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Abstract
In this study, we explored the pyroptosis-related biomarkers and signatures of colorectal cancer (CRC). Gene expression 
profiles were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA)-COADREAD 
and were analyzed for differentially expressed genes (DEGs). DEGs in CRC‒pyroptosis-related genes (CRC‒PRGs) were 
obtained by intersecting DEGs associated with CRC and PRGs. The CRC‒PRGs were verified; functional enrichment 
analysis was performed with Gene Ontology (GO) followed by cluster analysis. Cox analyses and LASSO regression were 
used in TCGA dataset to construct a prognostic model for patients with CRC. A prognostic risk assessment model was 
constructed and efficacy was evaluated. Decision curve analysis was utilized to assess the role of the Lasso-Cox regression 
prognostic model for clinical utility at 1, 3, and 5 years. Twelve CRC‒PRGs were identified as prognostic pyroptosis-related 
DEGs. CXCL8, IL13RA2, MELK, and POP1 were selected as prognostic genes to construct features with a good prognos-
tic performance in GEO and TCGA. Functional enrichment indicated that the 4-gene signature might be involved in CRC 
tumorigenesis and development through various pathways by playing a prognostic role in CRC. Furthermore, the results 
of the immune landscape analysis showed that the expression of CXCL8 and IL13RA2 in TCGA-COADREAD dataset was 
positively correlated with significant differential enrichment of most immune cells. A novel prognostic model consisting of 
four key genes, CXCL8, IL13RA2, MELK, and POP1, can accurately predict the survival of patients with CRC. This finding 
may provide a new perspective for the treatment of pyroptosis-related CRC.
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CIN	� Chromosomal regions
CXCR1/2	� C-X-C chemokine receptor 1/2

Introduction

Colorectal cancer (CRC) is a common malignancy arising 
from the digestive system in humans, including colon and 
rectal cancers, and is highly prevalent. It has a high global 
mortality rate and currently exhibits a rising tendency in 
both morbidity and mortality (Siegel et al. 2021). CRC is 
the third and fifth leading cause of cancer-related mortality 
in the USA and China, respectively (Siegel et al. 2020). The 
molecular mechanism of CRC is a multistage process that 
involves multiple genetic and polygenic variations (Fearon 
and Vogelstein 1990). It is therefore challenging to develop 
new therapeutic methods for the diagnosis, treatment, and 
prognosis of CRC. However, the greatest drawback of TNM 
classification is that it cannot fully reflect the genetic het-
erogeneity of individual tumors (Hegde et al. 2014). With 
the continuous improvement in gene sequencing, epigenetic 
research on tumors has attracted increasing attention. How-
ever, because of the complex molecular mechanisms affect-
ing the prognosis of CRC, the accuracy of single gene/factor 
prediction models is poor (Zhuang et al. 2021). In contrast, 
polygenic patterns provide a better prediction of the prog-
nosis of the different tumor types (Zhang et al. 2020a; Xue 
et al. 2020; Bao et al. 2020). Therefore, to personalize treat-
ment and predict survival in patients with CRC, it is neces-
sary to have a reliable prognostic gene profile.

Pyroptosis, also known as cellular inflammatory necro-
sis, is a programmed death characterized by cell swelling; 
until the cell membrane is broken, substances in the cell are 
released, resulting in a strong inflammatory response (Shi 
et al. 2017). A long-term chronic inflammatory response can 
lead to the development of local tumor tissues. In particular, 
when there are many bacteria in the gut, it can easily cause 
infection, which in turn causes cells death. We believe that 
pyroptosis is an important factor in the development of CRC. 
Several studies have suggested that apoptosis is related to 
CRC (Yu et al. 2019; Wu et al. 2020; Tian et al. 2020). To 
date, there have been few scientific and clinical studies on 
the relationship between CRC and pyroptosis. The prognosis 
of patients with CRC and the expression characteristics of 
the main pyroptosis-related genes (PRGs) in CRC progres-
sion remains unclear. Although great progress in the study of 
CRC genes has been made, the use of their associated gene 
characteristics to establish the prognostic properties of CRC 
has rarely been studied. Currently, chemo-, endocrine-, and 
immunotherapy, and other treatments alone cannot achieve 
the desired effects. Exploring the role of PRGs in CRC and 
its relationship with the immune microenvironment can lead 

to new development directions for treatment (Zhuang et al. 
2021).

The purpose of this study was to explore the genes related 
to cell pyroptosis, explore their expression characteristics 
in normal and tumor tissues, and predict the prognosis and 
immune response of patients by analyzing the prognostic 
indicators. Moreover, the correlation between the pyrop-
tosis-related pathways and CRC was analyzed using the 
Gene Expression Omnibus (GEO) and The Cancer Genome 
Atlas (TCGA) databases. A total of 12 CRC‒PRGs were 
obtained. CRC‒PRGs were verified, and functional enrich-
ment analysis was performed using Gene Ontology (GO) 
annotation analysis, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways, and gene set enrichment anal-
ysis (GSEA). The receiver operating characteristic (ROC) 
curve was used to evaluate the diagnostic predictive value 
of the CRC‒PRG-related genes. The single sample GSEA 
(ssGSEA) algorithm was used to analyze immune infiltration 
in CRC‒PRGs and immune infiltration levels. By study-
ing pyroptosis, we can further understand the mechanism 
of CRC, thus revealing new avenues for treatment methods.

Materials and methods

Data acquisition and procession

The expression profile dataset GSE113513 (Shen et  al. 
2021) of patients with CRC was downloaded from the GEO 
database (Barrett et al. 2007) using the R package GEO-
query (Davis and Meltzer 2007). The dataset GSE113513 is 
from Homo sapiens. The GSE113513 dataset contains gene 
expression profiles of colorectal tumor tissues and matched 
normal colorectal tissues from patients with CRC. A total 
of 28 samples were analyzed, including 14 CRC tumor and 
14 matched normal colorectal tissue samples. The data 
platform used was the GPL15207 [PrimeView] Affymetrix 
Human Gene Expression Array, and the data set probe name 
annotations all use the chip GPL platform file. All expres-
sion profiling data samples in GSE113513 were included in 
the subsequent analysis, including the expression profiling 
data of the 14 colorectal tumor tissues (group: tumor) and 
the corresponding 14 normal colorectal tissues (grouped: 
normal).

In addition, we also downloaded the CRC dataset 
(TCGA-COADREAD) through the TCGAbiolinks package 
(Colaprico et al. 2016), from TCGA as a set for subsequent 
validation. A total of 698 CRC samples with complete clini-
cal information were obtained, including tumor tissues from 
647 patients with CRC (cancer group, group: tumor) and 51 
CRC adjacent normal tissues that were partially matched. 
Count sequencing data of the tissue (normal group, group: 
normal) were normalized to FPKM (fragments per kilobase 
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per million) format, and the corresponding clinical data were 
obtained from the UCSC Xena database (Goldman et al. 
2020) (http://​genome.​ucsc.​edu). The count sequencing data 
and corresponding clinical data of the CRC dataset (TCGA-
COADREAD) were normalized using the limma package 
(Ritchie et al. 2015).

