and Kloos 1976, Kloos 1980, Kloos et al. 1997). It was 
reported as a common bacterium thriving in a wide variety 
of environments and was originally thought to be a commen-
sal bacteria found in healthy or ill farms and wild animals, 
but it has also been found in hospitalized individuals. There 
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are reports of MRSS incidence in healthy broilers showing 
that S. sciuri may be a source of virulence and resistance 
genes, also depicting the clonal nature of the methicillin-
resistant strains. Other studies investigated the prevalence 
of methicillin-resistant coagulase-negative Staphylococci 
(MRCoNS), while rarer studies were reported about MRSS 
employing selective isolation (Zimmerman and Kloos 1976, 
Kloos et al. 1997, Dakic et al. 2005). The bacterium causes 
significant pathogenesis in humans such as endocarditis, 
wound infections, peritonitis, septic shock, and urinary 
tract infections; the pathogenicity in animal population, 
however, is little understood, though antimicrobial resist-
ance is prevalent. The selected pressure of frequent and non-
specific use of antimicrobials for preventative, therapeutic, 
or growth booster purposes, mostly in pigs and poultry, has 
enhanced resistance and has been seen primarily in domestic 
animals. This resistance has spread to other wild species that 
share the same habitats and resources as domestic animals 
(Hedin and Widerström 1998). These species collect resist-
ance and virulence genes circulating in a particular environ-
ment because of their toughness, prolificacy, and dispersal 
capacities (Kolawole and Shittu 1997). Because these genes 
are usually encoded in mobile genomic components, this is 
made easier (plasmids, chromosomal cassettes, transposons). 
These components may easily be transported horizontally 
across microorganisms, regardless of whether the receivers 
are pathogenic or non-pathogenic (Horii et al. 2001). The 
ancestral Staphylococcal species are likely to be Staphy-
lococcus sciuri. It is often found on the skin and mucous 
membranes of warm-blooded animals in the environment 
and people (Torres et al. 2020) and currently is linked to 
mastitis in dairy cattle (Rahman et al. 2005, Nemeghaire 
et al. 2014b), dermatitis in dogs (Hauschild and Wójcik 
2007), and exudative epidermis in piglets (Hauschild and 
Schwarz 2003).

It has been discovered that S. sciuri possesses a close 
homolog of the methicillin-resistance gene mecA seen in 
S. aureus (Wu et al. 2001). The S. sciuri group comprises 
five species including S. sciuri (three subspecies), S. lentus, 
S. vitulinus, S. fleurettii, and S. stepanovicii that have been 
isolated from diseases caused in both animals and humans 
(Hauschild and Wójcik 2007, Nemeghaire et al. 2014a). S. 
sciuri, the genus’s original bacterium, and its closely related 
species were shown to carry the possible evolutionary pro-
genitor of numerous resistance genes that might serve as a 
reservoir for S. aureus resistance and virulence genes (Wu 
et al. 1996), which include mecA gene complex (A to E) 
and eight cassette chromosome recombinase (ccr) gene 
complexes (ccrA1B1, ccrA2B2, ccrA3B3, ccrA4B4, ccrC1, 
ccrA5B3, ccrA1B6, and ccrA1B3) (Katayama et al. 2001).

There have been recent findings of multi-drug resistant 
(MDR) Staphylococci such as S. sciuri carrying multiple 
resistant genes towards commonly available β-lactams and 

other antibiotics, in Africa (Adesoji et al. 2020, Egyir et al. 
2022), North and South America (Meservey et al. 2020, Sala-
zar-Ardiles et al. 2020, Saraiva et al. 2021, de Carvalho et al. 
2022, Santos et al. 2022), Korean Peninsula (Kim et al. 2019), 
Asia (Zhang et al. 2022, Boonchuay et al. 2023), Europe (Pat-
erson 2020, Gómez-Sanz et al. 2021, Rey Pérez et al. 2021), 
Middle East (Khazandi et al. 2018, Al-Hayawi 2022), and 
other parts of the world, which is an increasing public health 
concern for treatment of life-threatening infections.

To find novel therapy and other prophylaxis options towards 
drug, vaccine, and diagnostic biomarkers, the primary phase 
in all protocols is the target identification in the post-genomics 
era. This can be achieved through various experimental as well 
as commonly used in silico approaches including pangenom-
ics, subtractive genomics, structure-based drug designing 
(SBDD), comparative genomics, genome mining for meta-
bolic pathway reconstruction, network pharmacology–based 
analyses, and reverse vaccinology, among other recently estab-
lished computer-aided techniques (Ibrahim et al. 2017, Dalal 
et al. 2019, Singhal and Mohanty 2019, Dhankhar et al. 2020, 
Singh, Dhankhar et al. 2022, Zhang et al. 2023, Aregbesola 
et al. 2021). These methods have widely been used for the 
identification of protein-based therapeutic and vaccine targets 
in common and XDR, MDR, and other Pan-drug-resistant 
pathogenic microorganisms including viruses, bacteria, para-
sites, and fungus (Hughes 2002, Somani et al. 2019, Khan 
et al. 2021a, Khan et al. 2022b, Zhang et al. 2023).

The emergence of antibiotic-resistant pathogens due to 
excessive and unnecessary medications causes their immedi-
ate control a challenging assignment, hence using integrated 
OMICS strategies including but not limited to transcriptomics, 
metabolomics, and proteomics, among others, for disease tar-
get and regulator/inhibitor discovery as well as disease origin 
and prevalence in a variety of infections to expedite the process 
with minimized expenses (Shouxiang, Xiaojuan et al. 2021, 
Lvqin, Xuefeng et al. 2021, Linhui, Yutao et al. 2022, Yuan, 
Zhang et al. 2022, Dindhoria et al. 2022, Laamarti et al. 2022, 
Deng et al. 2022). The advantages include reduced time, cost-
effectiveness, robustness, labor, and reproducibility to fabricate 
broad-spectrum therapeutic candidates (Hassan et al. 2014, 
Radusky et al. 2015, Basharat et al. 2021, Aurongzeb et al. 
2022, Irfan et al. 2023).

