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Abstract

The tumor microenvironment (TME) dynamically regulates cancer progression and affects clinical outcomes. This study
aimed to identify molecular subtypes and construct a prognostic risk model based on TME-related signatures in skin cutane-
ous melanoma (SKCM) patients. We categorized SKCM patients based on transcriptome data of SKCM from The Cancer
Genome Atlas (TCGA) database and 29 TME-related gene signatures. Differentially expressed genes were identified using
univariate Cox regression and Lasso regression analysis, which were used for risk model construction. The robustness of this
model was validated in independent external cohorts. Genetic landscape alterations, immune characteristics, and responsive-
ness to immunotherapy/chemotherapy were evaluated. Three TME-related subtypes were identified, and subtype C3 exhib-
ited the most favorable prognosis, had enriched immune-related pathways, and possessed more infiltration of T_cells_CDS8,
T_cells_CD4_memory_activated, and Macrophages_M1 but a lower TumorPurity, whereas Macrophages_M?2 were increased
in subtype C1 and subtype C2. Subtype C1 was more sensitive to Cisplatin, subtype C2 was more sensitive to Temozolo-
mide, and subtype C3 was more sensitive to Paclitaxel; 8 TME-related genes (NOTCH3, HEYL, ZNF703, ABCC2, PAEP,
CCL8, HAPLN3, and HPDL) were screened for risk model construction. High-risk patients had dismal prognosis with good
prediction performance. Moreover, low-risk patients were more sensitive to Paclitaxel and Temozolomide, whereas high-
risk patients were more sensitive to Cisplatin. This risk model had robustness in predicting prognosis in SKCM patients.
The results facilitate the understanding of TME-related genes in SKCM and provide a TME-related genes-based predictive
model in prognosis and direction of personalized options for SKCM patients.

Keywords Skin cutaneous melanoma - Tumor microenvironment - Molecular subtypes - Prognosis - Risk score -
Immunotherapy

Introduction

Skin cutaneous melanoma (SKCM) is one of the live-
threaten malignant cancers of the skin. Accordingly,
the estimated new diagnosed cases are 324,635, and the
new deaths are 57,043 worldwide in 2020 (Sung et al.
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2020). Early diagnosis of SKCM (Breslow thickness
less than 0.8 mm) is essential to clinical outcome.
Unfortunately, it is difficult to distinguish SKCM from
benign pigmented lesions, leading to its exacerbation and
metastasis (Santos, et al. 2018). Additionally, SKCM is
a highly heterogeneous malignancy due to the complex
and layered structure of human skin with a large body
of specialized cells, which may result in drug resistance
as well as a dismal prognosis (Thrane et al. 2018;
Novotny et al. 2020). At present, although the traditional
therapeutic strategies including surgery, radiotherapy,
and chemotherapy have improved the prognosis of
SKCM patients, only a few advanced SKCM patients can
receive surgical intervention and drug resistance remains
a great challenge. Meanwhile, novel-targeted therapy
through mutant-BRAF inhibition, immunotherapies, and
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intratumoral application of immunomodulators exhibit
potential for SKCM treatment (Kasakovski et al. 2021).
However, the heterogeneity of SKCM affects the response
to these therapeutic options. Thus, understanding the
intricacy of SKCM is necessary for clinical classification,
prognosis prediction, and patient-centered therapeutic
interventions.

It has been acknowledged that tumor microenvironment
(TME) is imperative in cancer progression and affects
therapeutic response. TME generally comprises multiple
cell types containing cancer cells and non-cancer
cells including immune cells, extracellular matrix,
heterogeneous stromal cells, blood, and lymphatic
vascular and secreted factors. Their intricate interaction
is crucial in the immortality of replication, invasion,
metastasis, and immune escape (Najafi et al. 2019).
Immune infiltrates are one of the most important
components in the TME, and it has been reported that
immune infiltrates are responsible for the development
and progress of tumors as well as either success or failure
of cancer-targeted therapies (Zhang and Zhang 2020).
More CDS8 + T-cell infiltration significantly prolongs
survival in patients with SKCM (Zhu et al. 2021).
Activated natural killer (NK) cell has been proven to be
associated with the prognosis of SKCM patients (Cursons
et al. 2019). Recently, several novel TICs genes such as
CCLS, C1QA, C1QB, and GZMB have been identified
as prognostic biomarkers for SKCM patients (Liang
et al. 2022; Yang et al. 2021). We understand that deep
machine learning could help predict immune response
and prognosis in cancer (Jin et al. 2022; Zhao et al.
2022), including head and neck squamous cell carcinoma
(Chi et al. 2022a; Chi et al. 2022b), glioblastoma, and
Parkinson’s disease (Zhao et al. 2023). Recently, several
prognostic signatures have been found to predict the
prognosis and immune microenvironment of SKCM
(Song et al. 2022a; Song et al. 2022b). An in-depth
understanding of TME can reveal the mechanisms of
TME in SKCM, facilitate clinical classification, identify
predictive biomarkers, and improve anti-tumor therapies.

