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Abstract
The tumor microenvironment (TME) dynamically regulates cancer progression and affects clinical outcomes. This study 
aimed to identify molecular subtypes and construct a prognostic risk model based on TME-related signatures in skin cutane-
ous melanoma (SKCM) patients. We categorized SKCM patients based on transcriptome data of SKCM from The Cancer 
Genome Atlas (TCGA) database and 29 TME-related gene signatures. Differentially expressed genes were identified using 
univariate Cox regression and Lasso regression analysis, which were used for risk model construction. The robustness of this 
model was validated in independent external cohorts. Genetic landscape alterations, immune characteristics, and responsive-
ness to immunotherapy/chemotherapy were evaluated. Three TME-related subtypes were identified, and subtype C3 exhib-
ited the most favorable prognosis, had enriched immune-related pathways, and possessed more infiltration of T_cells_CD8, 
T_cells_CD4_memory_activated, and Macrophages_M1 but a lower TumorPurity, whereas Macrophages_M2 were increased 
in subtype C1 and subtype C2. Subtype C1 was more sensitive to Cisplatin, subtype C2 was more sensitive to Temozolo-
mide, and subtype C3 was more sensitive to Paclitaxel; 8 TME-related genes (NOTCH3, HEYL, ZNF703, ABCC2, PAEP, 
CCL8, HAPLN3, and HPDL) were screened for risk model construction. High-risk patients had dismal prognosis with good 
prediction performance. Moreover, low-risk patients were more sensitive to Paclitaxel and Temozolomide, whereas high-
risk patients were more sensitive to Cisplatin. This risk model had robustness in predicting prognosis in SKCM patients. 
The results facilitate the understanding of TME-related genes in SKCM and provide a TME-related genes-based predictive 
model in prognosis and direction of personalized options for SKCM patients.

Keywords  Skin cutaneous melanoma · Tumor microenvironment · Molecular subtypes · Prognosis · Risk score · 
Immunotherapy

Introduction

Skin cutaneous melanoma (SKCM) is one of the live-
threaten malignant cancers of the skin. Accordingly, 
the estimated new diagnosed cases are 324,635, and the 
new deaths are 57,043 worldwide in 2020 (Sung et al. 

2020). Early diagnosis of SKCM (Breslow thickness 
less than 0.8  mm) is essential to clinical outcome. 
Unfortunately, it is difficult to distinguish SKCM from 
benign pigmented lesions, leading to its exacerbation and 
metastasis (Santos, et al. 2018). Additionally, SKCM is 
a highly heterogeneous malignancy due to the complex 
and layered structure of human skin with a large body 
of specialized cells, which may result in drug resistance 
as well as a dismal prognosis (Thrane et  al. 2018; 
Novotný et al. 2020). At present, although the traditional 
therapeutic strategies including surgery, radiotherapy, 
and chemotherapy have improved the prognosis of 
SKCM patients, only a few advanced SKCM patients can 
receive surgical intervention and drug resistance remains 
a great challenge. Meanwhile, novel-targeted therapy 
through mutant-BRAF inhibition, immunotherapies, and 
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intratumoral application of immunomodulators exhibit 
potential for SKCM treatment (Kasakovski et al. 2021). 
However, the heterogeneity of SKCM affects the response 
to these therapeutic options. Thus, understanding the 
intricacy of SKCM is necessary for clinical classification, 
prognosis prediction, and patient-centered therapeutic 
interventions.

It has been acknowledged that tumor microenvironment 
(TME) is imperative in cancer progression and affects 
therapeutic response. TME generally comprises multiple 
cell types containing cancer cells and non-cancer 
cells including immune cells, extracellular matrix, 
heterogeneous stromal cells, blood, and lymphatic 
vascular and secreted factors. Their intricate interaction 
is crucial in the immortality of replication, invasion, 
metastasis, and immune escape (Najafi et  al. 2019). 
Immune infiltrates are one of the most important 
components in the TME, and it has been reported that 
immune infiltrates are responsible for the development 
and progress of tumors as well as either success or failure 
of cancer-targeted therapies (Zhang and Zhang 2020). 
More CD8 + T-cell infiltration significantly prolongs 
survival in patients with SKCM (Zhu et  al. 2021). 
Activated natural killer (NK) cell has been proven to be 
associated with the prognosis of SKCM patients (Cursons 
et al. 2019). Recently, several novel TICs genes such as 
CCL8, C1QA, C1QB, and GZMB have been identified 
as prognostic biomarkers for SKCM patients (Liang 
et al. 2022; Yang et al. 2021). We understand that deep 
machine learning could help predict immune response 
and prognosis in cancer (Jin et  al. 2022; Zhao et  al. 
2022), including head and neck squamous cell carcinoma 
(Chi et al. 2022a; Chi et al. 2022b), glioblastoma, and 
Parkinson’s disease (Zhao et al. 2023). Recently, several 
prognostic signatures have been found to predict the 
prognosis and immune microenvironment of SKCM 
(Song et  al. 2022a; Song et  al. 2022b). An in-depth 
understanding of TME can reveal the mechanisms of 
TME in SKCM, facilitate clinical classification, identify 
predictive biomarkers, and improve anti-tumor therapies.