Methodology, databases, and approaches

Genome selection of Staphylococcus sciuri 
and prediction of the core genome

The S. sciuri was selected on the basis of broad-spectrum 
host pathogenesis, and their complete genomes available at 
the start of this work were retrieved from the Joint Genome 
Institute-Genome Online Database (JGI-GOLD) (https://​

https://gold.jgi.doe.gov/


Functional & Integrative Genomics (2023) 23:254	

1 3

Page 3 of 21  254

gold.​jgi.​doe.​gov/) where the genome data and other statistics 
are readily available for analyses. This database provides an 
open source of comprehensive access to information regard-
ing metagenome sequencing projects and their associated 
metadata around the world (Mukherjee et al. 2017). To con-
struct the core genome of S. sciuri, a high-throughput server 
called the Pathosystems Resource Integration Center (PAT-
RIC, https://​www.​patri​cbrc.​org/) was used to predict the core 
genome by randomly choosing one strain FDAARGOS_285 
as the reference genome and the remaining ten strains were 
compared with this reference strain (Wattam et al. 2017).

Non‑host homologous, essential genome, and interactome 
prediction

After the prediction of core genome, the resultant data 
file was subjected to NCBI-BLASTp (https://​www.​ncbi.​
nlm.​nih.​gov/) (e-value = 0.0001, bit score = 200, and 
identity = 25%) against the human genome for filtering 
pathogen non-host homologs (Altschul et al. 1990). To 
identify conserved essential targets of S. sciuri, the set of 
core conserved proteins was submitted to the DEG (Data-
base of Essential Genes) (http://​tubic.​tju.​edu.​cn/​deg/) and 
CEG (Clusters of Essential Genes) (http://​cefg.​uestc.​cn/​

ceg) servers using the default parameters. Essential genes 
in a bacterium constitute a minimal genome, forming a set 
of functional modules, which play key roles in the emerg-
ing field of synthetic biology and contain all the essential 
genes currently available (Luo et al. 2014, Liu et al. 2020). 
The STRING server (https://​string-​db.​org/), utilized for the 
prediction of protein–protein interactome, serves as a bio-
logical database and web resource in molecular biology, 
encompassing both known and predicted protein–protein 
interactions (Szklarczyk et al. 2019).

Comparative subcellular localization

The genes/proteins that were selected as non-redundant, 
essential, and human-non-homologous in the previous step 
were further analyzed for subcellular localization. This 
step is important to classify the proteins constituting the 
secretome and exoproteome of the pathogen. The exopro-
teome and secretome are considered as an excellent source 
for vaccine candidates. Subcellular localization of proteins 
was performed based on a comparative approach using two 
online subcellular localization tools: PSORTB (https://​
www.​psort.​org/​psortb/) and CellO2GO (http://​cello.​life.​
nctu.​edu.​tw/​cello​2go/). The protein sequences in FASTA 

Fig. 1   Solvation box surrounding the docked protein
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format with organism type set to bacteria and gram stain 
set to negative were submitted. For bacteria, protein sub-
cellular localization prediction (SCL) is the accurate tool to 
assign a possible localization site to a protein by using sup-
port vector machines (SVMs). Furthermore, it assigns the 
five subcellular locations, i.e., periplasm, cytoplasm, extra-
cellular, inner outer membrane, and Gram-negative bac-
teria. In contrast, CELLO2GO considers SVM function-
ality at two levels; based on sequence-derived molecular 
descriptors followed by the probability of the subcellular 
location. Subcellular allocation and functional evaluation 
of a target protein is vital for proper drug design process 
and identification of a precise biological process (Yu et al. 
2010, Yu et al. 2014).

Identification of biological pathways and biological 
function

For the identification of different pathways involved 
in metabolism, the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (https://​www.​genome.​jp/​kegg/​pathw​
ay.​html) was used to check which proteins are involved 
in unique or multiple pathways. KEGG is a collection 
of databases dealing with genomes, diseases, drugs, 
and biological pathways (Kanehisa et al. 2017). KAAS 
(KEGG Automatic Annotation Server) was used to fil-
ter the essential proteins for metabolic pathway analy-
sis. In order to find out the biological/molecular func-
tion of proteins, UniProt (https://​www.​unipr​ot.​org/) was 
consulted that is a freely accessible database of protein 
sequence and functional information. It contains a large 
amount of information about the biological function of 
proteins (Pundir et al. 2017). Furthermore, the molecu-
lar weight of each potential target was determined using 
the ProtParam software (https://​web.​expasy.​org/​protp​
aram/) that helped in computational determination of the 
molecular weight of the subjected proteins. Virulent pro-
teins were prioritized on the basis of molecular weight 
(Wilkins et al. 1999).

Fig. 2   A schematic block diagram of different steps and tools employed in the subtractive genomics approach for mining druggable targets in 
Staphylococcus sciuri and identification of novel TCM inhibitors

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://www.uniprot.org/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
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Drug target selection and 3D structure modeling

The potential druggable bacterial protein target has been 
identified from the reference strain of S. sciuri FDAAR-
GOS_285. In the absence of their complete 3D structures, 
the possibility of comparative homology modeling was 
considered by evaluating the template availability of all 
3 targets. Structural templates that showed at least 30% 
identity with > 90% query coverage were accepted. This 
assessment was carried out via comparison of the pro-
tein sequence against the structural resource RCSB-PDB, 
through the use of BLASTp functionality supported by 
NCBI. All these steps allowed to choose the current target 

for CADD analysis (Zhao et al. 2020). The three-dimen-
sional structures of MurA, SecY, and ArgS were unavail-
able; thereby, as aforementioned, comparative modeling 
approaches were selected for 3D model prediction by 
selecting the filtered sequence throughout the pipeline to 
dig out the desired sequence from the reference genome 
of Staphylococcus sciuri. The template of MurA (PDB 
ID: 2AQ9) was selected for its modeling from Escherichia 
coli (Williams et al. 2007), with sequence identity = 91% 
and query coverage = 98%. The structural model of the 
target protein was constructed using the SWISS-MODEL 
that is an online homology-based web server (Colovos 
and Yeates 1993, Rufino et al. 1997).