In addition, we collected PRGs from the GeneCards data-
base (Stelzer et al. 2016) (https://​www.​genec​ards.​org/) and 
the MsigDB (Molecular Signatures Database, http://​www.​
gsea-​msigdb.​org/) database (Liberzon et al. 2015). We used 
the term “pyroptosis” as the search key to identify 254 
PRGs. We used the term “pyroptosis” as the search key from 
the MsigDB database to obtain 27 PRGs. In addition, we 
also used “pyroptosis-related genes” as the search keywords 
on the PubMed website and obtained the pyroptosis-related 
gene set from the published literature (Xu et al. 2021). After 
merging and deduplicating, 274 PRGs were identified (see 
Table S1).

CRC‑related differentially expressed genes

To identify the potential mechanism of action of differen-
tial genes and related biological features and pathways in 
CRC, we first normalized the CRC dataset GSE113513 and 
dataset TCGA-COADREAD using the limma package and 
then used a linear model to identify the results. Differentially 
expressed genes (DEGs) in rectal cancer (group: tumor) 
and normal (group: normal) samples. We used the DESeq2 
(Love et al. 2014) package to perform differential analysis on 
the count data of the GSE113513 and TCGA-COADREAD 
datasets, and the genes screened by the criteria of |logFold-
Change (FC)|> 1 and adjusted P-value (P.adj) < 0.05. Genes 
with logFC > 1 and P.adj < 0.05 were DEGs with upregulated 
expression, and genes with logFC <  − 1 and P.adj < 0.05 
were DEGs with downregulated expression.

To determine PRGs related to CRC, we first all the DEGs 
with |logFC|> 1 and P.adj < 0.05, obtained by the difference 
analysis between the TCGA-COADREAD and GSE113513 
datasets. By drawing a Venn diagram, the DEGs of the data-
set were obtained. Moreover, the common DEGs of the two 
datasets and the PRGs were intersected and a Venn diagram 
was drawn. The results of the differential analysis were visu-
alized using the R package ggplot2 to draw a volcano map, 
and the R package pheatmap drew a heatmap display.

Functional enrichment analysis

GO analysis is a common method utilized for large-scale 
functional enrichment studies, including biological pro-
cesses (BP), molecular functions (MF), and cellular com-
ponents (CC) (Yu 2020). We used the R package cluster-
Profiler (Yu et al. 2012) to perform GO annotation analysis 
of pyroptosis-related DEGs. The entry screening criteria 

were P < 0.05, FDR value (q value) < 0.05 was considered 
statistically significant, and P values were corrected by Ben-
jamini‒Hochberg method.

GSEA and GSVA

Gene set enrichment analysis (GSEA) was used to evaluate 
the gene distribution trend in a predefined gene set in the 
gene table and determine its contribution to the phenotype 
through the correlation between phenotypes (Subramanian 
et al. 2005). In this study, the genes in the TCGA-COAD-
READ and GSE113513 datasets were first sorted into two 
groups according to their phenotypic correlation.

The clusterProfiler package was used to perform enrich-
ment analysis on all differential genes in the two groups 
with high and low phenotype correlation. The parameters 
used in this GSEA enrichment analysis were as follows: the 
number of seeds was 2020, the number of computations was 
1000, the number of genes contained in each gene set was 
at least 10, and the maximum number of genes contained 
was 500. The P value correction was performed using the 
Benjamini‒Hochberg method. We obtained the c2.cp.v7.2 
symbols gene set from the Molecular Signatures Database 
(MsigDB) database (Liberzon et al. 2015), and the screening 
criteria for significant enrichment were P < 0.05 and FDR 
value < 0.05.

Gene set variation analysis (GSVA) (Hanzelmann et al. 
2013) is a nonparametric, unsupervised analysis method 
that converts the expression matrix of different genes across 
samples into the expression between genes. The enrichment 
effect of the genetic resources was assessed using a quan-
titative matrix of the nuclear microarray transcription. To 
evaluate the enrichment of the different pathways in different 
samples, we obtained the “h.all.v7.4. symbols.gmt” gene set 
from the MsigDB database and performed GSVA analysis 
on the pyroptosis-related prognostic differentially expressed 
genes in the dataset GSE113513 to calculate the pyroptosis-
related prognostic DEGs in the colorectum differences in 
functional enrichment between cancer tumor tissue samples 
(group: tumor) and corresponding normal colorectal tissue 
samples (group: normal).

Assessment of the tumor microenvironment

We used the single-sample gene-set enrichment analysis 
(ssGSEA) algorithm to quantify the relative abundance 
of each immune infiltration cell. Each infiltrating immune 
cell was labeled, such as activated CD8 T cells, activated 
dendritic cells, macrophages, T cells, regulatory T cells, 
and various other subtypes of natural killer cells. The 
degree of infiltration of each immune cell in each sample 
was expressed as the abundance calculated using ssGSEA 
analysis (Charoentong et al. 2017; Barbie et al. (n.d.)). In 

http://genome.ucsc.edu
https://www.genecards.org/
http://www.gsea-msigdb.org/
http://www.gsea-msigdb.org/
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GSE113513, we used the ggplot2 package to predict the cor-
relation between the expression of DEGs and the invasion of 
immune cells in different tumor samples and predicted them 
on the TCGA-COADREAD dataset.

CIBERSORT (Newman et al. (n.d.)) is an immune infil-
tration analysis algorithm that deconvolution the transcrip-
tome expression matrix based on the principle of linear 
support vector regression to estimate the composition and 
abundance of immune cells in the mixed cells.

We uploaded the matrix data of the TCGA-COADREAD 
dataset to CIBERSORT, and combined with the LM22 
characteristic gene matrix, to screen out the data with the 
immune cell enrichment fraction greater than zero, and 
finally obtained and displayed the specific results of the 
immune cell infiltration abundance matrix.

The proportion of immunocyte infiltration abundance 
for samples from the TCGA-COADREAD dataset was 
displayed as a stacked bar graph, while the difference in 
infiltration abundance of immunocytes between subgroups 
(tumor/normal) was displayed as a boxplot. The correlation 
of the immune cells in the different subgroups was calcu-
lated by the spearman algorithm and visualized by R pack 
bag ggplot2.