Hence, in this study, we identified three TME-related
molecular subtypes based on RNA-Seq data of SKCM
patients from The Cancer Genome Atlas (TCGA)
database and 29 TME-related gene signatures, and
their associations with clinicopathological features,
genomic landscape, immune characteristics, and anti-
tumor therapy response were evaluated. Furthermore, we
established and validated a prognostic risk model that
could predict prognosis and response to immunotherapy/
chemotherapy. These results facilitate an understanding of
the potential mechanisms of TME-related genes in SKCM
and provide a direction to improve prognosis as well as
personalized therapies for patients with SKCM.
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Material and methods
Data collection and pre-processing

RNA-Seq data of SKCM patients was obtained in The Can-
cer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)
database using Genomic Data Commons Application Pro-
gramming Interface, including 354 metastatic tumor sam-
ples. Patients lacking clinical follow-up information and
survival states were eliminated, while patients with survival
time > 30 days were retained in this study. Next, FPKM was
converted into TPM, and ensembl gene IDs were converted
into gene symbol IDs. The gene with multiple gene symbols
was expressed as a median. Additionally, the gene expres-
sion profiles of SKCM samples from GSE69504 (contain-
ing 186 samples) and GSE54467 (containing 79 samples)
were downloaded from the Gene-Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) database. We
removed the probe matching to multiple genes. The gene
with multiple probes was expressed as average. To investi-
gate the TME-related gene signatures, we obtained 29 types
of functional gene expression characteristics representing
the main functional components of tumor, immune, matrix,
and other cell populations from published research (Bagaev
et al. 2021).

The association between TME gene signatures
and clinical characteristics in TCGA-SKCM

Based on 29 TME-related gene signatures, we score the
TME using single sample gene set enrichment analysis
(ssGSEA), and the differences of TME between primary
solid tumor samples and metastatic samples were analyzed
using the Kruskal test. P <0.05 was considered statisti-
cally significant. The correlation of TME with the primary
solid tumor and the metastatic tumor was analyzed by the
“ggcorrplot” package (Kassambara 2019). Univariate Cox
regression analysis was conducted to investigate the rela-
tionship between TME and prognosis. Next, we compared
the TME in different T stage, N stage, M stage, stage, age,
and gender.

Identification of TME-related subtypes

On the basis of the TME gene signatures score, a consen-
sus clustering analysis was conducted to categorize TCGA-
SKCM patients using the “ConsensusClusterPlus” package
(Wilkerson et al. 2013), with pam algorithm and 1-Pear-
son correlation, processing with 500 bootstraps containing
80% TCGA-SKCM patients; 2—10 clusters were tested, and
the cumulative distribution function (CDF) and consensus
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matrix were employed to determine the optimal subtypes.
Kaplan—Meier curves were generated in the TCGA-SKCM
cohort, and the log-rank test was used to determine the sig-
nificance of differences. The “ComplexHeatmap” package
(Gu 2022) was employed to visualize the distributions of
TME-related signatures among the three subtypes.

Construction and validation of the prognostic
model

Differential expression analysis among molecular subtypes
was performed using the “limma” package (Ritchie et al.
2015) to identify differentially expressed genes (DEGs).
Next, univariate Cox regression analysis was used to screen
genes that had a greater impact on prognosis with P <0.01. In
order to reduce the number of genes, we performed LASSO
Cox regression using the “glmnet” package (Hastie et al.
2021), along with stepwise multivariate regression analy-
sis with stepwise Akaike information criterion (stepAlIC).
The risk score was calculated using the following formula:
RiskScore = +0.131*NOTCH3 + 0.093*HEYL + 0.084
*ZNF703 +0.091*ABCC2 + 0.046*PAEP-0.147
*CCL8-0.255*HAPLN3 + 0.087*HPDL. According to the
above formula, we calculated the risk score in the TCGA-
SKCM cohort. Receiver operating characteristic (ROC)
analysis was conducted using the “timeROC” package
(TimeROC 2015), followed by areas under the ROC curve
(AUCG:s) for 1 year, 3 years, and 5 years. The optimal cutoff
was determined by the “survminer” package (Kassambara
et al. 2017). Kaplan—Meier curves were generated between
high- and low-risk groups, and the log-rank test was used
to determine the significance of differences. Furthermore,
we validated the robustness of this prognostic model in the
GSE65904 and GSE54467 cohorts.