Table 1   Total number of genes/
proteins screened in each step of 
subtractive genomic/proteomic 
approach for druggable targets 
in Staphylococcus sciuri. The 
core genome drastically reduced 
after host homology and gene 
essentiality analyses and then to 
only three as the final pathogen 
targets

S. no Subtractive genomics hierarchy — tools/software Total 
genes/
proteins

1 Core Genome — PATRIC 1784
2 Non-Homologous/Essential Genome — NCBI/DEG/CEG 170/35
3 Interactome Prediction — STRING 10
4 Molecular Metabolic Pathways — KEGG 07
5 3D Modelome — SWISS-MODEL 03
6 Structure Validation & Energy Minimization — UCSF Chimera 03
7 Druggability, VS & Docking Analyses — DoGSiteScorer/MOE (v2016) 03
8 Molecular Dynamics Simulation — AMBER12 03

A B

Fig. 3   Circular comparative genome representation of S. sciuri 
genomes generated through the PATRIC Server. A FDAARGOS_285 
vs nine strains (1/9). B FDAARGOS_285 vs one strain 1/1. Different 

colors and their intensities show the presence or absence of different 
genes, genic islets, genomic island, or other genetic materials among 
different strains of S. sciuri 
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Structure validation and energy minimization

Different online servers were utilized, namely, ERRAT 
(Colovos and Yeates 1993, Kumari et al. 2023), PDB-
Sum (Rufino et al. 1997, Kumari and Dalal 2022), and 
ProCheck (Laskowski et al. 1993, Dhankhar et al. 2020, 
Singh, Dhankhar et al. 2022), to measure the quality of 
the modeled structure. The quality check measurements 
play a vital role in enhancing the 3D structure qualities, 

thereby improving the accuracy of drug-target interac-
tions and increasing the efficacy of the drug.

The selected models of target protein targets, i.e., ArgS, 
MurA, and SecY, were then subjected to energy minimi-
zation to improve their quality. A powerful visualization 
tool UCSF Chimera was used to analyze the structures and 
to minimize energy. Gasteiger charges were assigned to 
proteins, and structural constraints were removed by 1500 
rounds of minimization runs (750 steepest descent followed 

Fig. 4   STRING analysis for protein–protein interactions. The dif-
ferent nodes in the network represent the proteins while the network 
edges represent specific and meaningful protein–protein associations. 
The network is a scalable vector graphic [SVG]; interactive. The dif-
ferent node colors show the different level of interactions whereas the 
edge colors show their known, predicted, and other interactions. The 
colored nodes show the query proteins and first shell of interactors, 
the white nodes represent second shell of interactors, empty nodes 
represent proteins of unknown 3D structure, and filled nodes repre-
sent that some 3D structure is known or predicted. The edges indi-

cate both functional and physical protein associations, whereas line 
color indicates the type of interaction evidence and the line thickness 
indicates the strength of data support. Among the known interactions, 
those in cyan are from curated databases and those in purple are 
experimentally determined. In predicted interactions, those in green 
are from gene neighborhood analyses, those in red are gene fusion 
events, and those in blue are from gene co-occurrence. The other 
remaining interactions are olive = text-mining, black = co-expression, 
navy blue = protein homology
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by 750 conjugate gradients) with a step size of 0.02 Å, 
under ff03.rl force field. Protein targets having undergone 
energy minimization were evaluated through the valida-
tion process and then used for docking studies (Weiner and 
Kollman 1981, Malik, Dalal et al. 2019).

Druggability, virtual screening, and docking 
analyses

The information obtained from 3D structures and druggability 
analyses are important features for prioritizing and authenticat-
ing putative pathogen targets. For druggability analyses, the final 
list of essential non-host and host homologous protein targets 

was subjected to DoGSiteScorer (https://​bio.​tools/​dogsi​tesco​rer) 
in PDB format. DoGSiteScorer is an automated pocket detection 
and analysis tool for calculating the druggability of protein cavi-
ties (Volkamer et al. 2012). For efficient inhibition, the proper 
active cavity in the protein three-dimensional structure of mol-
ecule binding must be examined. The appropriate active site is 
categorized based on buriedness, size, shape, and the hydropho-
bic consideration of the specific site (Pettersen et al. 2004). The 
active sites of ArgS, MurA, and SecY were determined from 
different literature sources and was also affirmed manually in the 
target sequences through sequence alignment. In MOE (v2016) 
(https://​www.​chemc​omp.​com/​index.​htm) (Molecular Operating 
Environment), virtual screening (VS), docking, and visualization 

Fig. 5   Comparative cellular localization prediction using PSORTb 
and Cello2go web servers. The relative abundance of the predicted 
targets as membrane and cytoplasmic proteins is shown. In most 
cases the membrane-bound small molecular structures/proteins are 

antigenic in nature and are regarded as good adjuvant/vaccine candi-
dates, whereas the cytoplasmic proteins are generally considered as 
good drug targets for inhibiting vital metabolic cellular processes