Construction of protein–protein interaction 
network

To interact in many aspects of life processes, including 
biological signal transmission, gene expression regulation, 
energy and material metabolism, and cell cycle regulation, 
individual proteins interact with each other to form a pro-
tein‒protein interaction (PPI) network. Understanding the 
functioning of proteins in biological systems, the response 
mechanism of biological signals, energy metabolism in 
particular physiological states such as diseases, and the 
functional relationships between proteins all depend on the 
systematic analysis of the interaction of many proteins in 
biological systems which possesses significant meaning. 
The STRING database (Szklarczyk et al. 2019) is a data-
base that searches existing proteins and predicts their role. 
In this study, a PPI network (confidence level 0.4) related to 
DEGs was established using the STRING database, and the 
PPI network was visualized using Cytoscape.

Construction of mRNA‑RBP, mRNA‑TF, mRNA‑drugs 
interaction network

The Starbase database (Li et al. 2014) uses high-throughput 
experimental data of CLIP-Seq, combined with degradome 
experimental data, to find miRNA targets and provides a 
variety of visualization interfaces. The database contains 
abundant RNA binding proteins (RBP)-ncRNA, RBP-
mRNA, RBP-RNA, and RNA-RNA data. The miRNA 

Target Prediction Database, miRDB, (Chen and Wang 2020) 
was utilized for RBP target gene prediction and functional 
annotation. We used the starBase database for RBPs that 
interact with pyroptosis-related mRNAs.

The CHIPBase database (Zhou et al. 2017) (version 2.0) 
(https://​rna.​sysu.​edu.​cn/​chipb​ase/) I identifies thousands of 
binding motif sequences and their binding sites from the 
DNA-binding protein ChIP-seq data and predicted the rela-
tionship between millions of transcription factors (TFs) and 
genes. The hTFtarget database (Zhang et al. 2020b) (http://​
bioin​fo.​life.​hust.​edu.​cn/​hTFta​rget.) is a comprehensive data-
base of human TFs and their target regulation. We used the 
CHIPBase and hTFtarget database to identify TFs associated 
with DEGs related to pyroptosis and visualized them using 
Cytoscape software.

In addition, we utilized the drug-gene interaction data-
base (DGIdb) (Freshour et al. 2021) (https://​www.​dgidb.​org) 
to predict possible drugs or small molecule compounds with 
DEG interactions associated with pyroptosis. The mRNA-
RBP, mRNA-TF, and mRNA‒drug interaction networks 
were visualized using the Cytoscape software.

ROC

Receiver operating characteristic curve (ROC) (Mandrekar 
2010) is a graphical analysis tool that can select the best 
model, discard the suboptimal model, or set the best thresh-
old within the same model. The ROC curve is a comprehen-
sive index that reflects the sensitivity and specificity. The 
relationship between sensitivity and specificity was analyzed 
using combinatorial methods. The area under the ROC curve 
was typically 0.5‒1. When the area under the curve (AUC) 
is closer to 1, the diagnostic effect was better. The AUC has 
low accuracy when it is 0.5 to 0.7, the AUC has a certain 
accuracy when it is 0.7 to 0.9, and the AUC has high accu-
racy when it is above 0.9. We used the R survivalROC pack-
age to draw the ROC curve of the pyroptosis-related DEGs 
and patient survival time and survival status and calculated 
the AUC to evaluate the diagnostic effect of gene expression 
on the survival of patients with CRC.

Clinical correlation analysis

To study the clinical prognostic value of pyroptosis-related 
prognostic DEGs in CRC, we performed univariate Cox 
regression analysis to analyze the expression of prognostic 
DEGs related to pyroptosis in CRC. Factors with P < 0.1 
were selected for multivariate Cox regression analysis, 
and a multivariate Cox regression model was established. 
Based on the results of univariate Cox regression analysis, 
we established a nomogram to predict the 1-, 3-, and 5-year 
survival rates of patients with CRC. A nomogram is a graph 
in which a cluster of disjoint line segments that is used to 

https://rna.sysu.edu.cn/chipbase/
http://bioinfo.life.hust.edu.cn/hTFtarget
http://bioinfo.life.hust.edu.cn/hTFtarget
https://www.dgidb.org
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represent the functional relationship between multiple inde-
pendent variables in a planar rectangular coordinate system. 
The accuracy and resolution of the calibration plots were 
evaluated using calibration curves. Decision curve analysis 
(DCA) is a convenient method to evaluate clinical predictive 
models, diagnostic tests, and molecular markers. We used 
the R package ggDCA (Tataranni and Piccoli 2019) to evalu-
ate the predictive effect of Cox regression models on the 
1-, 3-, and 5-year survival outcomes of patients with CRC.

Gene expression levels and clinical characteristics are 
associated with patient prognosis. We conducted differential 
analyses of the expression levels of pyroptosis-related prog-
nostic DEGs in the TCGA-COADREAD dataset to further 
evaluate the effect of pyroptosis-related prognostic DEGs 
on patient prognosis. The influence of clinicopathological 
features and expression differences of pyroptosis-related 
prognostic DEGs were compared among different clinical 
features. We analyzed the effect of the expression levels of 
pyroptosis-related prognostic DEGs in CRC tissues of the 
tumor, including overall survival (OS), disease-specific sur-
vival (DSS), and progression-free interval (PFI).

Gene mutation analysis and single gene analysis

The cBioPortal database (Subramanian et al. 2005) (cBioPortal for 
Cancer Genomics) (http://​cbiop​ortal.​org) provides a web resource 
for exploring, visualizing, and analyzing multiple tumor genetic 
data. This database summarizes the molecular analysis data from 
tumor tissues and cell lines into easy-to-understand genetic, epige-
netic, gene expression, and protein groups. Using the cBioPortal 
database, we analyzed the gene mutation status of the final selected 
pyroptosis-related prognostic DEGs in the TCGA-COADREAD 
(CRC) dataset and displayed the final analysis results.

We also used Human Protein Atlas (HPA) database (Thul 
and Lindskog 2018) (www.​prote​inatl​as.​org/) to conduct 
single cell analysis on the expression of the differentially 
expressed genes pyroptosis-related prognostic DEGs in 
CRC. Based on the expression of genes in different tissues 
and cells in human body, HPA database conducted single 
cell analysis on the differentially expressed genes pyropto-
sis-related prognostic DEGs in CRC in human kidney cells 
in human colon tissue samples and human Rectum tissue 
samples, and displayed the results.

Fig. 1   Workflow. TCGA​ The 
cancer genome atlas, COAD-
READ colon and rectal cancer, 
DEGs differentially expressed 
genes, GO Gene Ontology, 
GSEA gene set enrichment 
analysis, PPI network: protein–
protein interaction network, 
RBP RNA binding protein, TF 
transcription factors, LASSO 
least absolute shrinkage and 
selection operator, GSVA gene 
set variation analysis

http://cbioportal.org
http://www.proteinatlas.org/
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Statistical analysis

All analyses in this study were conducted in R software (Ver-
sion 4.1.2) using the various mentioned packages, and continu-
ous variables are presented as mean ± standard deviation. The 
Wilcoxon rank-sum method was used to compare two groups, 
the Kruskal‒Wallis test was used to compare more than three 
populations, and the Kaplan‒Meier (KM) method combined 
with the log-rank test was used to compare the progression-free 
survival between the two groups. Unless otherwise specified, 
P < 0.05 was the criterion for significant difference (Fig. 1).

