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Abstract
Abiotic stresses are detrimental to plant growth and development and have a major negative impact on crop yields. A grow-
ing body of evidence indicates that a large number of long non-coding RNAs (lncRNAs) are key to many abiotic stress 
responses. Thus, identifying abiotic stress-responsive lncRNAs is essential in crop breeding programs in order to develop 
crop cultivars resistant to abiotic stresses. In this study, we have developed the first machine learning-based computational 
model for predicting abiotic stress-responsive lncRNAs. The lncRNA sequences which were responsive and non-responsive 
to abiotic stresses served as the two classes of the dataset for binary classification using the machine learning algorithms. The 
training dataset was created using 263 stress-responsive and 263 non-stress-responsive sequences, whereas the independent 
test set consists of 101 sequences from both classes. As the machine learning model can adopt only the numeric data, the 
Kmer features ranging from sizes 1 to 6 were utilized to represent lncRNAs in numeric form. To select important features, 
four different feature selection strategies were utilized. Among the seven learning algorithms, the support vector machine 
(SVM) achieved the highest cross-validation accuracy with the selected feature sets. The observed 5-fold cross-validation 
accuracy, AU-ROC, and AU-PRC were found to be 68.84, 72.78, and 75.86%, respectively. Furthermore, the robustness of 
the developed model (SVM with the selected feature) was evaluated using an independent test dataset, where the overall 
accuracy, AU-ROC, and AU-PRC were found to be 76.23, 87.71, and 88.49%, respectively. The developed computational 
approach was also implemented in an online prediction tool ASLncR accessible at https://​iasri-​sg.​icar.​gov.​in/​aslncr/. The 
proposed computational model and the developed prediction tool are believed to supplement the existing effort for the iden-
tification of abiotic stress-responsive lncRNAs in plants.
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Introduction

Due to the growing world population, demand is going 
to be increased in global food consumption, and by 2050, 
that demand is expected to be doubled (Tilman et  al. 
2011). Abiotic stresses, on the other hand, present a sub-
stantial challenge to agriculture and the ecosystem due 
to changing climatic conditions, resulting in significant 
crop yield loss (Saeed et al., 2023; Wani et al., 2016). In 
order to adapt to challenging environmental conditions, 
plants modify the expression of several genes at the tran-
scriptional, post-transcriptional, and epigenome levels in 
response to different abiotic stresses (Liu et al. 2022a; 
Choudhury et al. 2021; Zhu et al., 2022). The functional 
elucidation of many genes at the transcription, post-
transcriptional, post-translational, and epigenetic levels 
has been significantly improved with the advancement in 
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genome sequencing technology, especially next-generation 
sequencing (NGS) (Li et al. 2018). The NGS technologies 
have led to the identification of novel non-coding RNAs 
(ncRNAs) (Öztürk Gökçe et al., 2021; Bhogireddy et al., 
2021; Yu et al. 2019) and their roles in the regulation of 
multiple biological processes, including plant response to 
various abiotic stresses (Yang et al. 2023;Yu et al. 2019).

The long non-coding RNAs (lncRNAs) are a group of 
ncRNAs which are more than 200 bp long and not be trans-
lated into a protein (Quan et al. 2015). Transcriptional, post-
transcriptional, and epigenetic regulations of gene expres-
sion are three ways that lncRNA acts as a gene regulatory 
factor (Quan et al. 2015). The lncRNAs are reported to be 
important modulators of various biological processes (Mer-
cer et al., 2009). Their involvement in controlling transcrip-
tion through enhancers and providing regulatory binding 
sites has been well documented (Wang and Chekanova, 
2017). These are also said to act as miRNA sponges, sup-
pressing miRNA function by causing deflection to their 
potential target (Wang et al. 2010). The lncRNAs are also 
found in the nucleus, where they serve as major compo-
nents of nuclear speckles (Hutchinson et al. 2007). In the 
cytoplasm, lncRNAs interact with a variety of RNA-bind-
ing proteins (RBPs) to monitor and control their regulatory 
dynamics (Glisovic et al. 2008).