Table 2   Identification of biological pathways using the KEGG 
(Kyoto Encyclopedia of Genes and Genomes). The table describes 
the vital pathways of the seven putative targets and are tabulated as 

gene/protein names, protein functions, and the respective metabolic 
pathways in which they play key biological role/s

Gene Protein name Protein function KEGG pathways

RpIA Ribose-5-phosphate isomerase A Ribose-5-phosphate isomerase activity Ribosome
Mfd Transcription-repair-coupling factor ATP binding–damaged DNA binding

DNA binding, DNA translocase activity, heli-
case activity, RNA polymerase core enzyme 
binding

Nucleotide excision repair

ArgS Arginine-tRNA ligase Arginine-tRNA ligase activity, ATP binding Aminoacyl-tRNA biosynthesis
MurA UDP-N-acetylglucosamine 1-car-

boxyvinyl transferase 1
UDP-N-acetylglucosamine 1-carboxyvinyl-

transferase activity
Amino sugar and nucleotide sugar metabo-

lism, peptidoglycan biosynthesis, metabolic 
pathways

Biosynthesis of nucleotide sugars
SecY Translocase subunit secY Protein transmembrane transporter activity, 

signal sequence binding
Quorum sensing, protein export, bacterial 

secretion system
pPrH Uridylate kinase Allosteric enzyme Pyrimidine metabolism, metabolic pathways, 

biosynthesis of cofactors
RecG ATP dependent DNA helicase RecG ATP binding, DNA binding, DNA helicase 

activity, hydrolase activity
Homologous recombination

https://bio.tools/dogsitescorer
https://www.chemcomp.com/index.htm
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were performed following a slightly modified protocol adapted 
by Muneeba et al. (2023) and Hassan et al. (2022; Christoph, 
Sabine et al. 2015, Syed, Rida et al. 2022, Muneeba, Syed et al. 
2023). The grid for molecular docking was centered around the 
previously selected active site residues/interface residues of 
the protein according to the protocol modified from Dalal et al. 
(Dalal et al. 2021). The 2D depiction of some of the residues 
interacting through H-bond with the corresponding ligands are 
shown as well (Fig. 10). The molecular docking strategy was 
divided into three major steps: active site identification, ligand 
preparation, and molecular docking. The docking procedure was 
done out using reduced protein and ligand molecules.

Molecular dynamics simulation

Molecular docking simulations were used to investigate the 
behavior of docked proteins. The Assisted Model Building 
with Energy Refinement program (AMBER) was employed 
for this aim, and several modules were used for analysis 
(Weiner and Kollman 1981, Salomon-Ferrer et al. 2013). 
The details of biomolecule simulation were broken down 
into five stages, which are shown below.

System preparation

For the simulation of docked proteins, the AMBER12, module 
tLEaP, was used, which is an unavoidable part of the system 
setup that provides an interface for preparing primary coordi-
nates and topology files. The protein was solvated with a three-
point transferable intermolecular potential (TIP3P) water box 
with 8.0 and force fields ff03.rl, GAFF, and ff99SB (Fig. 1). 
To ensure the accuracy of bonds in docked complexes, angles, 
and atom kinds, a docked protein system was employed. After 
preparing the starting files, the simulation procedure began.

Minimization, heating, equilibration, and production

Minimization is usually done to eliminate undesirable confron-
tations. At a cutoff value of 8, the steepest descent technique 
and 1000 steps for conjugate gradient were used. After 10 ps of 
minimization heating using the Langevin dynamics method for 
temperature control, 100 ps of equilibration at a constant tem-
perature of 300 K is required before the production run begins. 
During equilibration, the total energy of the system remains 
constant, while the kinetic and potential energies vary. The 

B A

C

Fig. 6   3D structures generated through SWISS-MODEL. A WP_058612677, B WP_058611897, C WP_058610923
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manufacturing run for the docked complex was completed in 
100 ns (ns), followed by equilibration. Periodic boundary con-
ditions were simulated in the simulation box using a canoni-
cal ensemble. To keep the temperature constant, the Berendsen 

Fig. 7   Ramachandran plot representing Psi and Phi angles of the selected models and showing the % amino acid residues of the 3D-modeled 
structures in four different quadrants of the Ramachandran plot

Table 3   Stereo-chemical 
properties of the predicted 
final targets. The table shows 
the values in percentage of 
the amino acid residues of 
the 3D-modeled structures 
in different quadrants of the 
Ramachandran plot and the 
Z-scores as a measure of their 
respective qualities

Accession number Most favored 
regions [A, 
B, L]

Allowed 
regions [a, b, 
l, p]

Generously allowed 
regions [~ a, ~ b, ~ l, ~ p]

Disal-
lowed 
regions

Z-score

WP_058610923.1 ArgS 90.18% 9.28% 0.58% 0.38%  − 1.74
WP_058612677.1
SecY

91.78% 7.58% 0.68% 0.68%  − 9.47

WP_058611897.1
MurA

91.38% 7.68% 0.84% 0.36%  − 1.01

WP_058610923

 WP_058612627

C

BA

WP_058611897

Fig. 8   Identification of druggable pockets of the top three predicted 
targets using Protein + of the DoGSiteScorer

Table 4   Pocket detection and protein druggability score for 
WP_058610923.1. The surface topology of the receptor 
macromolecule/s in terms of different physicochemical descriptors 
such as volume, surface area, and drug scores, etc., among others, 
determines the druggability of a pocket via DoGSiteScorer. A pocket 
with a drug score close to 1 is considered highly druggable pocket

The “bold values” represent the highest scores of the druggable pock-
ets as predicted by the DoGSiteScorer

Name Volume Å3 Surface Å2 Drug score Simple score

POCKET_2 625.92 859.24 0.84 0.42
POCKET_1 691.42 951.23 0.82 0.52
POCKET_3 175.04 315.05 0.49 0.01
POCKET_5 168.71 311.44 0.39 0.01
POCKET_4 174.49 300.28 0.36 0.0
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coupling integration procedure was applied (Berendsen et al. 
1984).

