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Abstract
Osteoporosis is a common disease, especially among the elderly. This study aimed to comprehensively examine the roles 
of immune microenvironment in osteoporosis pathogenesis. Expression profiles of GSE35959, GSE7158, and GSE13850 
datasets were used to analyze differential expression and identify hub genes related to immune features. Based on the 
single-cell RNA sequencing (scRNA-seq) data of an osteoporosis patient, different cell types were classified and the rela-
tion between immune environment and osteoporosis was explored. Twelve hub genes significantly associated with immune 
features were selected and 11 subgroups were defined using scRNA-seq data. The expression of two hub genes (CDKN1A 
and TEFM) was greatly altered during the transformation from mesenchymal stem cells (MSCs) to osteoblasts. Chemokines 
and chemokine receptors were differentially enriched in different cell types. CXCL12 was high-expressed in MSCs. This 
study emphasized that immune microenvironment played a critical role in the pathogenesis of osteoporosis. Chemokines 
and chemokine receptors can modify cell development and affect the interactions among different cell types, leading to 
unbalanced bone remodeling.
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Introduction

Osteoporosis, a metabolic disease, is mainly characterized 
by reduced bone mass, can cause bone structure alternation 
and fractures. An estimated 200 million patients suffer from 
osteoporosis worldwide (Akkawi and Zmerly 2018). Aging 
is a common risk factor for osteoporosis, and approximately 
over 30% people, particularly post-menopausal women, will 
experience an osteoporosis-caused fracture in their late live 
(Sözen et al. 2017). Other important risk factors such as 
abnormal hormone function, low body mass index, races, 
low body mineral density (BMD), and deficiency of vitamin 

D can also affect the occurrence or severity of osteoporosis 
(Qaseem et al. 2017).

Imbalance between bone reabsorption by osteoclasts and 
bone formation by osteoblasts is a direct factor leading to 
abnormal bone remodeling that could subsequently affect 
bone shaping and bone fractures. During the process of bone 
remodeling, evidence demonstrated that macrophage colony-
stimulating factor (M-CSF) and its receptor c-fms, receptor 
activator of NF-κB ligand (RANKL) and its receptor RANK 
are involved in regulating osteoblasts (Li et al. 2021), suggest-
ing that signaling pathways could be potential targets for osteo-
porosis treatment. Denosumab has been approved by the Food 
and Drug Administration (FDA) as an effective drug to treat 
osteoporosis through competitively bonding with RANKL 
(Cummings et al. 2009). Mesenchymal stem cells (MSCs) are 
recognized as progenitor of osteoblasts and could differentiate 
into many cell types. Transcript factors of runx2, osterix, and 
β-catenin are involved in osteoporosis differentiation (Komori 
2006). Currently, there is no clinically effective drug for tar-
geting osteoblasts, which requires in-depth study probing into 
the mechanisms of osteoblasts in regulating bone remodeling.
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In the development of osteoporosis, immune cells play 
important roles. It has been observed that activated T lym-
phocytes-produced TNF-α contributes to bone destruction 
and bone loss via activating RANKL and M-CSF in mice 
model (Cenci et al. 2000; Kong et al. 1999). A series of 
T helper (Th) cells are responsible for the pathogenesis of 
osteoporosis through secreting cytokines and chemokines to 
modulate immune microenvironment (Collins et al. 2017; 
Koizumi et al. 2009; Srivastava et al. 2018). Cytokines IL-4, 
IL-5, and IL-13 secreted from Th2 cells are implicated in 
the inhibition of osteoclastogenesis (Palmqvist et al. 2006). 
Th17 cells can enhance osteoclastogenesis through secret-
ing high levels of IL-1, IL-6, IL-17, RANKL, and TNF 
(Dar et al. 2018). In addition, natural killer cells, regula-
tory T cells, γδ-T cells and CD8 T cells have been found to 
modulate osteoporosis development (Srivastava et al. 2018). 
Collectively, immune microenvironment plays an essential 
role in regulating bone remodeling. However, critical genes 
associated with immune cells in osteoporosis development 
have not been discovered.