Results

Metabolism‑related DEGs in CRC​

We normalized the data from the CRC tumor tissue sam-
ples (cancer group, group: tumor) and normal colorectal 

tissue samples (normal group, group: normal) in the TCGA-
COADREAD dataset, GSE113513 dataset, using the limma 
package. To analyze the differences in gene expression val-
ues in the CRC group (tumor) relative to the normal control 
group (normal), we performed differential analysis on the 
TCGA-COADREAD dataset and the GSE113513 dataset 
using the DESeq2 package to obtain the DEGs of the two 
groups of data. A total of 18,670 DEGs were obtained from 
TCGA-COADREAD, of which 5470 met the thresholds of 
|logFC|> 1 and P.adj < 0.05. At this threshold, the number 
of high (low expression in normal group, logFC is positive, 
upregulated gene) and low expression (high expression in 
normal group, logFC is negative) in the cancer group was 
2785 and 2685 individuals, respectively.

We drew a volcano plot of the differential analysis results 
of TCGA-COADREAD dataset (Fig. 2A), and a total of 
17,009 DEGs were obtained from dataset GSE113513, of 
which 1406 met the threshold of |logFC|> 1 and P.adj < 0.05. 
At this threshold, the number of logFC positive (upregulated 

Fig. 2   Analysis of metabolically 
related differential genes in 
CRC. A, B Results normalized 
by GSE7014 and GSE25724. 
Blue represents the normal 
group, pink represents the dis-
ease group. A Differential gene 
analysis volcano plot of colorec-
tal cancer tissues (group: tumor) 
and adjacent normal tissues 
(group: normal) of the TCGA-
COADREAD dataset. B Dif-
ferential gene analysis volcano 
plot of colorectal cancer tissue 
(group: tumor) and normal colo-
rectal tissue (group: Normal) 
of GSE113513 dataset. C Venn 
diagram of DEGs in TCGA-
COADREAD dataset and 
GSE113513 dataset. D Venn 
diagram of common DEGs 
(dataset DEGs) and pyroptosis-
related genes in the dataset. E, 
F Complex numerical heatmaps 
of pyroptosis-related DEGs in 
TCGA-COADREAD dataset 
(E), GSE113513 dataset (F). 
TCGA​ The cancer genome atlas, 
COADREAD colon and rectal 
cancer, DEGs differentially 
expressed genes
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genes) was 609 and the logFC negative (downregulated 
genes) was 797; we plotted a volcano plot from the vari-
ance analysis of this dataset (Fig. 2B). To determine the 
pyroptosis-related DEGs, we first obtained the intersection 
of all the DEGs obtained from the TCGA-COADREAD and 
GSE113513 datasets with |logFC|> 1 and P.adj < 0.05 and 
used this to establish the CRC dataset. A Venn diagram was 
drawn for the 1215 common DEGs (Fig. 2C). We used the 
intersection of the common DEGs and PRGs in the dataset 
to obtain a total of 12 pyroptosis-related DEGs in CRC and 
drew another Venn diagram (Fig. 2D). The 12 pyroptosis-
related DEGs included DPEP1, CTSG, GZMB, POP1, 
IL13RA2, CHI3L1, BHLHE40, CASP5, MELK, PCSK9, 
CXCL8, and MPEG1. Based on the results obtained from 
the Venn diagram, we analyzed the expression differences 
of 12 pyroptosis-related DEGs in the TCGA-COADREAD 
dataset (Fig. 2E) and the GSE113513 dataset (Fig. 2F). The 
R package pheatmap was used to draw a heat map showing 

the differential analysis results of the 12 pyroptosis-related 
DEGs (Fig. 2E and F).

In addition, we compared the expression of 12 pyroptosis-
related DEGs in the rectal cancer data set (READ) with the 
clinical prognosis overall survival (OS) to determine the cor-
relation between the expression levels of the 12 pyroptosis-
related DEGs and the prognostic clinical overall survival 
of patients with READ, as shown in Fig. S1. We also per-
formed correlation analysis using the Spearman statistical 
method on the expressions of 12 pyroptosis-related DEGs 
in the colon cancer dataset(COAD) and READ by using the 
TIMER2.0 (Li et al. 2009) database (http://​timer.​cistr​ome.​
org/) and retained the results with the correlation coefficient 
greater than 0.2 and displayed the specific results. In the 
TIMER2.0 database, we found the correlation of eight dif-
ferentially expressed genes related to cell scorch (BHLHE40, 
CHI3L1, CASP5, CTSG, GZMB, MPEG1, POP1, MELK) 

Table 1   GO enrichment analysis results of pyroptosis-related differentially expressed genes

Ontology ID Description Gene ratio Bg ratio P value p.adjust q value

BP GO:0,001,909 Leukocyte mediated cytotoxicity 2/12 107/18670 0.002 0.086 0.051
BP GO:0,031,623 Receptor internalization 2/12 111/18670 0.002 0.086 0.051
BP GO:0,019,730 Antimicrobial humoral response 2/12 122/18670 0.003 0.086 0.051
BP GO:0,042,119 Neutrophil activation 3/12 498/18670 0.003 0.086 0.051
BP GO:0,001,906 Cell killing 2/12 168/18670 0.005 0.086 0.051
BP GO:0,071,347 Cellular response to interleukin-1 2/12 179/18670 0.006 0.086 0.051
BP GO:0,070,942 Neutrophil mediated cytotoxicity 1/12 10/18670 0.006 0.086 0.051
BP GO:0,043,112 Receptor metabolic process 2/12 192/18670 0.006 0.086 0.051
BP GO:1,902,622 Regulation of neutrophil migration 1/12 36/18670 0.023 0.088 0.052
BP GO:0,045,765 Regulation of angiogenesis 2/12 383/18670 0.024 0.092 0.055
CC GO:0,030,677 Ribonuclease P complex 1/12 14/19717 0.008 0.077 0.053
CC GO:0,036,020 Endolysosome membrane 1/12 14/19717 0.008 0.077 0.053
CC GO:0,061,702 Inflammasome complex 1/12 14/19717 0.008 0.077 0.053
CC GO:0,036,019 Endolysosome 1/12 20/19717 0.012 0.077 0.053
CC GO:0,031,528 Microvillus membrane 1/12 23/19717 0.014 0.077 0.053
CC GO:0,034,774 Secretory granule lumen 2/12 321/19717 0.016 0.077 0.053
CC GO:0,060,205 Cytoplasmic vesicle lumen 2/12 338/19717 0.017 0.077 0.053
CC GO:0,031,983 Vesicle lumen 2/12 339/19717 0.017 0.077 0.053
CC GO:0,001,772 Immunological synapse 1/12 36/19717 0.022 0.079 0.053
CC GO:0,009,897 external side of plasma membrane 2/12 393/19717 0.023 0.079 0.053
MF GO:0,004,175 Endopeptidase activity 4/11 427/17697 9.64e-05 0.003 0.002
MF GO:0,004,252 Serine-type endopeptidase activity 3/11 160/17697 1.13e-04 0.003 0.002
MF GO:0,008,236 Serine-type peptidase activity 3/11 182/17697 1.66e-04 0.003 0.002
MF GO:0,017,171 Serine hydrolase activity 3/11 186/17697 1.77e-04 0.003 0.002
MF GO:0,033,204 Ribonuclease P RNA binding 1/11 10/17697 0.006 0.061 0.033
MF GO:0,045,236 CXCR chemokine receptor binding 1/11 11/17697 0.007 0.061 0.033
MF GO:0,004,526 Ribonuclease P activity 1/11 12/17697 0.007 0.061 0.033
MF GO:0,008,239 Dipeptidyl-peptidase activity 1/11 12/17697 0.007 0.061 0.033
MF GO:0,016,805 Dipeptidase activity 1/11 15/17697 0.009 0.061 0.033
MF GO:0,030,169 Low-density lipoprotein particle binding 1/11 16/17697 0.010 0.061 0.033