Genetic landscape alterations

To assess the differences in genomic changes, we down-
loaded Simple Nucleotide Variation (SNV) dataset at the
level4 of TCGA-SKCM samples processed by MuTect2
software and calculated the tumor mutation burden (TMB),
mutant-allele tumor heterogeneity (MATH), and homolo-
gous recombination defects (HRD) using “maftools” pack-
age (version 2.8.05) (Mayakonda et al. 2018) in R. From
the previous study (Akbani et al. 2015), we acquired other
subtypes and analyzed the distribution of reported subgroups
in this TME-related molecular subtypes. Furthermore, a
somatic mutation was evaluated using the Chi-square test
among molecular subtypes. Comparisons were performed by
The Kruskal test. P <0.05 was considered statistically sig-
nificant. The correlation between risk score and 22 immune
cells as well as 29 gene signatures was analyzed by the
“ggcorrplot” package (Kassambara 2019).

Gene set enrichment analysis and functional
annotation

To evaluate the different biological processes among
molecular subtypes, we performed gene set enrichment
analysis (GSEA) using all candidate gene sets in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
with the threshold of false discovery rate (FDR) <0.05.
Functional gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis was
performed using the “clusterProfiler” package (Yu et al.
2012). The GO functional enrichment included biologi-
cal process (BP), cellular component (CC), and molecu-
lar function (MF) categories. Meanwhile, ssGSEA was
conducted using the “GSVA” package (Hinzelmann et al.
2013) using Hallmark gene sets to calculate each sample
on different functions, and the Kruskal test was used to
perform statistics. P <0.05 was considered statistically
significant.

Assessment of immune characteristics

Subsequently, immune cell infiltration was assessed in the
TCGA-SKCM cohort using the ESTIMATE algorithm
(Yoshihara et al. 2013) among molecular subtypes contain-
ing StromalScore, ImmuneScore, ESTIMATEScore, and
TumorPurity. Besides, CIBERSORT (https://cibersort.stanf
ord.edu/) (Chen et al. 2018) was employed to evaluate the
abundance of 22 immune cells. Comparisons were analyzed
using the Kruskal test. Distributions of ESTIMATE score
and immune cells among molecular subtypes as well as 29
TME-related gene signatures between risk groups were visu-
alized using the “ComplexHeatmap” package (Gu 2022).

Prediction of responsiveness to immunotherapy/
chemotherapy

To evaluate the responsiveness to chemotherapy, we ana-
lyzed the half-maximal inhibitory concentration (IC50) val-
ues of traditional chemotherapeutic drugs including Pacli-
taxel, Cisplatin, Vinblastine, and Temozolomide using the
“pRRophetic” package (Geeleher et al. 2014) in R. Moreo-
ver, we assessed the predictive potential of different subtypes
of immunotherapy using a T-cell-inflamed GEP score. In
addition, we scored cytolytic activity (CYT) as well as Th1/
IFNy gene signature (Danilova et al. 2019) with ssGSEA.
Furthermore, we assessed some presentative immune
checkpoints based on a published study (Auslander et al.
2018). Differential expressed immune checkpoint genes
were screened using the Kruskal test, and FDR <0.05 was
considered statistically significant. Correlation analysis was
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performed between risk score and immune checkpoints and
visualized using the “ggcorrplot” package.

Clinical performance and prognosis analysis of risk
score

To test the relationship between risk score and clinico-
pathological features of TCGA-SKCM patients, the distri-
bution of risk scores among different clinicopathological
features including T stage, N stage, M stage, stage, age,
gender, and three molecular subtypes and differences were
analyzed using the Kruskal test. Sankey diagram detailed
the distribution of three subtypes between high- and low-
risk groups. Kaplan—Meier curves were generated between
high- and low-risk groups among different clinicopathologi-
cal features.