Weighted correlation network analysis (WGCNA), which 
describes gene association patterns among different sam-
ples (Langfelder and Horvath 2008), can be used to identify 
highly variable gene sets and candidate biomarker genes or 
therapeutic targets based on the interconnectivity of gene 
sets and the association between the gene sets and phenotype 
(Pei et al. 2017).

In this work, we produced a co-expression network based 
on differentially expressed genes between normal samples 
and osteoporosis samples, and identified several hub genes 
related to immune features. Single-cell RNA sequencing 
(scRNA-seq) data were employed to define different cell 
types and characterize their function for revealing the patho-
genesis of osteoporosis.

Methods

Data source and data preprocessing

Normal samples, osteoporosis samples, and their chip 
expression data (GSE35959, GSE7158 and GSE13850) 
were obtained from Gene Expression Omnibus (GEO, 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database. GSE35959 
(5 normal samples and 5 osteoporosis samples) included 
the expression profile of mesenchymal stem cell popula-
tions from elderly patients (79 to 94 years old) with osteo-
porosis. Mesenchymal stem cells are the primary source 
of osteogenic regeneration. GSE7158 (14 normal samples 
and 12 peak bone mass samples) was a microarray pro-
file of circulating monocytes in human subjects with peak 
bone mass that has been reported to be an important deter-
minant of osteoporosis. GSE13850 (20 normal samples 

and 20 osteoporosis samples) contained the expression 
profiles of circulating B cells from postmenopausal 
females with smoking-related osteoporosis. The sample 
information of 3 datasets was shown in Table 1. For the 
three datasets, samples without clinical follow-up infor-
mation, survival status, or survival time were removed, 
and the probe number was converted into Gene symbol. 
When multiple probes matched a gene, the mean value was 
taken as the expression value of the gene. The expression 
of the gene missing in 80% of cases was excluded for each 
dataset. Principle component analysis (PCA) was used to 
remove heterogeneity among the three datasets through 
conducting “removeBatchEffect” function in sva R pack-
age. After removing heterogeneity, the data were adjusted 
by “normalizeBetweenArrays” function in limma R pack-
age. PCA plots showed no difference among samples from 
different datasets (Supplementary Figure S1).

Single‑cell RNA sequencing data

The scRNA-seq data (GSE147287) were downloaded 
from GEO. The RNA data containing an osteoporosis 
sample and an osteoarthritis sample was sequenced by 
10 × sequencing platform. This study only included osteo-
porosis sample (ID: GSM4423510), the single-cell data 
of which were used to analyze different subgroups with 
distinct signatures and cell trajectory.

Enrichment analysis of immune cells

CIBERSORT (http://​ciber​sort.​stanf​ord.​edu/) is an ana-
lytical tool for estimating the abundances of member cell 
types in a mixed cell population (Chen et al. 2018) used in 
this study to calculate the enrichment score of 22 immune 
cells in 39 normal samples and 37 osteoporosis samples. 
Wilcoxon test was performed to analyze significance that 
was defined at p < 0.05.

Table 1   The samples of 3 datasets

Datasets Samples Numbers

GSE13850 High_PBM 20
Low_PBM 20

GSE35959 no_Osteoporosis 5
Osteoporosis 5

GSE7158 High_PBM 14
Low_PBM 12

https://www.ncbi.nlm.nih.gov/geo/
http://cibersort.stanford.edu/
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Weighted gene correlation network analysis

The preprocessed data of 76 samples were included to 
screen differentially expressed genes using limma R pack-
age (Diboun et al. 2006) under the criterion of p < 0.05. 
Then we applied weighted gene correlation network analy-
sis (WGCNA) to produce a co-expression network based 
on the differentially expressed genes. WGCNA is a widely 
used to explore co-expressed genes and gene modules and to 
associate gene expression data with other molecular features 
or phenotypes (Langfelder and Horvath 2008). To examine 
whether a similar expression pattern was present between 
the two genes, Pearson correlation rank analysis was per-
formed to calculate gene distance. Power of software thresh-
old (β) > 0.85 ensured a scale-free network and confirmed 
co-expression gene modules. Then, a dendrogram based on 
the correlation coefficients between genes was developed 
using hierarchical clustering. A series of gene modules were 
excavated, according to the dynamic cutting criterion of at 
least 30 genes in a branched network. Eigengenes of each 
gene module were calculated, and similar modules were 
aggregated under height = 0.25, deepSplit = 2, minModule-
Size = 30. Finally, we obtained five modules and analyzed 
the correlation between modules and immune features.