Plant lncRNAs make up around 80% of all ncRNAs and 
are involved in a wide range of biological processes, includ-
ing abiotic stress response (Wang et al. 2021). The first 
lncRNA reported in plants was ENOD40 in Soybean (Yang 
et al. 1993). Despite the fact that the plant genomes are more 
complicated than animal genomes, the number of experimen-
tally identified lncRNAs in plants are much less than that 
reported for animals. Several lncRNAs that respond to abiotic 
stresses have been reported to be present in a wide range of 
plant species. Table 1 contains a list of recently identified 
lncRNAs reported to be involved in various abiotic stresses. 
Due to the discovery of abiotic stress-responsive lncRNAs 
and their target genes in a range of plant species, we now 
have a better understanding of the molecular mechanism 
underlying these stress adaptations. For example, in drought 
conditions of Arabidopsis thaliana, lncRNA lincRNA340 is 
induced to repress miR169, relieving nuclear factor Y (NF-Y) 
gene expression to improve stress tolerance (Qin et al. 2017). 
Further, lncRNA973 functions as a positive regulator of salt-
responsive genes in ROS (reactive oxygen species), enhanc-
ing salinity tolerance in cotton (Zhang et al., 2019). Simi-
larly, GhDNA1, which targets AAAG DNA double strands 
to regulate drought-responsive genes in trans, was discov-
ered to be associated with drought tolerance in cotton (Tao 
et al., 2021). These findings support the idea that lncRNAs 
can be induced or suppressed in response to abiotic stress. 
Furthermore, these abiotic stress-responsive lncRNAs have 
been linked to phytohormone signal transduction, secondary 

metabolite biosynthesis, and sucrose metabolism pathways, 
each of which has been reportedly engaged in plant abiotic 
stress response (Ding et al. 2019; Yang et al., 2022; Lamin-
Samu et al., 2022).

The studies cited above indicate that lncRNAs may be 
exploited as genetic targets to develop crop cultivars that 
are resistant to abiotic stresses. However, the lncRNAs are 
needed to be identified first before using them as genetic 
targets. To date, techniques such as serial expression of 
gene expression (SAGE), the expressed sequence tag (EST), 
whole-genome tiling arrays, lncRNA microarray, RNA cap-
ture sequencing (RNA CaptureSeq), and RNA-sequencing 
(RNA-seq) have all been employed to identify abiotic stress-
related lncRNAs. However, the wet-lab experiments con-
sume a lot of resources (Lee and Kikyo 2012). Furthermore, 
the advanced sequencing techniques are species-specific. 
Thus, there is a need to develop a computational method for 
predicting abiotic stress-responsive lncRNAs using lncRNA 
sequence data. In other words, the development of machine 
learning-based computational methods may be a better alter-
native for predicting lncRNAs associated with abiotic stress. 
Considering the above facts, the present study is devoted 
to develop the first machine learning-based computational 
model for predicting abiotic stress-responsive lncRNAs 
using sequence-derived features. The proposed approach is 
expected to supplement wet-lab methods and other sequenc-
ing techniques for identifying abiotic stress-responsive lncR-
NAs in plants.

Materials and methods

Collection of abiotic stress‑responsive lncRNA 
sequence data

The PncStress database (Wu et al., 2020) is the most recent 
source for abiotic stress-responsive lncRNAs. It contains 
experimentally validated ncRNA sequences linked to a vari-
ety of abiotic and biotic stresses. With 114 species respond-
ing to 48 abiotic and 91 biotic stresses, PncStress now has 
4227 entries, including 2523 miRNAs, 444 lncRNAs, and 52 
circRNAs validated by different experimental methods. The 
PncStress database (Wu et al., 2020) was accessed on July 
30, 2022, in order to retrieve lncRNA sequences relevant 
to abiotic stresses. A total of 444 abiotic stress-responsive 
lncRNA sequences, representing 27 different abiotic stress 
categories, were obtained from 24 plant species.