http://timer.cistrome.org/
http://timer.cistrome.org/
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in the tumor data sets of COAD and READ. The specific 
results are shown in Fig. S2.

Functional enrichment analysis 
of pyroptosis‑related DEGs

To analyze the BPs, MFs, CCs, biological pathways, and 
their relationship with CRC, we first performed GO func-
tion enrichment analysis of the DEGs related to pyrop-
tosis (Table 1). It is considered statistically significant 
that the entry screening criteria is P value < 0.05 and the 
FDR value (q value) < 0.05. The results showed that the 
12 DEGs related to pyroptosis were mainly enriched in 
neutrophil-mediated cytotoxicity, leukocyte-mediated 
cytotoxicity, receptor internalization, antimicrobial 
humoral response, and other BPs (Fig. 3A); as well as 
secretory granule lumen, cytoplasmic vesicle lumen, vesi-
cle lumen, external side of plasma membrane, and other 
CCs (Fig. 3B); and also enriched in endopeptidase activ-
ity, serine-type endopeptidase activity, serine-type pepti-
dase activity, serine hydrolase activity, and other MFs 
(Fig. 3C). We present the results of the GO functional 
enrichment analysis (Fig.  3A‒C), where the abscissa 
is − log(p.adjust), the ordinate is GO terms, and the color 
of the bubble chart indicates the activation or inhibition of 
GO terms. In addition, we also displayed the BP (Fig. 3D), 
CC (Fig. 3E), and MF (Fig. 3F) analysis results of GO 
gene function enrichment in the form of a ring network 
diagram (Fig. 3D‒F).

GSEA

To determine the effect of the expression levels of metaboli-
cally related DEGs in CRC on the occurrence of colorectal 
carcinogenesis, we analyzed the relationship between all 
the expression of DEGs in the TCGA-COADREAD and 
GSE113513 datasets through GSEA enrichment analysis. 
The screening criteria for significant enrichment of results 

from GSEA enrichment analysis were P < 0.05 and FDR 
value (q value) < 0.05. Links between BPs, affected CCs, and 
MFs showed that the DEGs in TCGA-COADREAD were 
significantly enriched in Reactome keratinization (Fig. 4B), 
Reactome amyloid fiber formation (Fig. 4C), Reactome 
DNA methylation (Fig. 4D), Reactome deacetylate histones 
(Fig. 4E), and other pathways (Fig. 4A‒E, Table 2). The 
DEGs in dataset GSE113513 were significantly enriched in 
the Reactome cell cycle checkpoints (Fig. 4G), Reactome 
mitotic spindle checkpoints (Fig. 4H), Reactome s phase 
(Fig. 4I), Reactome snRNP assembly (Fig. 4J), and other 
pathways (Fig. 4F–J, Table 3). In addition, Reactome mei-
otic recombination, Reactome condensation of prophase 
chromosomes, and a total of 180 functional pathways, such 
as Reactome chromosome maintenance, were significantly 
enriched by both datasets simultaneously.

Construction of protein–protein interaction 
network, mRNA‑RBP, mRNA‑TF, and mRNA‑drugs 
interaction network

Protein‒protein interaction (PPI) analysis of the 12 pyrop-
tosis-related DEGs using the STRING database (confidence 
level 0.4), we constructed a PPI of DEGs related to pyrop-
tosis, and used Cytoscape software to visualize the interac-
tion (Fig. 5A). Only five pyroptosis-related DEGs (CTSG, 
CXCL8, CHI3L1, IL13RA2, and GZMB) were related to 
other genes in the PPI network.

We used the mRNA-RBP data in the starBase database 
to predict interactions with 12 pyroptosis-related DEGs 
(mRNAs). The acting RBP was then visualized by drawing 
the mRNA‒RBP interaction network using the Cytoscape 
software (Fig. 5B). According to the mRNA-RBP interac-
tion network, our mRNA-RBP interaction network consists 
of seven mRNAs (DEGs related to pyroptosis) (BHLHE40, 
PCSK9, CXCL8, MELK, POP1, CHI3L1, and DPEP1), 40 
RBP molecules, a total of 64 pairs of mRNA-RBP inter-
action relationships, and specific mRNA‒RBP interaction 
relationships (Table S2).

We used the CHIPBase and hTFtarget databases to 
search for TFs associated with the DEGs related to pyrop-
tosis. After downloading the interaction relationships 
found in the two databases, we used the intersection with 
the 12 pyroptosis-related DEGs, and finally obtained nine 
pyroptosis-related DEGs (BHLHE40, CASP5, CHI3L1, 
CXCL8, DPEP1, MELK, MPEG1, PCSK9, and POP1) 
and the interaction data of 58 TFs and visualized them 
using Cytoscape software. The sky-blue oval block was 
mRNA; pink diamond block was TF; light green diamond-
shaped blocks were both mRNAs and TFs (Fig. 5C). In 
the mRNA‒TF interaction network, the pyroptosis-related 
DEG BHLHE40 had the strongest interaction with TFs. 