Screening hub genes and functional analysis

Pearson correlation analysis was applied to calculate the 
correlation coefficient between gene modules and target 
cell groups. According to the correlations between eigen-
gene of modules and gene expression profiles (MM), gene 
expression and the enrichment of target cell groups (GS), 
MM > 0.8 and GS > 0.5 were set to filter hub genes in the 
module. WebGestalt R package was employed to annotate 
Gene Ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways (Liao et al. 2019) 
of the hub genes screened.

Dimensional reduction analysis for identifying cell 
subgroups and cell trajectory

Single-cell data of an osteoporosis sample (ID: 
GSM4423510) were preprocessed by Seurat R package 
(Butler et al. 2018) and then used to identify cell subgroups. 
Single-cell data were filtered under the conditions that each 
gene was expressed at least in 3 cells and each cell con-
tained the expression of at least 250 genes. “PercentageFea-
tureSet” function was used for calculating the proportion of 
mitochondria and rRNA under the condition that each cell 
expressed at least 500 genes with no more than 30% mito-
chondria. Totally 5881 cells and 20,433 genes were included 
for further analysis. The quality control plot before and after 
the filtration was shown. Then “NormalizeData” function 

and “FindVariableFeatures” function were used to normal-
ize the data and detect highly variable genes, respectively. 
“ScaleData” function was applied to reduce high-dimen-
sional data into a two-dimensional diagram. Next, we used 
the functions of “FindNeighbors” and “FindClusters” and 
set dim = 30 to cluster cells into 11 cell subgroups. “Find-
AllMarkers” function with logfc = 0.5, and Minpct = 0.25 
was used to screen marker genes from the 11 subgroups. To 
further define the 11 subgroups, marker genes of bone mar-
row and bone from CellMarker (http://​biocc.​hrbmu.​edu.​cn/​
CellM​arker/) were downloaded and “enricher” function in 
clusterProfiler R package was used to define these subgroups 
(Yu et al. 2012). Monocle R package was applied to assess 
cell development and trajectory (Qiu et al. 2017).

Enrichment of functional pathways for scRNA‑seq 
data by ReactomeGSA

Reactome (Home-Reactome Pathway Database) is an 
open-source enrichment analysis database. ReactomeGSA 
R package operates a multi-omics analysis across species 
for scRNA-seq data (Griss et al. 2020) and can be directly 
linked to Reactome database (https://​react​ome.​org/) with 
comprehensive pathways. This tool was used here to enrich 
the functional pathways for each subgroup, and the top 10 
differentially enriched pathways were selected.

Statistical analysis

All the statistical analysis were performed in R platform 
(v.3.4.2). Specific statistical methods were described in the 
figure legends. The parameters not mentioned were default 
in packages. P < 0.05 was considered as significant.

Results

Identification of gene modules associated 
with immune features in osteoporosis samples

To examine whether there was a difference of immune cell 
distribution between 39 normal samples and 37 osteoporo-
sis samples, CIBERSORT was used to measure the enrich-
ment of 22 immune cells. Among these immune cells, 
only resting mast cells and activated mast cells showed a 
difference between normal samples and osteoporosis sam-
ples (P = 0.026 and P = 0.017 respectively, Fig. 1A). This 
indicated that mast cells may play an important role in the 
development of osteoporosis. To further identify the genes 
responsible for aberrant proportion of mast cells in osteopo-
rosis samples, we applied WGCNA to develop a co-expres-
sion gene network and classified gene modules associated 
with immune features. Based on the expression profiles of 