Hence, in this study, we identified three TME-related 
molecular subtypes based on RNA-Seq data of SKCM 
patients from The Cancer Genome Atlas (TCGA) 
database and 29 TME-related gene signatures, and 
their associations with clinicopathological features, 
genomic landscape, immune characteristics, and anti-
tumor therapy response were evaluated. Furthermore, we 
established and validated a prognostic risk model that 
could predict prognosis and response to immunotherapy/
chemotherapy. These results facilitate an understanding of 
the potential mechanisms of TME-related genes in SKCM 
and provide a direction to improve prognosis as well as 
personalized therapies for patients with SKCM.

Material and methods

Data collection and pre‑processing

RNA-Seq data of SKCM patients was obtained in The Can-
cer Genome Atlas (TCGA, https://​portal.​gdc.​cancer.​gov/) 
database using Genomic Data Commons Application Pro-
gramming Interface, including 354 metastatic tumor sam-
ples. Patients lacking clinical follow-up information and 
survival states were eliminated, while patients with survival 
time > 30 days were retained in this study. Next, FPKM was 
converted into TPM, and ensembl gene IDs were converted 
into gene symbol IDs. The gene with multiple gene symbols 
was expressed as a median. Additionally, the gene expres-
sion profiles of SKCM samples from GSE69504 (contain-
ing 186 samples) and GSE54467 (containing 79 samples) 
were downloaded from the Gene-Expression Omnibus 
(GEO; https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database. We 
removed the probe matching to multiple genes. The gene 
with multiple probes was expressed as average. To investi-
gate the TME-related gene signatures, we obtained 29 types 
of functional gene expression characteristics representing 
the main functional components of tumor, immune, matrix, 
and other cell populations from published research (Bagaev 
et al. 2021).

The association between TME gene signatures 
and clinical characteristics in TCGA‑SKCM

Based on 29 TME-related gene signatures, we score the 
TME using single sample gene set enrichment analysis 
(ssGSEA), and the differences of TME between primary 
solid tumor samples and metastatic samples were analyzed 
using the Kruskal test. P < 0.05 was considered statisti-
cally significant. The correlation of TME with the primary 
solid tumor and the metastatic tumor was analyzed by the 
“ggcorrplot” package (Kassambara 2019). Univariate Cox 
regression analysis was conducted to investigate the rela-
tionship between TME and prognosis. Next, we compared 
the TME in different T stage, N stage, M stage, stage, age, 
and gender.

Identification of TME‑related subtypes

On the basis of the TME gene signatures score, a consen-
sus clustering analysis was conducted to categorize TCGA-
SKCM patients using the “ConsensusClusterPlus” package 
(Wilkerson et al. 2013), with pam algorithm and 1-Pear-
son correlation, processing with 500 bootstraps containing 
80% TCGA-SKCM patients; 2–10 clusters were tested, and 
the cumulative distribution function (CDF) and consensus 
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matrix were employed to determine the optimal subtypes. 
Kaplan–Meier curves were generated in the TCGA-SKCM 
cohort, and the log-rank test was used to determine the sig-
nificance of differences. The “ComplexHeatmap” package 
(Gu 2022) was employed to visualize the distributions of 
TME-related signatures among the three subtypes.

Construction and validation of the prognostic 
model

Differential expression analysis among molecular subtypes 
was performed using the “limma” package (Ritchie et al. 
2015) to identify differentially expressed genes (DEGs). 
Next, univariate Cox regression analysis was used to screen 
genes that had a greater impact on prognosis with P < 0.01. In 
order to reduce the number of genes, we performed LASSO 
Cox regression using the “glmnet” package (Hastie et al. 
2021), along with stepwise multivariate regression analy-
sis with stepwise Akaike information criterion (stepAIC). 
The risk score was calculated using the following formula: 
RiskScore =  + 0.131*NOTCH3 + 0.093*HEYL + 0.084 
*ZNF703 + 0 .091*ABCC2 + 0 .046*PAEP-0 .147 
*CCL8-0.255*HAPLN3 + 0.087*HPDL. According to the 
above formula, we calculated the risk score in the TCGA-
SKCM cohort. Receiver operating characteristic (ROC) 
analysis was conducted using the “timeROC” package 
(TimeROC 2015), followed by areas under the ROC curve 
(AUCs) for 1 year, 3 years, and 5 years. The optimal cutoff 
was determined by the “survminer” package (Kassambara 
et al. 2017). Kaplan–Meier curves were generated between 
high- and low-risk groups, and the log-rank test was used 
to determine the significance of differences. Furthermore, 
we validated the robustness of this prognostic model in the 
GSE65904 and GSE54467 cohorts.