Construction of positive and negative dataset

The abiotic stress-responsive lncRNA sequences obtained 
from the PncStress database were used to construct the 
positive set. On the other hand, 238,226 lncRNA sequences 
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retrieved from the PLncDB V2.0 database (accessed on 
August 05, 2022) (Jin et al., 2021) were used to construct the 
negative set. To prevent homologous bias in the prediction 
accuracy, the homology reduction at 50% sequence identity 
was applied to both positive and negative datasets using the 
CD-HIT method (Huang et al., 2010). After the redundancy 
sequences were removed, the positive and negative sets pro-
duced 364 and 97,654 lncRNA sequences, respectively. To 
avoid prediction bias toward the non-abiotic stress class hav-
ing a larger number of sequences, a balanced dataset with 
an equal number of abiotic stress and non-abiotic stress-
responsive lncRNA sequences was taken into consideration. 
In other words, 364 non-abiotic stress sequences were cho-
sen at random from the pool of 97,654 sequences to prepare 
a balanced training dataset that comprises an equal number 

of sequences from both classes. Out of the 364 sequences 
in each class, 101 lncRNA sequences were kept aside to 
prepare the independent dataset. The remaining 263 stress-
responsive lncRNAs and 263 non-stress-responsive lncR-
NAs were used as positive and negative sets for the training 
dataset.

Numeric feature generation

In this study, we generated Kmer features to transform each 
lncRNA sequence into a numeric feature vector. The Kmer 
features are represented as the occurrence frequencies of K 
neighboring nucleic acids (Lee et al. 2011), which has been 
successfully used in several computational studies including 

Table 1   Representative lncRNAs found to be involved in plants responding to different abiotic stresses

Abiotic stress Species LncRNAs References

Drought/dehydration Glycine max lncRNA77580 Chen et al., 2023
Oryza sativa L. TCONS_00021861; MSTRG.5679.8; 

MSTRG.19712.1; MSTRG.37152.2
Chen et al., 2021a; Yang et al., 2022

Solanum lycopersicum SlNCED1; SlAOC; SlLOX5; SlCWINV3-
like;SlAgpL1; TomadPgps; SlMS1

Lamin-Samu et al., 2022

Arachis hypogaea L. MSTRG.70535.2; MSTRG.86570.2; 
MSTRG.86570.1; MSTRG.100618.1; 
MSTRG.81214.2; MSTRG.30931.1

Ren et al., 2022

Solanum tuberosum L. StFLORE Ramírez Gonzales et al., 2021
Gossypium hirsutum GhDAN1 Tao et al., 2021
Brassica napus L. XLOC_052298; XLOC_094954; XLOC_012868 Tan et al., 2020
Zea mays TCONS_00043110; TCONS_00077962; 

TCONS_00084669; TCONS-00105920; 
TCONS-00166326; TCONS-00060596; 
TCONS-00149876; TCONS-00177501

Yu et al., 2020

Cold/heat stress Arabidopsis thaliana CIL1; XLOC_006026 Liu et al., 2022b; Rutley et al., 2021
Oryza sativa L. TCONS_00092993; TCONS_00043075; 

TCONS_00100154
Zhang et al., 2022

Manihot esculenta Crantz CRIR1; ncP12248 Li et al., 2022a; Suksamran et al., 2020
Triticum aestivum L. VAS Xu et al., 2021
Gossypium hirsutum XH123 Cao et al., 2021
Cucumis sativus L. TCONS_00031790; TCONS_00014332; 

TCONS_00014717; TCONS_00005674
He et al., 2020

Salt/salinity Medicago truncatula MtCIR1 Tian et al., 2023
Glycine max lncRNA77580; Gmax_MSTRG.35921.1; max_

MSTRG.18616.1
Li et al., 2022b; Chen et al., 2023

Populus Trichocarpa Ptlinc-NAC72 Ye et al., 2022
Zea mays MSTRG.8888.1 Liu et al., 2022a
Gossypium hirsutum lncRNA354; lncRNA973 Zhang et al., 2021; Zhang et al., 2019

Heavy metal stress Populus L. PMAT Chen et al., 2022
Populus tomentosa MSTRG.22608.1; MSTRG.5634.1 Quan et al., 2021
Betula platyphylla LncRNA2705.1; LncRNA11415.1 Wen et al., 2020
Oryza sativa L XLOC_086307; XLOC_058523; XLOC_104363; 