http://biocc.hrbmu.edu.cn/CellMarker/
http://biocc.hrbmu.edu.cn/CellMarker/
https://reactome.org/
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1722 differential expressed genes, hierarchical clustering 
was conducted (Fig. 1B). Power of soft threshold (β) = 9 was 
selected to meet a scale-free topology (Fig. 1C). According 
to the topology matrix, average-linkage hierarchical cluster-
ing and dynamic cutting standard were employed to cluster 

genes under the condition that each gene cluster contained 
at least 30 genes. Then gene clusters were further combined 
to gene modules based on eigengenes of gene clusters, and 
finally five gene modules were identified (Fig. 1D). Pear-
son correlation analysis between gene modules and immune 
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features (resting and activated mast cells) revealed that the 
yellow gene module was closely related to the distribution of 
resting mast cells (R = -0.45, P = 5e-05) and activated mast 
cells (R = 0.66, P = 9e-11, Fig. 1E). The results indicated that 
hub genes were present in the yellow gene module and may 
affect the enrichment of mast cells via potential pathways.

An interaction network of 12 hub genes responsible 
for osteoporosis

As the yellow gene module was verified to be closely associ-
ated with the enrichment of mast cells, we then excavated 
hub genes involved in osteoporosis. We screened 12 hub 
genes when MM > 0.8 and GS > 0.5 based on the correla-
tions between eigengene of yellow module and gene expres-
sion profiles (module membership in the yellow module, 
MM), gene expression and the enrichment of activated 
mast cells (gene significance for activated mast cells, GS) 
(Fig. 2A). A protein–protein interaction (PPI) network con-
taining 65 genes within the yellow module was developed, 
with blue indicating downregulated genes and red indicating 
upregulated genes (Fig. 2B). A total of 12 genes (CD83, 
CDKN1A, GADD45B, ICAM1, JUNB, NLRP3, PLAUR​
, PPP1R15A, PTGS2, RIPK2, MRFAP1L1, and TEFM) 
located in the center of the network. These 12 genes were 
taken into the consideration as potential hub genes poten-
tially involved in regulating mast cells and the pathogenesis 
of osteoporosis. The correlation analysis between the 12 hub 
genes and activated mast cells, as well as resting mast cells, 
showed that the 12 hub genes were associated to the two 
immune cells (Fig. 2C). Enrichment analysis on 65 genes 
annotated 367 terms of biological processes (top 10 terms 
in Fig. 2D), 4 terms of molecular functions (Fig. 2E), 0 term 
of cellular component and 15 KEGG pathways (top 10 path-
ways in Fig. 2F) (P < 0.05).

Subsequently, we detected the expression of 12 hub 
genes in normal samples and osteoporosis samples, and the 

result showed that CD83, CDKN1A, GADD45B, ICAM1, 
JUNB, NLRP3, PLAUR​, PPP1R15A, PTGS2, and RIPK2 
were higher-expressed in osteoporosis samples, while 
MRFAP1L1 and TEFM were relatively higher-expressed in 
normal samples (P < 0.05, Fig. 2G). Interestingly, Pearson 
correlation analysis on the 12 hub genes showed that both 
the expressions of MRFAP1L1 and TEFM were negatively 
correlated with other 10 genes (Fig. 2H).

Identifying 11 immune cell subgroups 
in osteoporosis based on single‑cell data 
and dimensional reduction analysis

Next, we explored the developing process of osteoporo-
sis at a molecular level using gene expression analysis 
of each cell with single-cell RNA sequencing data of the 
osteoporosis sample (ID: GSM4423510). The first filtra-
tion was performed under criteria that each gene expressed 
in at least three cells and each cell expressed at least 250 
genes. Then under the threshold that each cell expressed 
in at least 500 genes and the proportion of mitochondria 
was fewer than 30%, a final total of 5881 cells and 20,433 
genes were included for further analysis (Supplementary 
Figure S2). Subsequently, we assessed the distribution 
of highly variable genes and non-variable genes, and the 
top 20 highly variable genes were annotated (Supplemen-
tary Figure S3). PCA was performed to generate a two-
dimensional distribution according to the expression of all 
genes (Supplementary Figure S4). Marker genes of each 
subgroup were screened, and the expression of the top 5 
marker genes from each subgroup was presented (Supple-
mentary Figure S5). Eleven subgroups displayed a signifi-
cantly differential expression of these marker genes, vali-
dating the effectiveness and reliability of the subgrouping.