Genetic landscape alterations

To assess the differences in genomic changes, we down-
loaded Simple Nucleotide Variation (SNV) dataset at the 
level4 of TCGA-SKCM samples processed by MuTect2 
software and calculated the tumor mutation burden (TMB), 
mutant-allele tumor heterogeneity (MATH), and homolo-
gous recombination defects (HRD) using “maftools” pack-
age (version 2.8.05) (Mayakonda et al. 2018) in R. From 
the previous study (Akbani et al. 2015), we acquired other 
subtypes and analyzed the distribution of reported subgroups 
in this TME-related molecular subtypes. Furthermore, a 
somatic mutation was evaluated using the Chi-square test 
among molecular subtypes. Comparisons were performed by 
The Kruskal test. P < 0.05 was considered statistically sig-
nificant. The correlation between risk score and 22 immune 
cells as well as 29 gene signatures was analyzed by the 
“ggcorrplot” package (Kassambara 2019).

Gene set enrichment analysis and functional 
annotation

To evaluate the different biological processes among 
molecular subtypes, we performed gene set enrichment 
analysis (GSEA) using all candidate gene sets in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
with the threshold of false discovery rate (FDR) < 0.05. 
Functional gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis was 
performed using the “clusterProfiler” package (Yu et al. 
2012). The GO functional enrichment included biologi-
cal process (BP), cellular component (CC), and molecu-
lar function (MF) categories. Meanwhile, ssGSEA was 
conducted using the “GSVA” package (Hänzelmann et al. 
2013) using Hallmark gene sets to calculate each sample 
on different functions, and the Kruskal test was used to 
perform statistics. P < 0.05 was considered statistically 
significant.

Assessment of immune characteristics

Subsequently, immune cell infiltration was assessed in the 
TCGA-SKCM cohort using the ESTIMATE algorithm 
(Yoshihara et al. 2013) among molecular subtypes contain-
ing StromalScore, ImmuneScore, ESTIMATEScore, and 
TumorPurity. Besides, CIBERSORT (https://​ciber​sort.​stanf​
ord.​edu/) (Chen et al. 2018) was employed to evaluate the 
abundance of 22 immune cells. Comparisons were analyzed 
using the Kruskal test. Distributions of ESTIMATE score 
and immune cells among molecular subtypes as well as 29 
TME-related gene signatures between risk groups were visu-
alized using the “ComplexHeatmap” package (Gu 2022).

Prediction of responsiveness to immunotherapy/
chemotherapy

To evaluate the responsiveness to chemotherapy, we ana-
lyzed the half-maximal inhibitory concentration (IC50) val-
ues of traditional chemotherapeutic drugs including Pacli-
taxel, Cisplatin, Vinblastine, and Temozolomide using the 
“pRRophetic” package (Geeleher et al. 2014) in R. Moreo-
ver, we assessed the predictive potential of different subtypes 
of immunotherapy using a T-cell-inflamed GEP score. In 
addition, we scored cytolytic activity (CYT) as well as Th1/
IFNγ gene signature (Danilova et al. 2019) with ssGSEA. 
Furthermore, we assessed some presentative immune 
checkpoints based on a published study (Auslander et al. 
2018). Differential expressed immune checkpoint genes 
were screened using the Kruskal test, and FDR < 0.05 was 
considered statistically significant. Correlation analysis was 

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
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performed between risk score and immune checkpoints and 
visualized using the “ggcorrplot” package.

Clinical performance and prognosis analysis of risk 
score

To test the relationship between risk score and clinico-
pathological features of TCGA-SKCM patients, the distri-
bution of risk scores among different clinicopathological 
features including T stage, N stage, M stage, stage, age, 
gender, and three molecular subtypes and differences were 
analyzed using the Kruskal test. Sankey diagram detailed 
the distribution of three subtypes between high- and low-
risk groups. Kaplan–Meier curves were generated between 
high- and low-risk groups among different clinicopathologi-
cal features.