Results

Association of TME-related gene signatures
and clinicopathologic features in TCGA-SKCM

To assess the difference in TME between primary solid
tumor samples and metastatic samples, we scored 29 TME-
related gene signatures and found that most TME-related
gene signatures such as angiogenesis, endothelium, can-
cer-associated fibroblasts, tumor-associated macrophages,
immune suppression by myeloid cells, MHCII, and anti-
tumor cytokines had higher ssGSEA scores in metastatic
samples than that of primary solid tumor samples; mean-
while, immune cells in the metastatic samples were much
more abundant (Fig. 1A). Figure 1B revealed more corre-
lations between TMEs in metastatic samples. Univariate
Cox regression analysis showed that TME was significantly
associated with the survival of patients (Fig. 1C). Besides,
tumor-associated macrophages, NK cells, immune suppres-
sion by myeloid cells, anti-tumor cytokines, M1 signature,
and MHCII were distinctly increased in female (Fig. 1D).

Three TME-related molecular subtypes were
identified

Based on the TME gene signatures score, we performed a
consensus clustering analysis to categorize TCGA-SKCM
patients. The optimal number of clusters was determined
according to the CDF. CDF Delta area displayed a relatively
stable clustering effect when cluster=3 (Supplementary
Fig. S1A,B). Finally, we identified three subtypes when
consensus matrix k=3 (Fig. 2A). Principal components
analysis (PCA) showed a distinct separation among the
three subtypes (Fig. 2B). Subsequently, survival analysis
deciphered subtype C3 had the highest survival probability
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while subtype C1 exhibited the dismal prognosis in TCGA-
SKCM cohort (P <0.0001) (Fig. 2C). Furthermore, Fig. 2D
displayed that these TME signatures had significant differ-
ences among three molecular subtypes except for the neutro-
phil signature. Figure 2E depicted the distributions of TME-
related signatures among the three subtypes. Immune-related
signatures were remarkably increased in subtype C3. Matrix-
related signatures including angiogenesis, endothelium, can-
cer-associated fibroblasts, matrix, matrix remodeling, and
EMT signature were enriched in subtype C2, while tumor
proliferation rate was enriched in subtype C1.

Differences in clinicopathologic features
among three subtypes

Furthermore, we compared the clinicopathological differ-
ences (T stage, N stage, M stage, stage, age, gender, and
survival status) between the three molecular subtypes in the
TCGA-SKCM cohort. As shown in Fig. 3, patients with sub-
type C1 exhibited a higher proportion of advanced T stage
and a number of males.

Genetic landscape alterations among three
subtypes

To evaluate genetic landscape alterations among three sub-
types, we analyzed the difference of TMB, MATH, and
HRD and found that there was no significant difference in
TMB among the three subtypes (P> 0.05), while subtype
C1 possessed the lowest MATH and the highest HRD score
than that of others (Fig. 4A—C). Besides, we found subtype
C2 had a higher proportion of BRAF_Hotspot_Mutants
(Fig. 4D). Moreover, we assessed the somatic mutation
among three subtypes in the TCGA-SKCM cohort. Fig-
ure 4E revealed that TACC2 (32.0%), SLCO1B3 (24.4%),
and MDNI1 (16.2%) were the most frequently mutated genes
in the TCGA-SKCM cohort.

Biological pathway characteristics among three
subtypes

Next, the biological pathway characteristics were evalu-
ated among three subtypes in the TCGA-SKCM cohort.
Figure 5A displayed that KEGG_ AMNOACYL_TRNA_
BOSYNTHEBIS, KEGG_CITRATE_CYCLE_TCA_
CYCLE, and KEGG_TERPENOD_BACKBONE_BIO-
SYNTHESES were significantly enriched in subtype C1.
EMT-related pathways such as KEGG_TGF_BETA_
SIGNALING_PATHWAY and KEGG_WNT_SIGNAL-
ING_PATHWAY were enriched in subtype C2 (Fig. 5B).
Some immune-related pathways such as KEGG_
CHEMOKINE_SIGNALING_PATHWAY, KEGG_
CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION,
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Fig.1 Association of TME-related gene signatures and clinical char-
acteristics in TCGA-SKCM patients. A, Difference of TME between
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Cox regression analysis. D, Differences of TME among clinicopatho-
logic features (TNM stage, stage, age, and gender). ns represents
P>0.05; *P<0.05, **P<0.01, ***P <0.001, and.****P <0.0001
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Fig.2 Identification of TME-related molecular subtypes in TCGA-
SKCM patients. A, Consensus clustering heatmap when consensus
k=3. B, Principal components analysis showing a distinct separa-
tion among the three subtypes. C, Kaplan—-Meier curves of OS among
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subtypes. E, Heatmap diagram of the distribution of TME signa-
tures among the three subtypes. ns represents P>0.05; **P<0.01,
and. ****P <(0.0001
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KEGG_NATURAL_KILLER_CELL_MEDIATED_
CYTOTOXICITY, and KEGG_TOLL_LIKE_RECEP-
TOR_SIGNALING_PATHWAY were enriched in subtype
C3 (Fig. 5C). Meanwhile, we found that cell cycle-related
pathways including HALLMARK_MYC_TARGETS_V1,
HALLMARK_G2M_CHECKPOINT, HALLMARK_E2F_
TARGETS, HALLMARK_DNA_REPAIR, and HALL-
MARK_MYC_TARGETS_V2 were observed in subtype
C1. Similarly, EMT-related pathways HALLMARK_EPI-
THELIAL_MESENCHYMAL_TRANSITION, HALL-
MARK_WNT_BETA_CATENIN_SIGNALING, and
HALLMARK_NOTCH_SIGNALING were found in sub-
type C2. Immune-related pathways were also observed in
subtype C3 (Fig. 5D, E).