Markers genes of bone and bone marrow downloaded 
from CellMarker (http://​biocc.​hrbmu.​edu.​cn/​CellM​arker/) 
were used to define the 11 subgroups. The result showed 
that the 11 subgroups corresponded to different types of 
cells, except for subgroups 2, 3, and 10 that belonged to 
the same cell lineage of lymphoid-primed multipotent 
progenitor (LMPP) (Fig. 3A). Comparison of these three 
subgroups demonstrated that subgroup 2 specifically 
expressed LCN2, LTF, and CAMP, subgroup 3 specifically 
expressed CD14, and subgroup 10 specifically expressed 
DNTT, VPREB1 and IGLL1 (Fig. 3B). Furthermore, the 
cell trajectory of each subgroup was visualized by mono-
cle to characterize cell development (Fig. 3C and D). It 
could be observed that MSCs located in the early pseudo-
time, while plasmacytoid dendritic cells located in the late 
pseudotime. Noticeably, MSCs, mast cell progenitor, and 
osteoblasts almost located in the same branch.

Fig. 1   Identification of gene modules significantly correlated with 
mast cells. (A) The distribution of 22 immune cells in 39 normal 
samples (green) and 37 osteoporosis samples (red) analyzed by CIB-
ERSORT. Wilcoxon test was performed. (B) Hierarchical clustering 
for 76 samples based on differential gene expression. (C) Scale-free 
topology model fitting (R2) and mean connectivity for determining 
the optimal power of soft threshold (β = 1 to 20). Red line indicates 
R2 = 0.85. (D) Clustering of gene dendrogram based on eigengenes 
and at least 30 genes in one cluster. Turquoise, brown, blue, yellow, 
and grey represent different gene modules after clustering. Grey mod-
ule is a cluster where genes cannot be aggregated into other gene 
modules. (E) Pearson correlation analysis between gene modules and 
the distribution of mast cells. Orange indicates positive correlation 
and blue indicates negative correlation. Numbers without brackets 
indicate the correlation coefficient and numbers with brackets indi-
cate P values

◂

http://biocc.hrbmu.edu.cn/CellMarker/


	 Functional & Integrative Genomics (2023) 23:186

1 3

186  Page 6 of 12



Functional & Integrative Genomics (2023) 23:186	

1 3

Page 7 of 12  186

Differential gene expression signatures and immune 
features of 11 subgroups

In the previous section, we identified 12 hub genes markedly 
associated with activated mast cells. Here we analyzed the 
expression level of 12 hub genes in the 11 subgroups to clar-
ify potential regulation of the hub genes on cell development 
of osteoporosis (Fig. 4A). Mesenchymal stromal cells could 
differentiate into various cell types such as osteoblasts, and 
can modulate immune response through silencing or activa-
tion themselves. We found that CD83 was high-expressed in 
myeloid cells and B cells. GADD45B was more expressed 
in plasmacytoid dendritic cells. ICAM1, PLAUR​ and RIPK2 
were activated in myeloid cells, and JUNB was significantly 
activated in LMPP 1 and 2. MRFAP1L1 was activated in 
lymphocytes and LMPP 3. PPP1R15A was found to be 
markedly activated in plasmacytoid dendritic cells and high-
expressed in mast cell progenitor. PTGS2 was activated in 
LMPP 1, and TEFM was all suppressed in other cell types 
compared with mesenchymal stromal cells.