Results

Association of TME‑related gene signatures 
and clinicopathologic features in TCGA‑SKCM

To assess the difference in TME between primary solid 
tumor samples and metastatic samples, we scored 29 TME-
related gene signatures and found that most TME-related 
gene signatures such as angiogenesis, endothelium, can-
cer-associated fibroblasts, tumor-associated macrophages, 
immune suppression by myeloid cells, MHCII, and anti-
tumor cytokines had higher ssGSEA scores in metastatic 
samples than that of primary solid tumor samples; mean-
while, immune cells in the metastatic samples were much 
more abundant (Fig. 1A). Figure 1B revealed more corre-
lations between TMEs in metastatic samples. Univariate 
Cox regression analysis showed that TME was significantly 
associated with the survival of patients (Fig. 1C). Besides, 
tumor-associated macrophages, NK cells, immune suppres-
sion by myeloid cells, anti-tumor cytokines, M1 signature, 
and MHCII were distinctly increased in female (Fig. 1D).

Three TME‑related molecular subtypes were 
identified

Based on the TME gene signatures score, we performed a 
consensus clustering analysis to categorize TCGA-SKCM 
patients. The optimal number of clusters was determined 
according to the CDF. CDF Delta area displayed a relatively 
stable clustering effect when cluster = 3 (Supplementary 
Fig. S1A,B). Finally, we identified three subtypes when 
consensus matrix k = 3 (Fig. 2A). Principal components 
analysis (PCA) showed a distinct separation among the 
three subtypes (Fig. 2B). Subsequently, survival analysis 
deciphered subtype C3 had the highest survival probability 

while subtype C1 exhibited the dismal prognosis in TCGA-
SKCM cohort (P < 0.0001) (Fig. 2C). Furthermore, Fig. 2D 
displayed that these TME signatures had significant differ-
ences among three molecular subtypes except for the neutro-
phil signature. Figure 2E depicted the distributions of TME-
related signatures among the three subtypes. Immune-related 
signatures were remarkably increased in subtype C3. Matrix-
related signatures including angiogenesis, endothelium, can-
cer-associated fibroblasts, matrix, matrix remodeling, and 
EMT signature were enriched in subtype C2, while tumor 
proliferation rate was enriched in subtype C1.

Differences in clinicopathologic features 
among three subtypes

Furthermore, we compared the clinicopathological differ-
ences (T stage, N stage, M stage, stage, age, gender, and 
survival status) between the three molecular subtypes in the 
TCGA-SKCM cohort. As shown in Fig. 3, patients with sub-
type C1 exhibited a higher proportion of advanced T stage 
and a number of males.

Genetic landscape alterations among three 
subtypes

To evaluate genetic landscape alterations among three sub-
types, we analyzed the difference of TMB, MATH, and 
HRD and found that there was no significant difference in 
TMB among the three subtypes (P > 0.05), while subtype 
C1 possessed the lowest MATH and the highest HRD score 
than that of others (Fig. 4A–C). Besides, we found subtype 
C2 had a higher proportion of BRAF_Hotspot_Mutants 
(Fig. 4D). Moreover, we assessed the somatic mutation 
among three subtypes in the TCGA-SKCM cohort. Fig-
ure 4E revealed that TACC2 (32.0%), SLCO1B3 (24.4%), 
and MDN1 (16.2%) were the most frequently mutated genes 
in the TCGA-SKCM cohort.

Biological pathway characteristics among three 
subtypes

Next, the biological pathway characteristics were evalu-
ated among three subtypes in the TCGA-SKCM cohort. 
Figure 5A displayed that KEGG_ AMNOACYL_TRNA_
BOSYNTHEBIS, KEGG_CITRATE_CYCLE_TCA_
CYCLE, and KEGG_TERPENOD_BACKBONE_BIO-
SYNTHESES were significantly enriched in subtype C1. 
EMT-related pathways such as KEGG_TGF_BETA_
SIGNALING_PATHWAY and KEGG_WNT_SIGNAL-
ING_PATHWAY were enriched in subtype C2 (Fig. 5B). 
Some immune-related pathways such as KEGG_
CHEMOKINE_SIGNALING_PATHWAY, KEGG_
CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION, 
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Fig. 1   Association of TME-related gene signatures and clinical char-
acteristics in TCGA-SKCM patients. A, Difference of TME between 
primary solid tumor samples and metastatic samples. B, Correlation 
analysis of TMEs in metastatic samples. C, Forest plots of univariate 