Simulation trajectory analysis

The PTRAJ (Process Trajectory) module of AMBER12 
was used to create output files for analysis and to com-
pute four properties, namely, root mean square deviation 
(RMSD), root mean square fluctuation (RMSF), the radius 
of gyration (Rg), and their β-factor, and graphical repre-
sentations were examined in XMgrace (https://​plasma-​gate.​
weizm​ann.​ac.​il/​Grace/) (Vaught 1996).

Root mean square deviation

The coordinates of alpha carbon (C) are commonly thought 
to indicate an amino acid’s location in three-dimensional 
space. RMSD is a metric that allows you to compare the 
relative locations of protein C atoms by computing their 
averaged distance over a period of time (Kuzmanic and 
Zagrovic 2010). It is written mathematically as

where N is the number of compared atoms and di is the dis-
tance between the ith pair of atoms.

Root mean square fluctuation

RMSF is used to determine the backbone atoms of the docked 
target (N, C, and C). It is the root mean square of the averaged 
distance between an atom and its average geometric location 
in a particular set of dynamics, and it may be read as the set of 
atom positions recorded over a specific time scale. The RMSF 
is calculated using the following equation:

where T represents the time interval, xi represents the posi-
tion of an atom at a particular time, and x represents the 
averaged position of the atom.

β‑Factor

The term-factor, which is closely related to the RMSF, 
assesses the spatial displacement of atoms around their mean 
locations as a result of local vibrational and thermal motions 
(Kuzmanic and Zagrovic 2010). They may be equivalent in 
terms of RMSF since they measure fluctuations:

Radius of gyration

The radius of gyration is used to assess the overall pack-
ing quality and density of a structure. It is a physical 
characteristic that may be estimated experimentally, most 
commonly via small-angle X-ray scattering (SAXA). The 
following equation was used to quantify the compactness 
of a macromolecular system:

where N is the total number of atoms, mi denotes the mass 
of atom I, ri denotes the position vector of an atom I, and 
rcm denotes the molecule’s center of mass. Figure 2 repre-
sents an overview of all steps that have been followed in 
this work, whereas Table 1 shows the number of proteins/
genes screened in each step of subtractive genomic/prot-
eomic approach.
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Table 5   Pocket detection and protein druggability score for 
WP_058611897.1. The surface topology of the receptor macromolecule/s 
in terms of different physicochemical descriptors such as volume, surface 
area, and drug scores, among others, determines the druggability of a 
pocket via DoGSiteScorer. A pocket with a drug score close to 1 is con-
sidered a highly druggable pocket

The “bold values” represent the highest scores of the druggable pock-
ets as predicted by the DoGSiteScorer

Name Volume Å3 Surface Å2 Drug score Simple score

POCKET_2 840.66 1078.58 0.83 0.58
POCKET_1 1676.67 2285.72 0.82 0.68
POCKET_3 145.17 372.07 0.36 0.0
POCKET_5 135.39 360.44 0.22 0.0
POCKET_4 136.21 278.31 0.21 0.0

Table 6   Pocket detection and protein druggability score for 
WP_058612677.1. The surface topology of the receptor 
macromolecule/s in terms of different physicochemical descriptors 
such as volume, surface area, and drug scores, among others, deter-
mines the druggability of a pocket via DoGSiteScorer. A pocket with 
a drug score close to 1 is considered highly druggable pocket

The “bold values” represent the highest scores of the druggable pock-
ets as predicted by the DoGSiteScorer

Name Volume Å3 Surface Å2 Drug score Simple score

POCKET_1 1577.92 1701.62 0.81 0.62
POCKET_2 342.4 661.62 0.63 0.16
POCKET_3 233.92 153.73 0.59 0.0
POCKET_4 159.1 192.0 0.45 0.0
POCKET_5 144.96 279.96 0.26 0.0

https://plasma-gate.weizmann.ac.il/Grace/
https://plasma-gate.weizmann.ac.il/Grace/
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Results and discussion

Data retrieval

In the present study, eleven (11) out of one hundred 
and twelve (112) strains of Staphylococcus sciuri were 
included that have been reported to be completely 
sequenced until 2021. All the sequence data is avail-
able at the National Center for Biotechnology Informa-
tion (NCBI) https://​www.​ncbi.​nlm.​nih.​gov/​genome/ 
for downloading and downstream analyses. This study 
emphasizes on exploration of the genomes of the 
selected strains. A reference strain of S. sciuri (FDAAR-
GOS_285) was randomly selected for further compara-
tive analysis.

Prediction of core and non‑host homologous genes/
proteins

For the construction of the core genome, the Patho-
systems Resource Integration Center (PATRIC) was 
used. Among the 11 strains of S. sciuri, one strain 

FDAARGOS_285 was taken as a reference and the rest 
of strains were compared to it (Fig. 3). The core genome 
file contained 1784 genes that were then submitted to 
NCBI-BLASTp (E-value = 0.0001, bit score 100, and 
identity 25%) against the human genome for filtering 
pathogen-specific non-host homologs. Among these gene 
sequences, considering the human genome as the host, 
we found 170 non-host homologous proteins. This step 
is important to avoid cross-reactivity and binding of the 
drugs to undesired host protein sites.