To assess their functional pathways of 11 subgroups, we 
applied ReactomeGSA R package for functional enrichment 
analysis. The top 10 differentially enriched pathways were 
presented (Fig. 4B and Supplementary Figure S6). Differ-
ence among LMPP 1, 2, and 3 could be clearly observed. 
Similar enrichment patterns between LMPP 1 and mesen-
chymal stromal cells were observed. FGFR3b ligand bind-
ing and activation pathways, and sterols 12-hydroxylated 
by CYP8B1 pathway were more enriched in osteoblasts 
(Fig. 4C). However, the pathway of activation of Na-perme-
able kainate receptors was strongly suppressed. In mast cell 
progenitor, significantly high enrichment of Rhesus blood 
group biosynthesis was found.

Previous studies showed that chemokines and chemokine 
receptors play important roles in bone formation and 
destruction (Collins et  al. 2017; Koizumi et  al. 2009; 
Pathak et al. 2015). We therefore obtained 41 chemokines 
and 18 chemokine receptors from a previous literature (Ru 
et al. 2019), and analyzed their expression level in the 11 

subgroups (Fig. 4D). The result indicated that the propor-
tion of CXCL12 expression was a high in all the cell types. 
Specifically, CXCL12 had the highest expression in mes-
enchymal stromal cells but a significantly low expression 
in other cell types. A majority of osteoblasts still expressed 
CXCL12, but its expression was a relatively low when com-
pared with mesenchymal stromal cells. LMPP 1, 2, and 3 
still presented a marked difference, specifically, CCR1 and 
CCR2 had the highest expression in LMPP 2, and CXCR4 
was high-expressed in LMPP 1. Lymphocytes mostly 
expressed CCL4 and CCL5, and myeloid cells showed a 
high expression of CXCL16 and CCR1. The differential 
distribution of chemokines and chemokine receptors in dif-
ferent subgroups supported the important roles of different 
cell types in secreting specific chemokines or chemokine 
receptors, which may regulate the formation of osteoblasts 
and osteoclasts.

Discussion

Comparison of immune microenvironment between normal 
samples and osteoporosis samples showed that only resting 
mast cells and activated mast cells were differentially dis-
tributed, indicating the potential importance of mast cells. 
Previous studies also revealed the important role of mast 
cells in osteoporosis pathogenesis. Low or high numbers of 
bone marrow mast cells are considered to be associated with 
bone remodeling, and increased mast cells are frequently 
discovered in osteoporotic postmenopausal women and 
osteoporotic men (Brumsen et al. 2002). Chiappetta et al. 
reported that a great proportion of mast cells are responsi-
ble for facilitating bone turnover and pathogenesis of bone 
remodeling (Chiappetta and Gruber 2006). A study of indo-
lent systemic mastocytosis (ISM) also supports the above 
conclusion that ISM patients, especially male patients, face 
a higher risk of osteoporotic fractures (van der Veer et al. 
2012). Therefore, with a focus on mast cells, we screened a 
series of hub genes closely correlated with mast cells with 
WGCNA and Pearson correlation analysis.

Apart from MRFAP1L1 and TEFM, the remaining 10 
hub genes (CD83, CDKN1A, GADD45B, ICAM1, JUNB, 
NLRP3, PLAUR​, PPP1R15A, PTGS2, and RIPK2) were all 
higher-expressed in osteoporosis samples. Among these hub 
genes, CDKN1A, ICAM1, and NLRP3 have been previously 
reported to be closely related to the pathogenesis of osteo-
porosis. Cyclin-dependent kinase inhibitor 1A (CDKN1A) 
is high-expressed in bone samples from the elderly and has 
been considered as an important mediator for senescence 
to promote bone loss (Farr et al. 2019; Liu et al. 2015). 
Intercellular adhesion molecule-1 (ICAM1) expressed 
at the surface of osteoblasts can interact with its receptor 
expressed in osteoclasts, which is critical for maintaining 