Cox regression analysis. D, Differences of TME among clinicopatho-
logic features (TNM stage, stage, age, and gender). ns represents 
P > 0.05; *P < 0.05, **P < 0.01, ***P < 0.001, and.****P < 0.0001
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Fig. 2   Identification of TME-related molecular subtypes in TCGA-
SKCM patients. A, Consensus clustering heatmap when consensus 
k = 3. B, Principal components analysis showing a distinct separa-
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and.****P < 0.0001
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KEGG_NATURAL_KILLER_CELL_MEDIATED_
CYTOTOXICITY, and KEGG_TOLL_LIKE_RECEP-
TOR_SIGNALING_PATHWAY were enriched in subtype 
C3 (Fig. 5C). Meanwhile, we found that cell cycle-related 
pathways including HALLMARK_MYC_TARGETS_V1, 
HALLMARK_G2M_CHECKPOINT, HALLMARK_E2F_
TARGETS, HALLMARK_DNA_REPAIR, and HALL-
MARK_MYC_TARGETS_V2 were observed in subtype 
C1. Similarly, EMT-related pathways HALLMARK_EPI-
THELIAL_MESENCHYMAL_TRANSITION, HALL-
MARK_WNT_BETA_CATENIN_SIGNALING, and 
HALLMARK_NOTCH_SIGNALING were found in sub-
type C2. Immune-related pathways were also observed in 
subtype C3 (Fig. 5D, E).

Changes in immune characteristics among three 
subtypes

In order to clarify the difference in immune microenviron-
ment among different molecular subtypes, we evaluated 
the degree of immune cell infiltration of TCGA-SKCM 
patients using the gene expression levels of immune cells. 
As displayed in Fig. 6A–D, subtype C3 possessed higher 
ImmuneScore and ESTIMATEScore but a lower Tumor-
Purity than that of other subtypes. We further assessed 

the relative abundance of 22 immune cells (Fig. 6E, F). 
T_cells_CD8, T_cells_CD4_memory_activated, and Mac-
rophages_M1 were highly expressed in subtype C3, whereas 
T_cells_CD4_memory_resting, Macrophages_M0, and 
Macrophages_M2 were increased in subtype C1 and sub-
type C2.

Prediction of responsiveness to immunotherapy/
chemotherapy among three subtypes

To evaluate the response of three subtypes to anti-tumor 
therapies, we analyzed the response of three subtypes to tra-
ditional chemotherapeutic drugs and found that subtype C1 
was more sensitive to Cisplatin, subtype C2 was more sensi-
tive to Temozolomide, and subtype C3 was more sensitive to 
Paclitaxel (Fig. 7A). Meanwhile, we assessed the predictive 
potential of three subtypes to immunotherapy using T-cell-
inflamed GEP (Fig. 7B). T-cell–inflamed GEP score was 
remarkably elevated in subtype C3. Subtype C3 also exhib-
ited Th1/IFNγ gene signature (Fig. 7C) and more CYT score 
(Fig. 7D). Figure 7E displayed that most of the immune 
checkpoints that activate immune and inhibit immune were 
significantly upregulated in subtype C3. Furthermore, we 
screened 28 differential expressed immune checkpoint genes 
(Fig. 7F).
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Identification of differentially expressed genes

Furthermore, differential expression analysis among 
molecular subtypes was performed. We identified 1054 
DEGs between subtype C1 vs C2 (107 upregulated and 
947 downregulated DEGs), 669 DEGs between subtype 
C2 vs. C3 (378 upregulated and 291 downregulated 
DEGs), and 762 DEGs between subtype C1 vs. C3 
(22 upregulated and 740 downregulated DEGs) 
(Supplementary Fig. S2A–C). Supplementary Fig. S2D 
showed there were 77 DEGs among the three subtypes, 
which were used for enrichment analysis (Supplementary 
Fig.  S3). Several immune-related pathways were 
significantly enriched.

Construction and validation of the prognostic 
model

Based on differential analysis among the three subtypes, 
1552 DEGs were screened and used for univariate Cox 
regression analysis. With P < 0.05, 883 genes that have 
a greater impact on prognosis were identified, including 
74 risk genes and 809 protective genes. Through LASSO 
Cox regression analysis, the number of genes was reduced. 
The number of independent variable coefficients tending 
to zero increased gradually with the gradual increase of 
lambda (Fig. 8A); tenfold cross-validation was utilized, 
and the confidence interval under each lambda was shown 
in Fig. 8B; 14 genes were selected when lambda = 0.0981. 
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Fig. 5   Biological pathway characteristics among three subtypes in 
the TCGA-SKCM cohort. Results of GSEA between subtype C1 vs. 
other subtypes (A), C2 vs. other subtypes (B), and C3 vs. other sub-

types (C). D, Heatmap diagram of pathway enrichment among three 
subtypes. E, Box plots of pathway enrichment scores among three 
subtypes. **P < 0.01, ***P < 0.001, and ****P < 0.0001
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Furthermore, stepwise multivariate regression analysis 
with stepAIC was performed, and 8 TME-related genes 
affecting prognosis were identified (NOTCH3, HEYL, 
ZNF703, ABCC2, PAEP, CCL8, HAPLN3, and HPDL) 
(Fig. 8C).