Fig. 3   Functional enrichment analysis (GO) of pyroptosis-related 
DEGs. A–C GO functional enrichment of pyroptosis-related DEGs. 
BP analysis results in bubble chart display (A), CC analysis results in 
bubble chart display (B), and MF analysis results in bubble chart dis-
play (C). D–F GO function enrichment of pyroptosis-related DEGs. 
BP analysis results of ring network diagram display (D), CC analy-
sis results ring network diagram display (E), MF analysis results ring 
network diagram display (F). The bubble color in the bubble plot 
(A–C) indicates the size of the Padj value for GO terms, red indicates 
a small Padj value, and blue indicates a large Padj value. In the cir-
cular network diagram (D–F), red dots represent specific genes, and 
blue circles represent specific pathways. P value < 0.05 and FDR 
value (q value) < 0.05 were considered to be statistically significant 
for the functional enrichment analysis entry screening criteria. GO 
Gene Ontology, BP biological process, CC cellular component, MF 
molecular function

◂
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There were 28 pairs of mRNA-TF interaction relationships 
in the BHLHE40 gene (Table S3).

The DGIdb database was used to identify poten-
tial drugs or molecular compounds of the 12 DEGs 
(mRNAs) associated with pyroptosis. We identified 89 
potential drugs or molecular compounds corresponding 
to 8 mRNAs (CASP5, CTSG, CXCL8, DPEP1, GZMB, 
IL13RA2, MELK, and PCSK9) through the DGIdb data-
base, as shown by the mRNA‒drug interaction network, 
sky blue oval blocks are mRNAs; orange hexagonal blocks 
are drugs (Fig. 5D). Among them, we found that 56 drugs 
or molecular compounds target the CXCL8 gene and the 
specific mRNA‒drug interaction relationship (Table S4).

Construction of a prognostic model 
of pyroptosis‑related DEGs and GSVA analysis

To determine the prognostic value of the 12 pyroptosis-
related DEGs in the TCGA-COADREAD dataset, we 
used LASSO regression analysis to construct a prognos-
tic model (Fig. 6A). LASSO regression was based on 
linear regression. Overfitting of the model is reduced, 
and the generalization ability of the model is improved 
by increasing the penalty term (lambda × absolute value 
of slope). The ordinate of the LASSO regression pattern 
graph represents the likelihood deviation of the LASSO 
regression, the log (λ) value on the lower x-axis of the 
graph by default represents the logarithm of the LASSO 
regression after the lambda coefficient of the penalty 
term, and the values on the x-axis represent the logarithm. 
The numbers on the upper x-axis represent the number of 
variables with nonzero coefficients for each lambda. In 
addition, we visualized the LASSO regression results and 
obtained the LASSO variable trajectory plot (Fig. 6B). 
From the figure, we can see that there is a total of four 
genes in the LASSO regression prognostic model was 
constructed, namely CXCL8, IL13RA2, MELK, and 
POP1. In this regard, we visualized the risk factor group-
ing of the constructed LASSO regression prognostic 

model using a risk factor plot (Fig. 6C). The risk fac-
tor map consists of three parts: (1) Risk grouping: the 
risk score predicted by the LASSO regression prognostic 
model was grouped by the median; (2) Survival outcomes, 
displayed as a dot plot based on the TCGA-COADREAD 
dataset survival time and survival outcomes of clinical 
samples; (3) Heat map, visualization of the expression of 
pyroptosis-related prognostic DEGs in the LASSO regres-
sion prognostic model.

To explore the differences in the hallmark gene set 
between CRC tumor tissue (group: tumor) and nor-
mal colorectal tissue (group: normal), we analyzed the 
pyroptosis-related prognostic DEGs (CXCL8, IL13RA2, 
MELK, and POP1) in the dataset GSE113513 using 
GSVA. GSVA analysis of pyroptosis-related prognostic 
DEGs in the GSE113513 dataset showed hallmark pan-
creatic beta cells, adipogenesis, heme metabolism, and 
myc targets. Thirty hallmark gene sets showed differences 
between CRC tumor (group: tumor) and normal colorec-
tal tissue (group: normal) (Fig. 6D, Table 4). Among 
them, hallmark pancreatic beta cells, adipogenesis, heme 
metabolism, myogenesis, and 23 other hallmark gene sets 
had significantly higher enrichment scores in CRC tumor 
tissue than in normal colorectal tissue, while hallmark e2f 
targets, Myc targets V1, Myc targets V2, and a total of 
seven gene sets had a significantly lower enrichment score 
in CRC tumor tissue than in normal colorectal tissue.

Assessment of pyroptosis‑related prognostic DEGs 
and tumor microenvironment

To analyze the difference in immune infiltration between 
CRC tumor tissue (group: tumor) and normal colorectal 
tissue (group: normal) in the CRC dataset GSE113513, 
we used the ssGSEA algorithm to calculate the different 
groupings. Differences in the degree of infiltration of the 28 
immune cells were calculated and the results showed that 
17 types of immune cells were significantly enriched in the 
GSE113513 dataset, namely activated B cell, activated CD4 
T cell, CD56bright natural killer cell, central memory CD8 
T cell, effector memory CD4 T cell, effector memory CD8 
T cell, eosinophil, gamma delta T cell, immature B cell, 
macrophage, mast cell, memory B cell, monocyte, natural 
killer cell, neutrophil, T follicular helper cell, type 1 T helper 
cell. We showed the immune infiltration results of 28 types 
of immune cells in the colorectal Cancer dataset GSE113513 
in the form of a group comparison chart (Fig. 7A).

Moreover, we used the ssGSEA algorithm to compare the 
expression of pyroptosis-related prognostic DEGs (CXCL8, 
IL13RA2, MELK, and POP1) in the TCGA-COADREAD 
dataset with 24 immune cells (NK CD56bright cells, NK 
cells, Th17 cells, Tcm, B cells, NK CD56dim cells, TFH, 
pDC, TReg, CD8 T cells, Tem, Eosinophils, Mast cells, 

Fig. 4   GSEA enrichment analysis of colorectal cancer dataset. A 
GSEA enrichment analysis of the TCGA-COADREAD dataset for 
the main 4 main biological features. B–E The DEGs in the TCGA-
COADREAD dataset were significantly enriched in pathways such 
as Reactome keratinization (B), Reactome amyloid fiber formation 
(C), Reactome DNA methylation (D), Reactome HDACs deacety-
late histones (E). F The GSEA analysis of the GSE113513 dataset 
mainly includes 4 main biological characteristics. G–J DEGs in the 
GSE113513 dataset were significantly enriched in Reactome cell 
cycle checkpoints (G), Reactome mitotic spindle checkpoints (H), 
Reactome S phase (I), Reactome snrnp assembly (J). The screen-
ing criteria for significant enrichment of GSEA analysis results are 
P < 0.05 and FDR value (q value) < 0.05. TCGA​ The cancer genome 
atlas, COADREAD colon and rectal cancer, DEGs differentially 
expressed genes
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iDC, Tgd, T cells, Th2 cells, T helper cells, cytotoxic cells, 
aDC, DC, macrophages, Th1 cells, and neutrophils), and 
the results showed that the expression of pyroptosis-related 

prognostic DEGs CXCL8 (Fig. 7B) and IL13RA2 (Fig. 7C) 
in the TCGA-COADREAD dataset was positively correlated 
with the significant differential enrichment of most immune 