Fig. 2   Screening of 12 hub genes associated with osteoporosis. (A) 
Screening hub genes in yellow module with conditions MM > 0.8 
and GS > 0.5 indicated by red lines. (B) The gene–gene interaction 
network of genes in yellow module. Triangles represent hub genes. 
Circles represent other genes in yellow module. Red indicates upreg-
ulated genes and blue indicates downregulated genes. (C) The cor-
relation analysis of 12 hub genes and mast cells. (D–F) The top 10 
annotate terms of biological process (D), molecular function (E), and 
KEGG pathways (F). Annotated terms that less than 10 were all pre-
sented. Dot size indicates the number of enriched genes. P value was 
presented as -log10 (P value). (G) Comparison of hub gene expres-
sion between normal (red) and osteoporosis (green) samples. Student 
t test was performed. (H) Pearson correlation analysis among 12 hub 
genes. Red indicates positive correlation and blue indicates negative 
correlation. *P < 0.05, **P < 0.01, ***P < 0.001

◂
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bone homeostasis. In osteoporosis patients, an upregulated 
expression of ICAM1 is commonly observed (Lavigne et al. 
2004). In addition, ICAM1 is regarded as a potential target 

for controlling bone pathogenesis (Kong and Yang 2020; 
Lavigne et al. 2005). Pyrin domain containing protein 3 
(NLRP3) is an inflammasome and its activation in MSCs 

Fig. 3   Definition of 11 subgroups and cell trajectory. (A) T-distrib-
uted stochastic neighbor embedding (t-SNE) plots for defining 11 
subgroups into different cell types based on marker genes from Cell-
Marker. (B) Violin plots of the specifically expressed marker genes 
(LCN2, LTF, CAMP, CD14, DNTT, VPREB1, IGLL1) in lymphoid-

primed multipotent progenitor 1, 2, 3. Horizontal axis represents 0 
to 10 subgroups. (C, D) The cell trajectory of 9 cell types generated 
by monocle. The psedotime from left to right indicates the predicted 
development time of cell types from early to late
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can reduce osteogenesis from MSCs (Wang et al. 2017; Xu 
et al. 2018). The mutation of NLRP3 could cause osteopo-
rosis in Nlrp3-mutant mice model (Snouwaert et al. 2016). 
Although other hub genes have not been demonstrated to 
have a significant correlation with osteoporosis, they still 
had the potential in further exploration of the mechanisms 
of osteoporosis pathogenesis. Notably, all these hub genes 
have not been reported to interact with mast cells, and our 
identification may unveil the mechanism of immune cells in 
the modulation of bone pathogenesis.

Next, we classified cell types in bone tissue with osteopo-
rosis through assessing scRNA-seq data. Nine cell types and 
11 subgroups were identified based on a large proportion of 
MSCs. MSCs can differentiate into osteoblasts, nerve cells, 
blood cells, liver cells, muscle cells, etc. in activated micro-
environment. For the elderly, reduced number of MSCs and 
unbalanced bone-fat would weaken the ability of MSCs to 
generate sufficient number of osteoblasts (Ganguly et al. 
2017). To some extent, bone physiology is involved in the 
pathogenesis of osteoporosis, but the formation of osteo-
porosis is induced by a diversity of factors that co-affect 
each other. In the process from MSCs to osteoblasts, we 

observed significant alternation of four genes (GADD45B, 
JUNB, PLAUR​, and TEFM) on both expressed cell numbers 
and expression level, indicating that the four genes may play 
important roles in the transformation (Fig. 4A).

Chemokines are a type of essential inflammatory 
mediators that assist bone modeling and participate in the 
pathogenesis of osteoporosis. Evidence has proven that 
CCL2 and CCR2 are elevated in osteoporosis patients, and 
that knockout of CCR2 inhibits the function of osteoclasts 
(Binder et al. 2009; Fatehi et al. 2017). This study found 
that CCL2 was high-expressed in MSCs and myeloid cells, 
and that CCR2 was high-expressed in plasmacytoid den-
dritic cells and LMPP 2 (Fig. 4D), indicating that immune 
cells secreting chemokine receptors could serve as an 
activator in promoting osteoporosis. CCL3, CCL4, and 
CCL5 expressions are upregulated in osteoporosis patients 
(Fatehi et al. 2017; Wan et al. 2018), but in our results, 
they were secreted majorly by lymphocytes. CCL20/
CCR6 signaling could affect osteoblasts, and knock out 
of either of them in mice can reduce bone mass (Doucet 
et al. 2016). In the current work, CCL20 was enriched 
in LMPP 2 and CCR6 was enriched in B cells, further 