Accordingly, the risk score was calculated as follows: 
risk score =  + 0.131*NOTCH3 + 0.093*HEYL + 0.084 
*ZNF703 + 0 .091*ABCC2 + 0 .046*PAEP-0 .147 
*CCL8-0.255*HAPLN3 + 0.087*HPDL. Next, the risk score 

Fig. 6   Immune characteristics among three subtypes in the TCGA-
SKCM cohort. A–D, ESTIMATE evaluating ImmuneScore, Immu-
neScore, ESTIMATEScore, and TumorPurity among three subtypes. 
E, Box plots of relative abundance of 22 immune cells among three 

subtypes. F, Heatmap diagram of the abundance of 22 immune cells 
among three subtypes. ns represents P > 0.05; *P < 0.05, **P < 0.01, 
***P < 0.001, and. ****P < 0.0001

of each sample was calculated in the TCGA-SKCM cohort. 
Survival analysis in the TCGA-SKCM cohort showed that 
high-risk patients had a dismal prognosis than that of low-
risk patients (P < 0.0001) with 1-year AUC of 0.76, 3-year 
AUC of 0.73, and 5-year AUC of 0.75 (Fig. 8D, E). To 
validate the robustness of this prognostic model, survival 
analysis was also performed in GSE65904 and GSE54467. 
The results displayed that high-risk patients possessed bet-
ter prognosis with good prediction performance (Fig. 8F–I).
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Clinical performance and prognosis analysis of risk 
score

To clarify the performance of risk scores in clinical practice, 
the distribution of risk scores among clinicopathological 
features (TMN stage, stage, age, gender, and three subtypes) 
was examined in the TCGA-SKCM cohort. The results 
showed that patients with advanced stage had higher risk 

scores (Fig. 9A), and patients with subtype C3 possessed 
the lowest risk score (Fig. 9B). Besides, the Sankey diagram 
demonstrated high-risk patients mainly belonged to subtype 
C1 and subtype C2 (Fig. 9C). Meanwhile, Kaplan–Meier 
curves were generated between high- and low-risk groups 
among different clinicopathological features. We found that 
high-risk patients with different clinicopathological features 
also displayed poor outcomes (Fig. 9D).

Fig. 7   Prediction of responsiveness to immunotherapy/chemotherapy 
among three subtypes in the TCGA-SKCM cohort. A, Box plots of 
the estimated IC50 for Paclitaxel, Cisplatin, Vinblastine, and Temo-
zolomide. B, Difference of T cell inflamed GEP score among three 
subtypes. C, Difference of Th1/IFNγ gene signature among three 

subtypes. D, Difference of cytolytic activity among three subtypes. 
E, Heatmap diagram of immune checkpoints among three subtypes. 
F, Differential expression analysis of 28 immune checkpoints among 
three subtypes
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Differences in immune microenvironment 
between risk groups

Furthermore, we assessed the alteration of the immune 
microenvironment between the two r isk groups. 
Figure 10A revealed that low-risk patients had increased 

StromalScore, ImmuneScore, and ESTIMATEScore, 
whereas high-risk patients possessed higher TumorPurity 
scores. Additionally, some immune cells such as T_
cells_CD8, T_cells_CD4_memory_activated, NK_
cells_activated, and Macrophages_M1 were significantly 
elevated in low-risk patients, while Macrophages_M2 

Fig. 8   Construction and validation of the prognostic model. A, Inde-
pendent variable coefficients changed with lambda increase. B, ten-
fold cross-validation determining the confidence interval under each 
lambda. C, 8 TME-related genes were identified. D, E, ROC curves 
with AUCs for 1 year, 3 years, and 5 years and Kaplan–Meier curves 

of high- and low-risk patients in TCGA-SKCM cohort. F, G, ROC 
curves with AUCs for 1 year, 3 years, and 5 years and Kaplan–Meier 
curves of high- and low-risk patients in GSE65904. H, I, ROC curves 
with AUCs for 1 year, 3 years, and 5 years and Kaplan–Meier curves 
of high- and low-risk patients in GSE54467
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and Mast_cells_resting were increased in high-risk 
patients (Fig. 10B). We also compared the enrichment 
score of 29 TME-related gene signatures in high- and 
low-risk groups, and Fig. 10C, D deciphered that most 
TME-related gene signatures were higher in the low-risk 

group. Moreover, the risk score was positively correlated 
with B_cells_naïve, T_cells_CD4_memory_resting, 
NK_cells_resting, Macrophages_M0, Macrophages_M2, 
and Tumor proliferation rate, while negatively correlated 
with some anti-tumor signatures such as M1 signature, 
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Fig. 9   Clinical performance and prognosis analysis of risk score in 
TCGA-SKCM cohort. A, Violin plots of the risk score in TMN stage, 
stage, age, and gender. B, Violin plots of the risk score in three sub-

types. C, Sankey diagram showing the distribution of three subtypes 
in high- and low-risk groups. D, Kaplan–Meier curves of high- and 
low-risk patients in different clinicopathological features
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MHCII, anti-tumor cytokines, and co-activation molecules 
(Fig. 10E).