Analyses of essential genes and protein–protein 
interaction

The non-host homologous 170 core proteins were then 
subjected to BLASTp against essential proteins present in 
DEG (http://​tubic.​tju.​edu.​cn/​deg/). The file was then sub-
jected to NCBI BLASTp by using the Perl script with the 
threshold E-value = 10e−4, bit score = 100, and sequence 
identity =  ≥ 30% against prokaryotes, eukaryotes, and 
archaea by which druggable targets were reduced to 35 
potential targets. The STRING (https://​string-​db.​org/) 

Fig. 9   Depicting 3D graphics of all the three docked complexes with the best inhibitor shown in the binding cavity. The ligand-receptor complex 
was generated via the UCSF CHIMERA tool

https://www.ncbi.nlm.nih.gov/genome/
http://tubic.tju.edu.cn/deg/
https://string-db.org/
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database is used to determine the inter relation between 
proteins, which is essential for the proper functioning 
and gives a detailed knowledge about protein involved 
in single or multiple pathways. Out of 35, 10 proteins 
showed multiple interactions. Thus, selecting them for 
drugs would account for more specificity and accurate 
results (Fig. 4).

Comparative subcellular localization 
and identification of biological pathways

The 35 druggable targets were then further proceeded for 
subcellular localization prediction. We have predicted 
the comparative subcellular localization of all proteins 
by using PSORTb (https://​www.​psort.​org/​psortb/) and 
Cello2go (http://​cello.​life.​nctu.​edu.​tw/​cello​2go/). Out of 
the total 35 proteins, 33 were cytoplasmic proteins and 

Fig. 10   2D depiction of the ligand-receptor complexes of the final 
protein targets representing H-bond with the corresponding best 
inhibitor. The dotted lines show the H-bond interactions b/w the 

inhibitor and the amino acid residues of the target protein. The dif-
ferent colors correspond to the chemical nature of interactions and 
amino acids

Table 7   Docking results of inhibitors with corresponding binding 
affinities via H-bond within the ArgS binding site. The S-score (dock-
ing score) of the MOE software manifest the thermodynamic stability 
of the ligand-receptor complex system

The “bold values” represent the highest scores of the druggable pock-
ets as predicted by the DoGSiteScorer

TCM code Docking score Interactions

C25H28O6  − 7.9 Met366, Gly337, 
Ser129, 
Met368

C24H32O6  − 7.1 Gly337, Asn143
C14H28O4  − 7.8 Phe336, Asn143,
C23H28O8  − 7.9 Tyr313, Tyr166
C15H20O3  − 7.6 Ala130, Ser129

Table 8   Docking results of inhibitors with corresponding bind-
ing affinities via H-bond within the SecY binding site. The S-score 
(docking score) of the MOE software manifest the thermodynamic 
stability of the ligand-receptor complex system

The “bold values” represent the highest scores of the druggable pock-
ets as predicted by the DoGSiteScorer

TCM code Docking score Interactions

C30H51N5O5  − 7.7 Asn177, Glu412
C29H36O15  − 7.5 Ile181, Glu412
C29H32O7  − 7.6 Ser81, Val409
C20H24O9  − 7.2 Ile181, Asn268
C25H34O7  − 6.4 Glu412, Val272

https://www.psort.org/psortb/
http://cello.life.nctu.edu.tw/cello2go/
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5 were membrane proteins. The results are mentioned 
below in Fig. 5 and Table 4.

These proteins were then further subjected to the KEGG 
database for pathway analysis. It was discovered that seven 

proteins were involved in multiple pathways. The deter-
mination of molecular pathways is essential and a very 
important step because it tells us the estimate and extent 
to which a protein is necessary for a molecular pathway 
(Supplementary Fig. 1). Table 2 contains the functionally 
annotated 7 important non-host homologous proteins.

Drug target selection and 3D structure modeling

Drug targets have been selected based on their mechanism 
of function and virulence check, molecular weight, pathway 
analysis, and druggability. Results inferred seven best tar-
gets responsible for resistance against antibiotics. Herein, 
further investigation showed that three targets, namely, 
ArgS (WP_058610923), MurA (WP_058611897), and 
SecY (WP_058612677), have more pathogenic responses 
according to literature support. The 3D structure of pro-
tein availability is the starting point for CADD analysis. 
Structures of protein (ArgS (WP_058610923.), MurA 
(WP_058611897.1), and SecY (WP_058612677.1) were 
generated from online servers like SWISS-MODEL. Models 

generated from SWISS-MODEL were selected for further 
analysis based on physicochemical properties and quality 
assessment measures. Structures generated through Swiss-
Model are given below (Fig. 6).

Besides significant coverage, model 1 showed strong 
stereochemistry with no residue in the disallowed region 
and the lowest Z-score (Supplementary Fig. 2). Energy 
minimization was done to relax the structure and remove 
the steric clashes of the side chain. Ramachandran plots 
of the selective models showed that maximum residues 
are present in the most favored regions. Stereo-chemical 
properties of comparative homology modeled structure 
are given below (Fig. 7; Table 3).

Validation of 3D models and druggability analysis

Only three cytoplasmic proteins were chosen as potential 
therapeutic targets out of a total of seven proteins based 

Table 9   Docking results of inhibitors with corresponding bind-
ing affinities via H-bond within the MurA binding site. The S-score 
(docking score) of the MOE software manifest the thermodynamic 
stability of the ligand-receptor complex system

The “bold values” represent the highest scores of the druggable pock-
ets as predicted by the DoGSiteScorer

TCM code Docking score Interactions

C35H45NO15  − 7.9 Tyr327, 
Arg395, 
Asp49, 
Val161

C18H34O11  − 7.6 Asp49, Ser326
C25H32O6  − 7.3 Ala93, Ser326
C11H10O4  − 7.3 Ala93, Tyr327
C21H30O5  − 7.2 Val26, Tyr327

Table 10   Physicochemical molecular properties of top hits/ADME profile via SWISS ADME. The evaluation/features of top hist are important 
in computationally mining for potent inhibitors

BS bioavailability score, PA PAINS alerts, SA synthetic accessibility, SC Silicos-IT Class, LK log Kp (cm/s), LV Lipinski violations, VV Veber 
violations