Changes in immune characteristics among three
subtypes

In order to clarify the difference in immune microenviron-
ment among different molecular subtypes, we evaluated
the degree of immune cell infiltration of TCGA-SKCM
patients using the gene expression levels of immune cells.
As displayed in Fig. 6A-D, subtype C3 possessed higher
ImmuneScore and ESTIMATEScore but a lower Tumor-
Purity than that of other subtypes. We further assessed

the relative abundance of 22 immune cells (Fig. 6E, F).
T_cells_CD8, T_cells_CD4_memory_activated, and Mac-
rophages_M1 were highly expressed in subtype C3, whereas
T_cells_CD4_memory_resting, Macrophages_MO0, and
Macrophages_M2 were increased in subtype C1 and sub-
type C2.

Prediction of responsiveness to immunotherapy/
chemotherapy among three subtypes

To evaluate the response of three subtypes to anti-tumor
therapies, we analyzed the response of three subtypes to tra-
ditional chemotherapeutic drugs and found that subtype C1
was more sensitive to Cisplatin, subtype C2 was more sensi-
tive to Temozolomide, and subtype C3 was more sensitive to
Paclitaxel (Fig. 7A). Meanwhile, we assessed the predictive
potential of three subtypes to immunotherapy using T-cell-
inflamed GEP (Fig. 7B). T-cell-inflamed GEP score was
remarkably elevated in subtype C3. Subtype C3 also exhib-
ited Th1/IFNy gene signature (Fig. 7C) and more CYT score
(Fig. 7D). Figure 7E displayed that most of the immune
checkpoints that activate immune and inhibit immune were
significantly upregulated in subtype C3. Furthermore, we
screened 28 differential expressed immune checkpoint genes
(Fig. 7F).
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Fig.4 Genetic landscape alterations among three subtypes in the
TCGA-SKCM cohort. A-C, Changes of TMB, MATH, and HRD
score among three subtypes. D, Distribution of reported subgroups

Identification of differentially expressed genes

Furthermore, differential expression analysis among
molecular subtypes was performed. We identified 1054
DEGs between subtype C1 vs C2 (107 upregulated and
947 downregulated DEGs), 669 DEGs between subtype
C2 vs. C3 (378 upregulated and 291 downregulated
DEGs), and 762 DEGs between subtype C1 vs. C3
(22 upregulated and 740 downregulated DEGs)
(Supplementary Fig. S2A-C). Supplementary Fig. S2D
showed there were 77 DEGs among the three subtypes,
which were used for enrichment analysis (Supplementary
Fig. S3). Several immune-related pathways were
significantly enriched.
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among three subtypes. E, Alteration of somatic mutation among three
subtypes (Chi-square test)

Construction and validation of the prognostic
model

Based on differential analysis among the three subtypes,
1552 DEGs were screened and used for univariate Cox
regression analysis. With P <0.05, 883 genes that have
a greater impact on prognosis were identified, including
74 risk genes and 809 protective genes. Through LASSO
Cox regression analysis, the number of genes was reduced.
The number of independent variable coefficients tending
to zero increased gradually with the gradual increase of
lambda (Fig. 8A); tenfold cross-validation was utilized,
and the confidence interval under each lambda was shown
in Fig. 8B; 14 genes were selected when lambda=0.0981.
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Fig.5 Biological pathway characteristics among three subtypes in
the TCGA-SKCM cohort. Results of GSEA between subtype C1 vs.
other subtypes (A), C2 vs. other subtypes (B), and C3 vs. other sub-

types (C). D, Heatmap diagram of pathway enrichment among three
subtypes. E, Box plots of pathway enrichment scores among three
subtypes. ¥*P <0.01, ***P <0.001, and ****P <0.0001
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Fig.6 Immune characteristics among three subtypes in the TCGA-
SKCM cohort. A-D, ESTIMATE evaluating ImmuneScore, Immu-
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E, Box plots of relative abundance of 22 immune cells among three

Furthermore, stepwise multivariate regression analysis
with stepAIC was performed, and 8§ TME-related genes
affecting prognosis were identified (NOTCH3, HEYL,
ZNF703, ABCC2, PAEP, CCL8, HAPLN3, and HPDL)
(Fig. 8C).