Differences in immunotherapy between risk score 
groups

As shown in Fig.  11A, the IC50 values of Paclitaxel 
(P = 2.8e-09) and Temozolomide (P = 0.049) were dis-
tinctly decreased in the low-risk group, while the IC50 
value of Cisplatin was lower in the high group, indicating 

that low-risk patients were more sensitive to Paclitaxel and 
Temozolomide, whereas high-risk patients were more sen-
sitive to Cisplatin (P = 0.00082). Furthermore, we found 
that low-risk patients exhibited increased TMB (P = 0.019) 
and intra-tumor genetic heterogeneity (P = 0.031). The risk 
score was negatively correlated with TMB and intra-tumor 
genetic heterogeneity (Fig. 11B–D). Figure 11E–G dem-
onstrated that T-cell–inflamed GEP score, Th1/IFNγ gene 
signature, and CYT score were remarkably increased in 
low-risk patients, which were negatively correlated with 

Fig. 10   Differences in immune microenvironment between risk 
groups in the TCGA-SKCM cohort. A, ESTIMATE evaluating 
ImmuneScore, ImmuneScore, ESTIMATEScore, and TumorPu-
rity between risk groups. B, Box plots of relative abundance of 22 
immune cells between risk groups. C, Heatmap of 29 TME-related 

gene signatures in high- and low-risk groups. D, Box plots of TME-
related gene signatures. E, Correlation analysis between risk score 
and 29 TME-related signatures. ns represents P > 0.05; *P < 0.05, 
**P < 0.01, ***P < 0.001, and.****P < 0.0001
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Fig. 11   Differences in immunotherapy between risk score groups. A, 
Box plots of the estimated IC50 for Paclitaxel, Cisplatin, Vinblastine, 
and Temozolomide in the TCGA-SKCM cohort. B–D, Violin plots of 
TMB, intra-tumor genetic heterogeneity, and HRD score in high- and 
low-risk groups, along with their correlation with a risk score. E–G, 

Violin plots of T cell inflamed GEP score, Th1/IFNγ gene signature, 
and cytolytic activity in high- and low-risk groups, and correlation 
analysis between these parameters and risk score. H, Correlation 
analysis between immune checkpoints and risk score. I, Distribution 
of immune checkpoints in high- and low-risk groups
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a risk score. Moreover, we also evaluated the distribu-
tion of immune checkpoints and their correlations with 
two risk groups. Figure 11H, I revealed that most immune 
checkpoints were significantly highly expressed in the low-
risk group, and risk score was negatively correlated with 
immune checkpoints.

Discussion

TME plays a pivotal role in the biological process of tumors, 
and the tumor immune microenvironment is strongly asso-
ciated with the clinical outcome and anti-tumor therapy 
responses. In the present study, transcriptome data of SKCM 
was used to identify three TME-related subtypes based on 
29 TME-related gene signatures. We confirmed that subtype 
C3 had the most favorable prognosis, enriched in immune-
related pathways, and possessed higher ImmuneScore and 
ESTIMATEScore but a lower TumorPurity. Next, we con-
structed and validated a prognostic risk model based on 8 
TME-related genes, which could predict prognosis, immune 
microenvironment, and immunotherapy response between 
high- and low-risk SKCM patients.

Increasing pieces of evidence have demonstrated a close 
correlation between CD8 + T cell infiltration in TME and 
good prognosis in the tumor. Tumor cells can be destroyed 
and eliminated when cytotoxic CD8 + T cells are activated 
and infiltrate into the tumor site (Maimela et al. 2019). How-
ever, suppression of CD8 + T cell infiltration in the TME con-
tributes to the underlying mechanism of resistance to radio-
therapy (Chen et al. 2018). A previous study has confirmed 
that decreased CD8 + T cell infiltration in TME and increased 
PD-L1 expression are related to CD44 + /CD133 + cancer 
stem cells and dismal outcomes in pancreatic cancer (Hou 
et al. 2019). Macrophages occupy the predominant position 
in the TME. Under the TME, macrophages polarize into mac-
rophages M1 exhibiting anti-tumor effect and macrophages 
M2 possessing anti-inflammatory and oncogenic features. 
Additionally, evaluating the ratio of M1 to M2 macrophages 
can serve as a prevailing approach for clinical application 
in cancer patients (Jayasingam et al. 2020). In this study, 
we found that subtype C3 possessed higher ImmuneScore 
and ESTIMATEScore but a lower TumorPurity, indicating 
that patients with subtype C3 had more immunity. Besides, 
T_cells_CD8, T_cells_CD4_memory_activated, and Mac-
rophages_M1 were highly expressed in subtype C3, whereas 
Macrophages_M2 were increased in subtype C1 and subtype 
C2. These suggested that more CD8 T cells infiltration into 
TME and increased polarization of Macrophages into M2 
phenotypes were a benefit for favorable prognosis of SKCM 
patients. Meanwhile, a previous study has reported that the 
expression of Th1/IFNγ genes in the TME is associated with 
prognosis in melanoma patients, implying Th1/IFNγ-related 