Table 2   GSEA analysis of dataset TCGA-COADREAD

GSEA gene set enrichment analysis

Description Set size Enrichment score NES P value p.adjust

REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE 127 0.679360224 2.55077363 0.001631321 0.03264761
REACTOME_KERATINIZATION 215 0.581363443 2.316275668 0.001569859 0.03264761
REACTOME_AMYLOID_FIBER_FORMATION 107 0.627997494 2.302767669 0.001672241 0.03264761
REACTOME_DNA_METHYLATION 63 0.685413426 2.28814554 0.001805054 0.03264761
REACTOME_MEIOTIC_RECOMBINATION 85 0.645477336 2.271896257 0.001733102 0.03264761
REACTOME_SIRT1_NEGATIVELY_REGULATES_RRNA_

EXPRESSION
66 0.671924851 2.257609341 0.001811594 0.03264761

REACTOME_CONDENSATION_OF_PROPHASE_CHROMO-
SOMES

72 0.650148432 2.225020445 0.001766784 0.03264761

REACTOME_CHROMOSOME_MAINTENANCE 140 0.584845433 2.21865058 0.001647446 0.03264761
REACTOME_HDACS_DEACETYLATE_HISTONES 91 0.622563929 2.205185267 0.001745201 0.03264761
REACTOME_PRC2_METHYLATES_HISTONES_AND_DNA 71 0.646355894 2.200663839 0.001788909 0.03264761
REACTOME_FORMATION_OF_THE_BETA_CATENIN_TCF_

TRANSACTIVATING_COMPLEX
90 0.616395408 2.185138003 0.001727116 0.03264761

REACTOME_HCMV_LATE_EVENTS 113 0.593651323 2.184974281 0.001680672 0.03264761
REACTOME_DEPOSITION_OF_NEW_CENPA_CONTAINING_

NUCLEOSOMES_AT_THE_CENTROMERE
73 0.63922672 2.182082834 0.001788909 0.03264761

REACTOME_ACTIVATED_PKN1_STIMULATES_TRANSCRIP-
TION_OF_AR_ANDROGEN_RECEPTOR_REGULATED_
GENES_KLK2_AND_KLK3

65 0.646577 2.176107758 0.00177305 0.03264761

REACTOME_ERCC6_CSB_AND_EHMT2_G9A_POSITIVELY_
REGULATE_RRNA_EXPRESSION

74 0.632042209 2.163063449 0.00177305 0.03264761

Table 3   GSEA analysis of dataset GSE113513

GSEA gene set enrichment analysis

Description Set size Enrichment score NES P value p.adjust

REACTOME_CELL_CYCLE_CHECKPOINTS 247 0.662682598 2.446075188 0.002570694 0.022709415
REACTOME_MITOTIC_SPINDLE_CHECKPOINT 107 0.725579102 2.445758067 0.002293578 0.021619076
REACTOME_S_PHASE 160 0.674488075 2.398465371 0.002283105 0.021619076
REACTOME_RRNA_PROCESSING 188 0.666492969 2.392678222 0.002469136 0.02214654
REACTOME_TRNA_PROCESSING 101 0.711397722 2.382893337 0.002237136 0.021619076
REACTOME_DNA_REPLICATION 126 0.690536877 2.374362676 0.002336449 0.021619076
WP_RETINOBLASTOMA_GENE_IN_CANCER 86 0.729734926 2.368635736 0.002242152 0.021619076
REACTOME_CELL_CYCLE_MITOTIC 483 0.598354451 2.365545843 0.002840909 0.024540842
REACTOME_RESOLUTION_OF_SISTER_CHROMATID_COHE-

SION
117 0.689495804 2.35933882 0.002314815 0.021619076

REACTOME_RRNA_MODIFICATION_IN_THE_NUCLEUS_
AND_CYTOSOL

56 0.76906751 2.349698973 0.002192982 0.021619076

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAIN-
ING_PRE_MRNA

233 0.637582171 2.333901304 0.002617801 0.022987038

REACTOME_G2_M_CHECKPOINTS 128 0.67312588 2.331275973 0.002262443 0.021619076
REACTOME_SNRNP_ASSEMBLY 51 0.774658847 2.324860441 0.002237136 0.021619076
REACTOME_MITOTIC_METAPHASE_AND_ANAPHASE 223 0.620001166 2.265644058 0.002531646 0.022506153
REACTOME_MITOTIC_PROMETAPHASE 192 0.626062642 2.259913326 0.002403846 0.021832391
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cells. The pyroptosis-related prognostic DEGs, including 
MELK (Fig. 7D) and POP1 (Fig. 7E), in the TCGA-COAD-
READ dataset were negatively correlated with significant 
differential enrichment of most immune cells (Fig. 7B‒E).

CIBERSORT immunoinfiltration analysis of TCGA 
data set of CRC​

To explore the difference of immune infiltration among 
different groups (tumor/normal) in TCGA-COADREAD 
data set, we used CIBERSORT algorithm to calculate the 
infiltration abundance of 22 kinds of immune cells in two 
disease subtypes samples for the tumor group samples and 
the normal group samples in TCGA-COADREAD data set. 
Then, boxplot diagram is used to show the percentage of 

infiltration abundance of immune cells in TCGA-COAD-
READ data set samples (Fig. 8A). It can be seen from 
the figure that the percentage of infiltration abundance of 
immune cells Macrophages M0, T cells CD8, and T cells 
follicular helper in TCGA-COADREAD data set samples 
is relatively high.

We also analyzed the infiltration difference of 22 kinds of 
immune cells among different groups by Mann–Whitney U 
test, and showed the results by grouping comparison chart 
(Fig. 8B). The results showed that there were statistically 
significant differences in the infiltration abundance of 16 
kinds of immune cells between tumor group and normal 
group in TCGA-COADREAD data set (P < 0.05). They 
are B cells naive, dendritic cells resting, eosinophils, mac-
rophages M0, macrophages M1, macrophages M2, mast 

Fig. 5   Construction of protein–
protein interaction network 
(PPI), mRNA-RBP, mRNA-TF, 
and mRNA-drugs interaction 
network. A Protein interaction 
network (PPI) of DEGs related 
to pyroptosis. B–D The mRNA-
RBP (B), mRNA-TF (C), and 
mRNA-drugs (D) interaction 
networks of DEGs related to 
pyroptosis. In the mRNA-RBP 
(B) interaction network, the sky 
blue oval block is mRNA; the 
light dark green block is RBP. 
In the mRNA-TF (C) interaction 
network, the sky blue oval block 
is mRNA; the pink diamond 
block is TF; the light green 
diamond block is both mRNA 
and TF. In the mRNA-drugs 
(D) interaction network, the sky 
blue oval block is mRNA; the 
orange hexagonal block is drug. 
TF: transcription factor; RBP: 
RNA binding protein
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cells activated, mast cells resting, monocytes, neutrophils, 
NK cells activated, NK cells resting, plasma cells, T cells 
CD4 memory activated, T cells CD8, T cells follicular 
helper.