XLOC_059778; XLOC_122123; 
XLOC_125848; XLOC_098316

Chen et al., 2018
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lncRNA prediction (Sun et al. 2013). The numeric value for 
the Kmer size k can be calculated as

where Nk(t) is the number of Kmer type t of size k, and 
N is the length of the nucleotide sequence. For example, 
for an RNA sequence ‘CUG​ACU​GAC​UGA​CUGUA’, 
f1(C) =

4

17
 , f2(CU) =

4

16
 , f3(CUG) =

4

15
, f4(CUGA) =

3

14
 , 

f5(CUGAC) =
3

13
 , and f6(CUGACU) =

3

12
 . A brief repre-

sentation of the Kmer feature is shown in Fig. 1. The num-
ber of Kmer features of size k is 4k. In this study, we have 
considered Kmer sizes 1 to 6 to generate the features for 
each sequence. Thus, for Kmer sizes 1, 2, 3, 4, 5, and 6, 
the number of features generated was 4, 16, 64, 256, 1024, 
and 4096, respectively. The Kmer sizes 1 to 6 were denoted 
as K1, K2, K3, K4, K5, and K6. In total, 5460 features were 
generated for each lncRNA sequence.

Prediction algorithms

Several bioinformatics fields have effectively applied 
machine learning techniques for prediction purposes (Guo 
et al. 2017, Pradhan et al. 2022, Abbas and EL-Manzalawy 

(1)fk(t) =
Nk(t)

N − k + 1
,

2020, Pradhan et al. 2021). The support vector machine 
(SVM; Vapnik 1963), extreme gradient boosting (XGB; 
Chen and Guestrin 2016), random forest (RF; Breiman 
2001), light-gradient boosting machine (LGBM; Ke et al. 
2017), bagging (BAG; Breiman 1996), adaptive boosting 
(ADB; Freund and Schapire 1999), and gradient boosting 
decision trees (GBDT; Friedman 2001) were the seven 
machine learning techniques we used in this study. Table 2 
lists the R-packages used to implement the learning models 
and the parameter settings for each learning model.

Feature selection approach

By eliminating duplicate and irrelevant features, feature 
selection reduces the computational burden while increasing 
classification accuracy (Pradhan et al., 2022). The support 
vector machine recursive feature elimination (SVM-RFE; 
Guyon et  al., 2002), random forest variable importance 
measure (RF-VIM; Daz-Uriarte and Alvarez de Andrés, 
2006), XGB variable importance (XGB-VIM; Sandri and 
Zuccolotto, 2008), and LGBM variable importance measure 
(LGB-VIM; Ke et al., 2017) were used to select important 
and relevant features. According to past studies (Guyon et al., 
2002; Pradhan et al., 2022), the top features in this study that 
led to a classifier with the best classification accuracy was 

Fig. 1   Pictorial representation of the computation of Kmer features of sizes 1 to 6
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chosen. The sigFeature R-package was used to implement 
the SVM-RFE technique (Das et al., 2020). The R-packages 
randomForest (Liaw and Wiener 2002), xgboost (Chen et al., 
2021b), and lightgbm (Shi et al. 2022) were used to imple-
ment the RF-VIM, XGB-VIM, and LGB-VIM methods, 
respectively.

Cross‑validation and performance metrics

A five-fold cross-validation approach was used to assess 
the performance of the prediction models. Both the posi-
tive and negative datasets were randomly separated into 
five subgroups of equal size to perform the five-fold 
cross-validation (Jiang and Wang, 2017). In each fold of 
the cross-validation, one randomly selected subset from 
each class served as the test set, while the remaining four 
subsets from both classes were pooled to serve as the train-
ing set. With distinct training and test sets for each fold, 
the experiment was carried out five times, and the accu-
racy over the five folds was recorded. The different steps 
involved to develop the proposed approach are shown in 
Fig. 2. The following metrics were used to evaluate the 
performance of the prediction models: sensitivity, speci-
ficity, accuracy, precision, area under receiver operating 
characteristic curve (AU-ROC; Fawcett, 2006), and area 
under precision recall curve (AU-PRC; Boyd et al., 2013). 
In the following formulae, TP and FP respectively repre-
sent the number correctly and wrongly predicted positive 
samples, whereas TN and FN respectively represent the 
number correctly and wrongly predicted negative samples.