signatures may be responsible for the progression of mela-
noma (Dizier et  al. 2020). Therefore, increased T-cell-
inflamed GEP, Th1/IFNγ gene signature, and CYT score also 
contributed to the good prognosis of subtype C3 in this study.

A previous study has reported that gene signatures could 
predict prognosis, immune status, and chemosensitivity in 
cancers using various machine learning (Peng et al. 2022; 
Chi et al. 2022; Chi et al. 2022c; Chi et al. 2023). A recent 
study has generated 6 TME-related signatures (EDN3, 
CLEC4E, SRPX2, KIR2DL4, UBE2L6, and IFIT2) based 
on 471 SKCM patients from the TCGA dataset and found 
that these genes have good predictive values in the prog-
nosis of patients with SKCM (Zhou et al. 2021). In this 
study, we identified 8 TME-related genes affecting prog-
nosis (NOTCH3, HEYL, ZNF703, ABCC2, PAEP, CCL8, 
HAPLN3, and HPDL) using 354 metastatic tumor samples 
from the TCGA dataset, and these TME-related genes could 
predict the clinical outcome. Also, we revealed that low-
risk patients were more sensitive to Paclitaxel and Temo-
zolomide, while high-risk patients were more sensitive to 
Cisplatin, which indicated therapeutic options for patients 
with SKCM. The different TME-related genes identified in 
the two studies may be due to the selection of SKCM sam-
ples. These 8 TME-related genes in our study can be used 
as supplements for biomarkers of SKCM and provide novel 
directions for the precision treatment of SKCM.

NOTCH signaling has been proven to modulate various 
aspects of cancer biology, and NOTCH shapes the TME 
in the tumor through Juxtacrine and Paracrine Signaling 
between the diverse compartments of TME (Meurette and 
Mehlen 2018). It has been demonstrated that NOTCH3 could 
promote tumor growth via provoking the infiltration of immu-
nosuppressive cells in TME of colorectal cancer (Huang et al. 
2022). HEYL has been identified as a novel prognostic bio-
marker of hypoxic gastrointestinal cancer exhibiting more 
immune and stromal infiltration (Hu et al. 2022). ZNF703 
belongs to the zinc finger protein family, which is the larg-
est transcription factor family in the human genome, and it 
is a common luminal B breast cancer oncogene. ZNF703 
has been reported to be a progression-related gene that is 
associated with M2 macrophage infiltration in colon cancer 
(Xu et al. 2021). ABCC2 is one of the ATP-binding cas-
sette transporters and is implicated in clinical drug resistance 
modulated by TNF-α in TME of tumors (Alamolhodaei et al. 
2020). PAEP has been identified as an immune-related gene 
predicting prognosis in lung squamous cell carcinoma (Wu 
et al. 2021). Besides, CCL8 is associated with immune cell 
infiltration of SKCM, which can be used as a prognostic bio-
marker for survival and therapy (Yang et al. 2021). HAPLN3 
exerts potential immunosuppressive in malignant melanoma 
patients. Recently, based on the immune subtype classifica-
tion of melanoma, Mei and colleagues have identified 4 genes 
including SEL1L3, HAPLN3, BST2, and IFITM1, which 
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could predict prognosis and responses to anti-CTLA4 immu-
notherapy (Mei et al. 2021). A previous study has revealed 
that elevated HPDL is remarkably positively correlated with 
the infiltration of immune cells and critical immune check-
points, which lead to immunosuppressive TME and an unfa-
vorable outcome (Jiang et al. 2022). In the present study, the 
identified 8 TME-related signatures might be involved in the 
development and progression of SKCM and considered as 
prognostic biomarkers for outcome and response to clinical 
therapy. We also validated the robustness of this risk model 
with good prediction performance for SKCM in independent 
external GEO cohorts.

Data used in this study was obtained from the TCGA 
database, while more convincing prospective studies should 
be performed. Besides, the underlying mechanism of these 
TME-related genes in SKCM warrants further investigation.

Conclusion

In conclusion, we identify three TME-related subtypes and 
provided a supplement to understanding the heterogeneity 
of SKCM. Moreover, TME-related genes can predict prog-
nosis and evaluate the response to immunotherapy in SKCM 
patients.
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