Accordingly, the risk score was calculated as follows:
risk score= +0.131*NOTCH3 + 0.093*HEYL + 0.084
*ZNF703 + 0.091*ABCC2 + 0.046*PAEP-0.147
*CCL8-0.255*HAPLN3 + 0.087*HPDL. Next, the risk score
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subtypes. F, Heatmap diagram of the abundance of 22 immune cells
among three subtypes. ns represents P> 0.05; *P <0.05, **P <0.01,
*#%P <0.001, and. ****P <0.0001

of each sample was calculated in the TCGA-SKCM cohort.
Survival analysis in the TCGA-SKCM cohort showed that
high-risk patients had a dismal prognosis than that of low-
risk patients (P <0.0001) with 1-year AUC of 0.76, 3-year
AUC of 0.73, and 5-year AUC of 0.75 (Fig. 8D, E). To
validate the robustness of this prognostic model, survival
analysis was also performed in GSE65904 and GSE54467.
The results displayed that high-risk patients possessed bet-
ter prognosis with good prediction performance (Fig. 8F-I).
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Fig. 7 Prediction of responsiveness to immunotherapy/chemotherapy
among three subtypes in the TCGA-SKCM cohort. A, Box plots of
the estimated IC50 for Paclitaxel, Cisplatin, Vinblastine, and Temo-
zolomide. B, Difference of T cell inflamed GEP score among three
subtypes. C, Difference of Th1/IFNy gene signature among three

Clinical performance and prognosis analysis of risk
score

To clarify the performance of risk scores in clinical practice,
the distribution of risk scores among clinicopathological
features (TMN stage, stage, age, gender, and three subtypes)
was examined in the TCGA-SKCM cohort. The results
showed that patients with advanced stage had higher risk

subtypes. D, Difference of cytolytic activity among three subtypes.
E, Heatmap diagram of immune checkpoints among three subtypes.
F, Differential expression analysis of 28 immune checkpoints among
three subtypes

scores (Fig. 9A), and patients with subtype C3 possessed
the lowest risk score (Fig. 9B). Besides, the Sankey diagram
demonstrated high-risk patients mainly belonged to subtype
C1 and subtype C2 (Fig. 9C). Meanwhile, Kaplan—-Meier
curves were generated between high- and low-risk groups
among different clinicopathological features. We found that
high-risk patients with different clinicopathological features
also displayed poor outcomes (Fig. 9D).
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Fig.8 Construction and validation of the prognostic model. A, Inde-
pendent variable coefficients changed with lambda increase. B, ten-
fold cross-validation determining the confidence interval under each
lambda. C, 8 TME-related genes were identified. D, E, ROC curves
with AUCs for 1 year, 3 years, and 5 years and Kaplan—-Meier curves

Differences in immune microenvironment
between risk groups

Furthermore, we assessed the alteration of the immune

microenvironment between the two risk groups.
Figure 10A revealed that low-risk patients had increased

@ Springer

of high- and low-risk patients in TCGA-SKCM cohort. F, G, ROC
curves with AUCs for 1 year, 3 years, and 5 years and Kaplan—-Meier
curves of high- and low-risk patients in GSE65904. H, I, ROC curves
with AUCs for 1 year, 3 years, and 5 years and Kaplan—Meier curves
of high- and low-risk patients in GSE54467