Fig. 4   Delineating the expression signatures of 11 subgroups. (A) 
The expression patterns of 12 hub genes described as z-score in 11 
subgroups. Dot size indicates the percentage of expressed cells in 
one cell type. Red indicates relatively high expression and bluevio-
let indicates relatively low expression. (B) The top 10 differentially 
enriched pathways of 11 subgroups. Red indicates relatively high 
enrichment score and blue indicates relatively low enrichment score. 

(C) The enrichment score of sterols is 12-hydroxylated by CYP8B1 
pathway in 11 subgroups. ES, enrichment score. (D) The expression 
of chemokines and chemokine receptors in 11 subgroups. Dot size 
indicates the percentage of expressed cells in one cell type. Red indi-
cates relatively high expression and blueviolet indicates relatively low 
expression
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indicating that immune microenvironment played a critical 
role in bone remodeling. CX3CL1 was mostly expressed 
in osteoblasts, and studies have presented that CX3CL1 
is expressed by osteoblasts to interact with its receptor 
CX3CR1 on osteoclast progenitors (Han et al. 2014; Koi-
zumi et al. 2009). Evidence also supported that CX3CL1 
promotes bone loss mediated by osteoclasts (Han et al. 
2014; Imai and Yasuda 2016).

CXCL12/CXCR4 signaling is considered as an essential 
pathway in regulating both osteoblast differentiation and 
osteoclast formation (Brylka and Schinke 2019). Tzeng et al. 
revealed that CXCL12 secreted by MSCs can regulate osteo-
genesis and adipogenesis through cell-autonomous and non-
autonomous mechanism, respectively (Tzeng et al. 2018). 
Shahnazari et al. demonstrated that CXCR4 deletion in 
osteoblasts reduces bone mass and alternates bone structure 
in mice model (Shahnazari et al. 2013). CXCL12 expression 
has a high proportion in most cells and showed the highest 
expression in MSCs, while CXCR4 was enriched in LMPP, 
indicating that CXCL12/CXCR4 signaling pathway played a 
critical role in regulating the signaling among different cell 
types to affect osteogenesis.

We identified three subgroups of LMPP. LMPP is a type 
of intermediate precursor cells that differentiate into B cell 
precursors. The three subgroups showed distinct expres-
sion of hub genes, chemokines, and chemokine receptors as 
well as differentially enriched pathways. It was speculated 
that the inflammatory factors such as chemokines may be 
involved in the formation of LMPP with different charac-
teristics. Chemokines secreted by different types of LMPP 
further affect immune microenvironment and produce path-
ogenic microenvironment together interacting with other 
pathogenic factors.

However, this study still has some limitations requiring 
further clarification. Osteoporosis samples were limited 
in the original datasets, which may result in false positive 
outcomes, especially in the development of co-expression 
networks using WGCNA. Here, we used mature algorithm 
to remove batch effects and combined different microar-
ray datasets into one dataset with enough osteoporosis 
samples for analysis, but different origins/tissues of three 
datasets may still affect the accuracy of the integration and 
the results. Moreover, only one osteoporosis sample with 
single-cell sequencing data could be obtained from public 
databases, and no control samples were included in single-
cell data, which might lower the reliability of our conclu-
sions. In addition, we did not consider other factors such 
as ages, genders, or smoking in osteoporosis pathogenesis. 
Although we identified 12 hub genes closely involved in 
the pathogenesis of osteoporosis, further experiments on 
more clinical samples are needed. Nevertheless, our study 
delineated a new direction for studying the mechanism of 
osteoporosis pathogenesis.

Conclusions

In conclusion, this study explored the relation between 
immune microenvironment and the pathogenesis of oste-
oporosis. Our findings could help further understand the 
mechanisms of unbalanced bone remodeling, providing a 
direction for developing new therapeutic drugs for osteo-
porosis patients.
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