(2)Sensitivity =
TP

TP + FN

(3)Specificity =
TN

TN + FP

Results

Performance analysis of MLAs with independent 
Kmer feature set

The performance of each machine learning method was evalu-
ated independently with each Kmer feature set (K1 to K6). The 
highest sensitivity of 69.05% was achieved with LGBM for 
K4, followed by the BAG (67.59%) with K2 (Fig. 3). In com-
parison to the other combinations of Kmer size and learning 
algorithm, BAG also achieved the highest specificity (72.68%) 
with K4. The BAG algorithm also achieved the highest pre-
cision of 68.10% for K4 (Fig. 3). As far as overall accuracy 
is concerned, RF achieved the highest value of 61.79% with 
tri-nucleotide compositional features (K3), followed by XGB 
(61.95%) and GBDT (61.21%) with dinucleotide (K2) and 
tri-nucleotide (K3) features, respectively (Fig. 3). With K3, 
RF also achieved the highest AU-ROC (70.70%) and AU-
PRC (70.69%). In comparison to the remaining learning 
algorithms, XGB with K2 was found to produce higher AU-
ROC (70.32%) and AU-PRC (69.51%) (Fig. 3). Because the 

(4)Accuracy =
1

2

(

TP

TP + FN
+

TN

TN + FP

)

(5)Precision =
TP

TP + FP

(6)AU − ROC = ∫
1

0

TP

P
d
(

FP

N

)

(7)AU − PRC = ∫
1

0

TP

TP + FP
d
(

TP

P

)

Table 2   Software used and parameter setting for different machine learning models used for prediction of abiotic stress-responsive lncRNAs

Method Parameter Software

Support vector machine (SVM) Kernel = “Radial Basis Function”, γ = 1/ #num-
ber of column, cost = 1

e1071 R-package (Meyer et al. 2021)

Extreme gradient boosting (XGB) max_depth = 3, η= 1, nrounds = 2, objective = 
“logistic”

xgboost R-package (Chen et al., 2021b)

Random forest (RF) Ntree =1000, Mtry = sqrt (#number of column) randomForest R-package (Liaw and Wiener 2002)
Light-gradient boosting machine (LGBM) objective= ‘binary’, boosting=“gbdt”, learning_

rate = 0.1 , num_leaves = 31, nrounds =1000
lightgbm R-package (Shi et al. 2022)

Gradient boosting decision tree (GBDT) shrinkage =0.01, distribution = ‘bernoulli’, 
cv.folds=5, n.trees =1000, interaction.depth 
=6, n.minobsinnode =10

gbm R-package (Greenwell et al. 2022)

Adaptive boosting (ADB) v = 5, mfinal = 1000 adabag R-package (Alfaro et al. 2013)
Bagging (BAG) nbagg=25, method=c(“standard”) ipred R-package (Peters et al. 2023)
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Fig. 2   Illustration of the brief outline of the proposed computational 
approach. The diagram depicts the overall workflow of the entire 
computational strategies followed to develop the abiotic stress-
responsive lncRNA prediction models. (A) Retrieval of experi-
mentally validated abiotic responsive and non-responsive lncRNA 
sequences from the PncStress and PLncDB V2.0 database and pro-

cessing of sequence data; (B) sequence-derived Kmer feature gen-
eration and selection of most important features and machine learn-
ing algorithm (MLA) based on AU-ROC and AU-PRC; (C) model 
building using machine learning technique and cross-validation with 
selected features and assessment of model in the independent test 
dataset

Fig. 3   Heat maps of the per-
formance metrics for different 
machine learning algorithms 
with independent Kmer feature 
set
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features generated with large Kmer sizes are sparse, the accu-
racy obtained with K5 and K6 may be worse than with K1, K2, 
K3, and K4, similar to the present study.