StromalScore, ImmuneScore, and ESTIMATEScore,
whereas high-risk patients possessed higher TumorPurity
scores. Additionally, some immune cells such as T_
cells_CD8, T_cells_CD4_memory_activated, NK_
cells_activated, and Macrophages_M1 were significantly
elevated in low-risk patients, while Macrophages_M?2
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Fig.9 Clinical performance and prognosis analysis of risk score in
TCGA-SKCM cohort. A, Violin plots of the risk score in TMN stage,
stage, age, and gender. B, Violin plots of the risk score in three sub-

and Mast_cells_resting were increased in high-risk
patients (Fig. 10B). We also compared the enrichment
score of 29 TME-related gene signatures in high- and
low-risk groups, and Fig. 10C, D deciphered that most
TME-related gene signatures were higher in the low-risk

types. C, Sankey diagram showing the distribution of three subtypes
in high- and low-risk groups. D, Kaplan-Meier curves of high- and
low-risk patients in different clinicopathological features

group. Moreover, the risk score was positively correlated
with B_cells_naive, T_cells_CD4_memory_resting,
NK_cells_resting, Macrophages_MO0, Macrophages_M2,
and Tumor proliferation rate, while negatively correlated
with some anti-tumor signatures such as M1 signature,
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Fig. 10 Differences in immune microenvironment between risk
groups in the TCGA-SKCM cohort. A, ESTIMATE evaluating
ImmuneScore, ImmuneScore, ESTIMATEScore, and TumorPu-
rity between risk groups. B, Box plots of relative abundance of 22
immune cells between risk groups. C, Heatmap of 29 TME-related

MHCII, anti-tumor cytokines, and co-activation molecules
(Fig. 10E).

Differences in immunotherapy between risk score
groups

As shown in Fig. 11A, the IC50 values of Paclitaxel
(P=2.8e-09) and Temozolomide (P =0.049) were dis-
tinctly decreased in the low-risk group, while the IC50
value of Cisplatin was lower in the high group, indicating

@ Springer

gene signatures in high- and low-risk groups. D, Box plots of TME-
related gene signatures. E, Correlation analysis between risk score
and 29 TME-related signatures. ns represents P>0.05; *P<0.05,
**P<0.01, #*P <0.001, and.****P < (0.0001

that low-risk patients were more sensitive to Paclitaxel and
Temozolomide, whereas high-risk patients were more sen-
sitive to Cisplatin (P =0.00082). Furthermore, we found
that low-risk patients exhibited increased TMB (P=0.019)
and intra-tumor genetic heterogeneity (P =0.031). The risk
score was negatively correlated with TMB and intra-tumor
genetic heterogeneity (Fig. 11B-D). Figure 11E-G dem-
onstrated that T-cell-inflamed GEP score, Th1/IFNy gene
signature, and CYT score were remarkably increased in
low-risk patients, which were negatively correlated with
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a risk score. Moreover, we also evaluated the distribu-
tion of immune checkpoints and their correlations with
two risk groups. Figure 11H, I revealed that most immune
checkpoints were significantly highly expressed in the low-
risk group, and risk score was negatively correlated with
immune checkpoints.

Discussion

TME plays a pivotal role in the biological process of tumors,
and the tumor immune microenvironment is strongly asso-
ciated with the clinical outcome and anti-tumor therapy
responses. In the present study, transcriptome data of SKCM
was used to identify three TME-related subtypes based on
29 TME-related gene signatures. We confirmed that subtype
C3 had the most favorable prognosis, enriched in immune-
related pathways, and possessed higher ImmuneScore and
ESTIMATEScore but a lower TumorPurity. Next, we con-
structed and validated a prognostic risk model based on 8
TME-related genes, which could predict prognosis, immune
microenvironment, and immunotherapy response between
high- and low-risk SKCM patients.

Increasing pieces of evidence have demonstrated a close
correlation between CD8+ T cell infiltration in TME and
good prognosis in the tumor. Tumor cells can be destroyed
and eliminated when cytotoxic CD8 +T cells are activated
and infiltrate into the tumor site (Maimela et al. 2019). How-
ever, suppression of CD8 + T cell infiltration in the TME con-
tributes to the underlying mechanism of resistance to radio-
therapy (Chen et al. 2018). A previous study has confirmed
that decreased CD8 + T cell infiltration in TME and increased
PD-L1 expression are related to CD44 +/CD133 + cancer
stem cells and dismal outcomes in pancreatic cancer (Hou
et al. 2019). Macrophages occupy the predominant position
in the TME. Under the TME, macrophages polarize into mac-
rophages M1 exhibiting anti-tumor effect and macrophages
M2 possessing anti-inflammatory and oncogenic features.
Additionally, evaluating the ratio of M1 to M2 macrophages
can serve as a prevailing approach for clinical application
in cancer patients (Jayasingam et al. 2020). In this study,
we found that subtype C3 possessed higher ImmuneScore
and ESTIMATEScore but a lower TumorPurity, indicating
that patients with subtype C3 had more immunity. Besides,
T_cells_CD8, T_cells_CD4_memory_activated, and Mac-
rophages_M1 were highly expressed in subtype C3, whereas
Macrophages_M?2 were increased in subtype C1 and subtype
C2. These suggested that more CD8 T cells infiltration into
TME and increased polarization of Macrophages into M2
phenotypes were a benefit for favorable prognosis of SKCM
patients. Meanwhile, a previous study has reported that the
expression of Th1/IFNy genes in the TME is associated with
prognosis in melanoma patients, implying Th1/IFNy-related
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signatures may be responsible for the progression of mela-
noma (Dizier et al. 2020). Therefore, increased T-cell-
inflamed GEP, Th1/IFNy gene signature, and CYT score also
contributed to the good prognosis of subtype C3 in this study.