Formula MW RB HBA HBD TPSA BS PA SA SC LK LV VV

C25H28O6 424.49 10 6 0 71.06 0.55 0 3.43 Poorly  − 5.50 0 0
C30H51N5O5 561.76 26 7 4 158.3 0.55 0 5.64 Soluble  − 5.05 1 2
C35H45NO15 719.73 19 15 1 189.68 0.17 0 6.79 Moderately soluble  − 9.72 2 2

Fig. 11   RMSD plot of simulated ArgS (WP_058610923.), MurA 
(WP_058611897.1), and SecY (WP_058612677.1) protein complex 
for the 100-ns simulation run
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on their percentage identity of more than 25% and the 
pathways in which they are involved. The final list of 
essential non-host good-quality protein targets was sub-
jected to DoGSiteScorer in PDB format. After that, Tar-
get Pathogen Database has been used in order to analyze 
druggability and other biochemical functions. Druggable 
pockets of final three targets are given below in Fig. 8 
and Tables 4, 5, and 6.

Molecular docking, inhibitor selection, and ADMET 
profiling

Active site information for the docking procedure is cri-
terion-based. The following steps were involved for this 
procedure.

In the current study, the Traditional Chinese Medicine 
(TCM) library was used containing 36,043 compounds 
used as an inhibitor for docking into ArgS, MurA, and SecY 
active sites. The top hits of TCM were docked, and top five 
compounds were analyzed for each receptor.

A total of 36,043 ligands were docked into the active site 
of the target using the Molecular Operating Environment 
(MOE) software. For this, selected binding pocket orienta-
tion of the active compound was also identified.

Selected ligand molecules were docked into the active 
site of the target using MOE (Fig. 9). Corresponding 
hydrogen bonds and binding affinity were also calculated 
using MOE (Fig. 10). The highest score achieved for 
compound 1, compound 2, and compound 3 with bind-
ing affinities − 7.9, − 7.7, and − 7.9 kcal/mol against the 
target proteins, respectively. Docking scores and respec-
tive binding affinity for the top 5 compounds arranged in 
descending order are provided below against each protein 
target (Tables 7, 8, and 9). Detailed visualization analysis 
was carried out through MOE and the preferred orienta-
tion of the ligand binding.

In silico prediction of drug-likeness and ADMET 
profiling of drug candidates helps reduce the expense 
of synthesis, preclinical, and clinical research (Kar and 
Leszczynski 2020). Furthermore, molecular properties of 

Fig. 12   RMSF of simulated ArgS (WP_058610923.), MurA (WP_058611897.1), and SecY (WP_058612677.1) protein over the 100-ns simula-
tion run
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top hits compounds were calculated using Swiss ADME 
(Table 10).

Molecular dynamics simulation

The most fundamental element associated with the func-
tion of proteins is their conformational dynamics. Func-
tional information of protein molecule in encrypted in its 
structure. To unravel its functional variability, a compre-
hensive understanding of the structure is needed. In the 
current study, MD simulation was performed to explore 
the conformational aspect of protein–ligand interactions 
and to evaluate the stability of the homology model and 
enzyme-inhibitor complex. Data reduction analyses 
like root mean square deviation (RMSD) and root mean 
square fluctuation (RMSF), the radius of gyration (Rg), 
and β-factor values were used to determine the conforma-
tional changes and stability index of secondary structure 
elements of the simulated complexes.

Root mean square deviation

RMSD explains the backbone analysis and Cα atoms dynam-
ics over the period of docked protein over the 100-ns time 
period, and it was observed at the 15-ns fluctuation, but the 
remaining graph of simulation stability was observed. The 
average RMSD value for docked protein was 1.17 Å. Fig-
ure 6 shows a maximum peak of 1.67 Å. Overall, the pat-
tern of the RMSD graph does support any major domain 
shifts within the structural framework of the protein–ligand 
complex. The placement of ligand was well complemented 
within the binding site during simulation and does not desta-
bilize the protein as shown in Fig. 11.

Root mean square fluctuations

Structure flexibility and fluctuation of Cα residues over 
time are observed by the RMSF. The average RMSF of 
docked ArgS, MurA, and SecY proteins calculated from 

Fig. 13   β-Factor graphs of simulated ArgS (WP_058610923.), MurA (WP_058611897.1), and SecY (WP_058612677.1) proteins over the 100-
ns simulation run



	 Functional & Integrative Genomics (2023) 23:254

1 3

254  Page 16 of 21

100 ns was 1.3 Å with 2.4 and 2.7 Å while a maximum 
peak has been noticed at, while major fluctuations at 
76,103, 203 to 263 and 336 residues then at the end of 
the graph for 518 and 560 residues were observed. That 
was mostly the loop region of the protein. Till the end 
of 100 ns, many fluctuations appeared in the graph of 
Fig. 12. One of the stability proofs of the protein in the 
simulation run was that the active site residue His125 
had an RMSF value of less than 1.0 Å.

β‑Factor analysis

β-Factor explains the thermal stability and f lexibil-
ity of the protein overtime. The quantity of β-factor is 
measured in RMSF. Therefore, its value on the level of 
localized atomic fluctuation collectively contributes to 
the global vibrational movement of the protein and its 
thermal stability. The average β-factor values for ArgS 
(WP_058610923.), MurA (WP_058611897.1), and 
SecY (WP_058612677.1) were calculated which are 
86.7, 105.8, and 130.7 Å, respectively, demonstrating 
the higher instability from residue numbers 203 to 263, 
502, and 599 of protein (Fig. 13).

Radius of gyration

The radius of gyration was calculated to evaluate the 
structural compactness as a time function for the 
100-ns simulation of protein–ligand complexes ArgS 
(WP_058610923.), MurA (WP_058611897.1), and SecY 
(WP_058612677.1). The average values of 17.3, 16.7, 
and 17.4 Å, respectively, for docked protein (Fig. 14) 
denoted the stability of the protein structure.