Performance analysis of MLAs with combined Kmer 
feature set

In addition to evaluating the accuracy of each Kmer fea-
ture set separately, the performance of machine learn-
ing algorithms was evaluated using combined Kmer fea-
ture sets such as K12 (K1+K2), K123 (K1+K2+K3), K1234 
(K1+K2+K3+K4), K12345 (K1+K2+K3+K4+K5), and K123456 
(K1+K2+K3+K4+K5+K6). The highest sensitivity (79.98%) 
was achieved by SVM with K12 features, whereas the BAG 
method achieved the highest sensitivity for the rest of 
the feature combinations (Fig. 4). The highest specificity 
(66.17%) and precision (62.82%) was achieved by GBDT 
with K123, followed by RF (65.36%, 61.91%) with K12 fea-
tures. When XGB was used, the highest accuracy was found 
to be 62.16% with K12 features, followed by GBDT (62.15%) 
with K123 and RF (62.14) with K12 features (Fig. 4). Barring 
a few exceptions, the accuracies were seen to be declining 
with an additional increase in the Kmer features (Fig. 4). 
The RF achieved the highest AU-ROC (69.4%) with K123, 
followed by XGB (69.37%) with K12 features (Fig. 4). The 
highest AU-ROC with K123 features was seen to be less 
than that obtained with RF for K3 (70.70%). When RF was 
employed as the classifier, K12 produced the highest AU-
PRC (70.18%), which was also lower than the AU-PRC of 
RF achieved with K3 (70.70%) (Fig. 4).

Performance analysis MLAs with selected Kmer 
features

In order to improve prediction accuracy further, four dif-
ferent feature selection procedures (SVM-RFE, RF-VIM, 
XGB-VIM, and LGB-VIM) were employed to identify 
relevant and non-redundant features. The features were 
ranked in order of relevance, with the first being the most 
significant and the final being the least important. The 
prediction accuracy of learning algorithms was further 
evaluated in terms of AU-PRC by adding 10 top features 
at a time (Fig.  5). The  BAG method was observed to 
achieve the highest AU-PRC of 65.08% using the top 70 
XGB-VIM features (Table 3). Similarly, BAG achieved the 
highest AU-PRC of 65.66% with 590 top-selected features 
of LGB-VIM. SVM was found to achieve the maximum 
accuracy (72.66%) among the considered models with 100 
top features chosen by RF-VIM (Table 3). Furthermore, 
SVM was observed to achieve the highest AU-PRC of 
76.16% using the top 530 SVM-RFE features (Table 3). 
The prediction accuracy of the learning algorithms was 
observed to be improved when compared to the perfor-
mance with all 5460 features. The SVM was found to be 
the best performer, followed by the RF when the prediction 
was done using the selected features of SVM-RFE and 
RF-VIM (Fig. 5). The BAG method was found to be the 
better achiever when it came to prediction using the chosen 
features of XGB-VIM and LGB-VIM in comparison to the 
other methods (Fig. 5).

Fig. 4   Heat maps of prediction 
accuracy for different shallow 
learning algorithms with the 
combining Kmer feature sets
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Analysis of cross‑validation and independent test 
set prediction

Since the SVM was found to achieve the highest accuracy 
with 530 top-selected features of SVM-RFE, the same com-
bination was employed for cross-validation performance 

analysis. As far as cross-validation analysis is concerned, 
the sensitivity, specificity, overall accuracy, precision, 
AU-ROC, and AU-PRC were observed to be 73.03, 64.61, 
68.84, 67.58, 73.98, and 75.54%, respectively (Table 4). 
The model trained with SVM using 530 selected features 
was also employed to predict the independent test set (101 

Fig. 5   Plot of the AU-PRC 
(auPRC) with the ranked fea-
tures selected through four dif-
ferent feature selection methods

Table 3   Performance metrics 
of different machine learning 
methods using the selected 
features

ADB, adaptive boosting; BAG, bagging; LGBM, light-gradient boosting machine; RF, random forest; SVM, 
support vector machine; XGB, extreme gradient boosting

Feature selection 
method

#Feature selected 
and metrics

ADB BAG LGBM RF SVM XGB

LGB-VIM #Feature 250 590 350 260 480 370
AU-ROC 61.83 63.57 61.76 61.86 60.22 63.12
AU-PRC 64.51 65.56 63.09 64.28 62.35 63.83