A previous study has reported that gene signatures could
predict prognosis, immune status, and chemosensitivity in
cancers using various machine learning (Peng et al. 2022;
Chi et al. 2022; Chi et al. 2022c¢; Chi et al. 2023). A recent
study has generated 6 TME-related signatures (EDN3,
CLECA4E, SRPX2, KIR2DL4, UBE2L6, and IFIT2) based
on 471 SKCM patients from the TCGA dataset and found
that these genes have good predictive values in the prog-
nosis of patients with SKCM (Zhou et al. 2021). In this
study, we identified 8 TME-related genes affecting prog-
nosis (NOTCH3, HEYL, ZNF703, ABCC2, PAEP, CCLS,
HAPLN3, and HPDL) using 354 metastatic tumor samples
from the TCGA dataset, and these TME-related genes could
predict the clinical outcome. Also, we revealed that low-
risk patients were more sensitive to Paclitaxel and Temo-
zolomide, while high-risk patients were more sensitive to
Cisplatin, which indicated therapeutic options for patients
with SKCM. The different TME-related genes identified in
the two studies may be due to the selection of SKCM sam-
ples. These 8 TME-related genes in our study can be used
as supplements for biomarkers of SKCM and provide novel
directions for the precision treatment of SKCM.

NOTCH signaling has been proven to modulate various
aspects of cancer biology, and NOTCH shapes the TME
in the tumor through Juxtacrine and Paracrine Signaling
between the diverse compartments of TME (Meurette and
Mehlen 2018). It has been demonstrated that NOTCH3 could
promote tumor growth via provoking the infiltration of immu-
nosuppressive cells in TME of colorectal cancer (Huang et al.
2022). HEYL has been identified as a novel prognostic bio-
marker of hypoxic gastrointestinal cancer exhibiting more
immune and stromal infiltration (Hu et al. 2022). ZNF703
belongs to the zinc finger protein family, which is the larg-
est transcription factor family in the human genome, and it
is a common luminal B breast cancer oncogene. ZNF703
has been reported to be a progression-related gene that is
associated with M2 macrophage infiltration in colon cancer
(Xu et al. 2021). ABCC2 is one of the ATP-binding cas-
sette transporters and is implicated in clinical drug resistance
modulated by TNF-a in TME of tumors (Alamolhodaei et al.
2020). PAEP has been identified as an immune-related gene
predicting prognosis in lung squamous cell carcinoma (Wu
et al. 2021). Besides, CCLS is associated with immune cell
infiltration of SKCM, which can be used as a prognostic bio-
marker for survival and therapy (Yang et al. 2021). HAPLN3
exerts potential immunosuppressive in malignant melanoma
patients. Recently, based on the immune subtype classifica-
tion of melanoma, Mei and colleagues have identified 4 genes
including SEL1L3, HAPLN3, BST2, and IFITM1, which
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could predict prognosis and responses to anti-CTLA4 immu-
notherapy (Mei et al. 2021). A previous study has revealed
that elevated HPDL is remarkably positively correlated with
the infiltration of immune cells and critical immune check-
points, which lead to immunosuppressive TME and an unfa-
vorable outcome (Jiang et al. 2022). In the present study, the
identified 8 TME-related signatures might be involved in the
development and progression of SKCM and considered as
prognostic biomarkers for outcome and response to clinical
therapy. We also validated the robustness of this risk model
with good prediction performance for SKCM in independent
external GEO cohorts.

Data used in this study was obtained from the TCGA
database, while more convincing prospective studies should
be performed. Besides, the underlying mechanism of these
TME-related genes in SKCM warrants further investigation.

Conclusion

In conclusion, we identify three TME-related subtypes and
provided a supplement to understanding the heterogeneity
of SKCM. Moreover, TME-related genes can predict prog-
nosis and evaluate the response to immunotherapy in SKCM
patients.
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