Here, by employing a subtractive genomics approach, 
we have reported some essential non-host homologous 
protein–based putative targets in principally an animal-
associated bacterial species whose clinical relevance to 
humans is increasing day by day. These targets include 
argS (arginine-tRNA ligase) with arginine-tRNA ligase 
and ATP binding activities, and have an important role in 
the aminoacyl-tRNA biosynthesis pathway, a key player 
in protein synthesis; murA (UDP-N-acetylglucosamine 
1-carboxyvinyl transferase 1), which is involved in amino 
sugar/nucleotide sugar metabolism and peptidoglycan 
biosynthesis; and finally, secY (translocase subunit 
secY) with protein transmembrane transporter and sig-
nal sequence binding activities. This target is involved 

Fig. 14   The radius of gyration of simulated proteins ArgS (WP_058610923.), MurA (WP_058611897.1), and SecY (WP_058612677.1) over the 
100-ns simulation time period
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in multiple vital bacterial processes such as quorum 
sensing, protein export, and bacterial secretion system 
(Holden et al. 2004, Gill et al. 2005). In addition to the 
protocol followed here for therapeutics targets mining 
in S. sciuri and novel inhibitors, there are other well-
established in silico computational approaches in the 
literature that have been used to identify other novel and 
potential antibacterial agents targeting other important 
protein-based targets in the Gram-positive Staphylococ-
cus genus, with a main focus on Staphylococcus aureus. 
For example, The target FmtA is a core member of the 
Staphylococcus aureus cell wall stimulon, a factor that 
affects methicillin resistance in S. aureus strains, inter-
acting with teichoic acids and shown to be localized to 
the cell division septum. FmtA, as part of the catalytic 
activity, hydrolyzes the ester bond between the backbone 
of teichoic acids and d-Ala, which are polyribitol-phos-
phate or polyglycerol-phosphate polymers found in the 
S. aureus cell envelope (Rahman et al. 2016). Recently, 
Vikram Dalal and his group have performed numerous 
biophysical, structural, and in silico studies to show the 
binding interaction and complex stabilities of newly iden-
tified inhibitors towards FmtA from S. aureus. However, 
the reported screened molecules need to be tested, modi-
fied, and experimentally validated to develop the effec-
tive antimicrobial compounds against S. aureus (Dalal 
et al. 2019, Dalal et al. 2021, Dalal et al. 2022, Singh, 
Dhankhar et al. 2022). Some other related in silico stud-
ies have reported potent inhibitors against GraR, a mem-
ber of the two-component regulatory system GraR/GraS 
and is involved in resistance against cationic antimicro-
bial peptides (CAMPs) (Meehl et al. 2007, Dhankhar 
et al. 2020). Potential lead molecules were identified by 
performing a structure-based pharmacophore modeling 
against the lipophilic membrane (LLM) protein that regu-
lates bacterial lysis rate and methicillin resistance level 
in S. aureus (Kumari and Dalal 2022). Similarly, two 
other individual studies by the same group have reported 
further novel inhibitors against the ribosome biogenesis 
GTP-binding protein (YsxC), a GTPase that interacts 
with 50S/30S subunits of the ribosome, and β′ subunit 
of RNA polymerase, and thereby play an important role 
in bacterial protein synthesis of S. aureus (Kumari et al. 
2022, Kumari et al. 2023). FemC is another methicillin-
resistance factor that regulates the synthesis of pepti-
doglycan in the Gram-positive Staphylococcus aureus. A 
set of natural product-like compounds from Selleckchem 
and Enamine databases were screened for inhibitor min-
ing by taking into consideration the active site of the 
validated FemC model (Dalal and Kumari 2022). The 
methodology employed here and other in silico clon-
ing and vaccine design studies, hereby, report potent 

protein-based targets and inhibitors that are required to 
be validated and may further be utilized to develop novel 
scaffolds for antimicrobials against S. aureus targets 
(Khan et al. 2021b, Khan et al. 2022a, Khan et al. 2022c).

Conclusion

Research methodologies were adopted to identify the potential 
therapeutic candidates in the Gram-negative and MDR pathogen 
S. sciuri. Genome subtraction aids the identification of patho-
gen-specific potent drug targets involved in crucial metabolic 
pathways. Virtual screening and molecular docking were fol-
lowed to mine the inhibitors from the TCM library. Molecular 
docking resulted in 1326 compounds as the top inhibitors against 
ArgS (WP_058610923.), MurA (WP_058611897.1), and SecY 
(WP_058612677.1). Furthermore, MD simulation confirmed 
that in the physiochemical environment, the drug-receptor 
complex attains stability due to structural rearrangements con-
cerning time. Besides minor fluctuations, inside chain and loop 
movement stability of the inhibitor were observed. Structural 
stability observed in the docked complex after simulation studies 
confirms the prospective roles of the selected ligand as a lead 
compound. The ADMET profiling of the final three TCM com-
pounds further paved a way for its practical feasibility whereas 
the predicted protein-based three targets could further aid, bridg-
ing the gap between the existing and novel pathogen targets. 
The literature survey of the predicted target proteins manifest 
that they play a pivotal role in bacterial survival, pathogenesis, 
and infection establishment. Synthesis of the cell-wall compo-
nents/peptidoglycan biosynthesis is of utmost importance to 
retain structural integrity along with antibiotics resistance. On 
the other hand, protein biosynthesis, nucleotide metabolism, 
Quorum sensing, and the different types of bacterial secretion 
systems are always very attractive targets in any drug develop-
ment procedures. These findings/outcomes of the current study 
could enhance pharmacological design to develop more potent, 
efficient, and specific drugs against MDR S. sciuri.
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