XGB-VIM #Feature 430 70 140 70 170 230
AU-ROC 60.55 60.31 61.80 70.61 60.53 60.41
AU-PRC 64.96 65.08 62.32 63.35 61.92 61.60

RF-VIM #Feature 10 20 50 250 100 240
AU-ROC 66.54 65.45 66.40 68.44 69.01 67.64
AU-PRC 67.51 66.28 69.21 70.11 72.66 67.86

SVM-RFE #Feature 20 190 300 80 530 30
AU-ROC 62.53 65.34 68.37 69.80 74.09 70.22
AU-PRC 66.02 67.55 67.82 71.73 76.16 69.65
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positive and 101 negative sequences). For the independent 
test set, the sensitivity, specificity, overall accuracy, preci-
sion, AU-ROC, and AU-PRC were found to be 91.08, 61.38, 
76.23 and 70.22, 87.71, and 88.49%, respectively (Table 4). 
The higher degree of sequence similarity with the train-
ing dataset may be attributed to the higher accuracy of the 
independent test set when compared to the cross-validation 
accuracy.

Development of an online prediction tool

In order to predict the abiotic stress-responsive lncRNAs, we 
further developed an online prediction tool called ASLncR 
(https://​iasri-​sg.​icar.​gov.​in/​aslncr/). The front end of the 
server was designed using HTML, while its back end uses 
PHP to execute the developed in-house R-code. This server 
implemented the SVM model using the 530 chosen fea-
tures. For prediction, the user has to either paste or upload 
the lncRNA sequences in FASTA format. The results are 
displayed in tabular format, where the probability of each 
lncRNA being associated with stress is provided.

Performance analysis of ASLncR 
with experimentally validated dataset

To further confirm the efficiency of the developed tool 
ASLncR, lncRNA sequences for various abiotic stresses 
were manually collected from published literature (Jha et al. 
2020; Urquiaga et al. 2020; Patra et al. 2023). For 9 different 
plant species, a total of 190 sequences were collected for the 
abiotic stresses cold, heat, light, salt, drought, flood, and 
others. We were left with 138 sequences for the evaluation 
using our model after eliminating the sequences that were 
present in the positive set of training and independent test 
dataset. The abiotic stress responsiveness of the sequences 
was predicted using the ASLncR server, and it was discov-
ered that 81.88% (113 out of 138) of the sequences were 
correctly identified.

Discussion

Abiotic stresses brought about by climate change pose a 
serious challenge to crop production and productivity. 
Therefore, it is necessary to develop abiotic stress-tolerant 
crop cultivars to meet the food security demand. In the last 

decade, a considerable amount of research has focussed to 
understand the different regulatory roles of lncRNAs in 
plant response to abiotic stresses and their indispensable 
roles in environmental adaptation (Chen et al., 2023; Yang 
et al., 2022; Liu et al., 2022b; Zhang et al., 2022; Tian et al., 
2023; Ye et al., 2022; Chen et al., 2022). To put it another 
way, lncRNAs are multifaceted regulatory components 
that are essential for controlling cellular stress in response 
to various abiotic stimuli. For instance, Eom et al. (2019) 
revealed that lncRNAs co-express with mRNA in tomatoes 
in response to drought stress. Network analysis of the inter-
actions between lncRNA and miRNA in Brassica juncea 
reveals a target for regulating drought tolerance (Bhatia 
et al., 2020). In order to understand how plants respond 
to various environmental stresses, it is crucial to identify 
abiotic stress-responsive lncRNAs. However, due to intri-
cate genomic architecture, wet-lab experiments for lncRNA 
identification are costly and time-consuming. Thus, we 
developed a machine learning-based computational model 
for predicting abiotic stress-responsive lncRNAs based on 
the sequence-derived features.

Though several tools are available for plant lncRNA 
prediction, no single tool is available for predicting abiotic 
stress-responsive lncRNAs. It has been shown that lncR-
NAs with related functions share comparable K-mer profiles 
(Kirk et al., 2018). Additionally, the K-mer features have 
been successfully utilized to establish relationships between 
sequence and function among lncRNAs (Kirk et al. 2018; 
Kirk et al. 2021). In order to capture the abundance of short 
motifs in an lncRNA, in the present study, the K-mer features 
were used to encode lncRNAs into numeric feature vectors. 
The Kmer features have also been successfully applied in 
other areas of bioinformatics such as sequence assembly (Li 
et al. 2010), metagenomics (Dubinkina et al. 2016), DNA 
barcoding (Meher et al. 2016), and lncRNA prediction (Sun 
et al. 2013). We considered Kmer sizes 1 to 6, where the 
accuracy obtained with individual Kmer features was found 
to be higher than the accuracy obtained by combining all 
5460 Kmer features. Shorter K-mers are more common, and 
their relative frequencies are more strongly cross-correlated 
than for longer K-mers (Klapproth et al. 2021), which could 
be a probable reason for the low accuracy with higher K-mer 
features.

It was seen that while all the 5460 features were utilized, 
the prediction accuracy was low. Thus, in order to improve 
prediction accuracy, significant and non-redundant features 

Table 4   Performance metrics 
for the training and independent 
test datasets

The SVM with the 530 selected features was used for training and prediction

Evaluation Sensitivity Specificity Accuracy Precision AU-ROC AU-PRC

Cross-validation 73.07 64.61 68.84 67.58 73.98 75.54
Independent dataset 91.08 61.38 76.23 70.22 87.71 88.49

https://iasri-sg.icar.gov.in/aslncr/
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were selected by employing feature selection methods. To 
choose important features, four distinct feature selection 
strategies, including SVM-RFE, RF-VIM, XGB-VIM, and 
LGB-VIM, were adopted. As compared to all the 5460 fea-
tures, BAG achieved the highest accuracy with 70 and 590 
features selected using XGB-VIM and LGB-VIM methods, 
respectively. Similarly, SVM achieved the highest accuracy 
with 100 and 530 features selected using RF-VIM and SVM-
RFE methods, respectively. Compared to the other three 
approaches, SVM-RFE ranking features had greater accu-
racy. Furthermore, it was discovered that prediction with 
selected features improved the accuracy of learning algo-
rithms. When using the 530 top-ranked features of SVM-
RFE, SVM had the highest accuracy among the learning 
algorithms, despite being the least effective when the predic-
tion was done with individual or combined Kmer features.

The robustness of the proposed approach was also 
assessed using an independent dataset. The higher accu-
racy with the independent dataset as compared to the 
cross-validation accuracy may be attributed to a higher 
degree of sequence similarity between the training and 
independent test dataset. For easy implementation of our 
computational approach to predict abiotic stress-respon-
sive lncRNA, we have established an online prediction 
tool ASLncR. Furthermore, to check the effectiveness of 
ASLncR, 138 experimentally confirmed abioti	 c 
stress-related lncRNAs were revalidated. The accuracy 
obtained from the cross-validation, independent test set 
validation, and the revalidation of ASLncR supports the 
applicability of the proposed model for predicting abiotic 
stress-responsive lncRNA in a plant.

Conclusion

Intensifying evidence from various plant species signifies 
that lncRNAs play critical roles in abiotic stress responses. 
Compared to humans, the application of lncRNAs in plant 
breeding is still in its initial phases. Despite the fact that 
lncRNAs mediate plant regulation in response to abiotic 
stresses in many species, their potential as valuable genomic 
resources in plant molecular breeding or as indicators have 
yet to be confirmed. Studies of lncRNAs in a wider range 
of plant species will aid in understanding the evolution and 
diversity of their roles in environmental adaptation. Due to 
the dearth of wet-lab as well as computational approaches, 
potential applications of lncRNAs in plant abiotic stress are 
currently lacking. The present work provides one of the first 
computational methods, ASLncR (https://​iasri-​sg.​icar.​gov.​
in/​aslncr/), for predicting lncRNAs that are responsive to 
abiotic stress. The ASLncR can be successfully employed for 
large-scale prediction of abiotic stress-responsive lncRNAs 
using only sequence information. The suggested strategy is 

expected to supplement the current experimental approaches 
for predicting abiotic stress-related lncRNAs, given the sig-
nificance of lncRNAs in plant response to abiotic challenges.
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