Then, we calculated the correlation between the infiltra-
tion abundance of these 16 kinds of immune cells (B cells 
naive, dendritic cells resting, eosinophils, macrophages M0, 
macrophages M1, macrophages M2, mast cells activated, 
mast cells resting, monocytes, neutrophils, NK cells acti-
vated, NK cells resting, plasma cells, T cells CD4 memory 
activated, T cells CD8, T cells follicular helper) in TCGA-
COADREAD data set and displayed the results (Fig. 8C). 
The results show that in the TCGA-COADREAD data set 
samples, the infiltration abundance of 17 kinds of immune 
cells has more negative correlation, among them, NK cells 

resting and mast cells activated have the highest positive 
correlation, while mast cells resting and Mast cells activated, 
macrophages M0, and plasma cells have the highest negative 
correlation (Fig. 8C).

Analysis of prognostic pyroptosis‑related DEGs

The above results show that the expression levels of the 
four pyroptosis-related prognostic DEGs were closely 
related to the occurrence of CRC. The expression differ-
ence of related prognostic DEGs were further analyzed 
to reveal the correlation between the expression levels of 
the pyroptosis-related prognostic DEGs in TCGA-COAD-
READ dataset, GSE113513 dataset, and CRC grouping. 

Fig. 6   Construction of a prognostic model of pyroptosis-related 
DEGs and GSVA analysis. A LASSO regression prognostic model 
diagram of pyroptosis-related DEGs. B, C LASSO regression prog-
nostic model variable trajectory plot (B), risk factor plot (C). D 

GSVA analysis results of pyroptosis-related prognostic DEGs. The 
screening standard of significant enrichment of GSEA analysis results 
is P < 0.05. GSVA gene set variation analysis, LASSO least absolute 
shrinkage and selection operator
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Additionally, we performed a statistical analysis of the 
clinical information of patients with CRC obtained from 
the TCGA-COADREAD dataset (Table 5).

We first analyzed the four pyroptosis-related prognos-
tic DEGs in CRC tissues (cancer group) in the TCGA-
COADREAD dataset using the Wilcoxon signed-rank 
test. The results showed that the expression differ-
ences between the four pyroptosis-related prognos-
tic DEGs in the TCGA-COADREAD dataset cancer 

tissue (group: tumor) and normal among colorectal 
tissues (group: normal) were statistically significant 
(Fig.  9A): CXCL8 (P < 0.001), IL13RA2 (P < 0.001), 
MELK (P < 0.001), and POP1 (P < 0.001). We drew ROC 
curves of the four pyroptosis-related prognostic DEGs 
in the TCGA-COADREAD dataset and displayed the 
results (Fig. 9B‒E). It can be seen from the ROC curves 
in the Fig.  8B and colorectal cancer that the expres-
sion of CXCL8 (AUC = 0.896, Fig.  9B) and IL13RA2 

Table 4   GSVA analysis of dataset GSE113513

GSVA gene set variation analysis

ID logFC AveExpr t P value adj.P.Val B

HALLMARK_PANCREAS_BETA_CELLS  − 0.470661028 0.048900387  − 5.61191791 1.71E − 06 1.07E − 05 4.220466234
HALLMARK_ADIPOGENESIS  − 0.451548298 0.006986356  − 5.904012169 6.66E − 07 4.76E − 06 5.155172102
HALLMARK_HEME_METABOLISM  − 0.443650813 0.014904754  − 7.463460703 4.53E − 09 7.55E − 08 10.14280875
HALLMARK_MYOGENESIS  − 0.332175403  − 0.007317831  − 3.85584292 0.000413365 0.001722355  − 1.168673516
HALLMARK_OXIDATIVE_PHOSPHO-

RYLATION
 − 0.330134635 0.00188451  − 2.996778164 0.004690832 0.012344295  − 3.483834063

HALLMARK_XENOBIOTIC_METABO-
LISM

 − 0.325531987 0.020034173  − 4.597256632 4.30E − 05 0.000215021 1.03516634

HALLMARK_UV_RESPONSE_DN  − 0.323189375 0.008358137  − 3.176369235 0.002886583 0.008018287  − 3.027058036
HALLMARK_COMPLEMENT  − 0.315537145 0.001771741  − 3.523510431 0.001090157 0.00340674  − 2.101107015
HALLMARK_INTERFERON_GAMMA_

RESPONSE
 − 0.303406158  − 0.021836608  − 2.759079288 0.008729832 0.018977896  − 4.062158697

HALLMARK_FATTY_ACID_METABO-
LISM

 − 0.297916958 0.011665998  − 3.39051634 0.001591244 0.004680128  − 2.462130397

HALLMARK_HYPOXIA  − 0.281815113 0.007878722  − 3.705218845 0.000644172 0.002477583  − 1.596339482
HALLMARK_BILE_ACID_METABO-

LISM
 − 0.277711974  − 0.014660796  − 3.654597787 0.000746629 0.002666531  − 1.738232122

HALLMARK_APICAL_JUNCTION  − 0.27538761 0.024854206  − 3.577299865 0.000933955 0.003113182  − 1.953023695
HALLMARK_IL6_JAK_STAT3_SIGNAL-

ING
 − 0.267737803 0.013544564  − 2.852450216 0.00686074 0.01559259  − 3.838721679

HALLMARK_IL2_STAT5_SIGNALING  − 0.265687345  − 0.015574318  − 2.969934551 0.005038051 0.012595128  − 3.550687971
HALLMARK_ANDROGEN_RESPONSE  − 0.252122158 0.00456792  − 2.691497179 0.010366287 0.020732574  − 4.220737037
HALLMARK_KRAS_SIGNALING_UP  − 0.251314581 0.028584087  − 2.706274454 0.00998595 0.020732574  − 4.186293008
HALLMARK_ALLOGRAFT_REJECTION  − 0.25081481 0.006127952  − 2.560069085 0.014386048 0.02664083  − 4.521260626
HALLMARK_APICAL_SURFACE  − 0.227690267 0.001616709  − 2.560871808 0.014357663 0.02664083  − 4.519457478
HALLMARK_ESTROGEN_RESPONSE_

LATE
 − 0.218436751 0.020964237  − 2.938746458 0.005471715 0.013027892  − 3.627881095

HALLMARK_COAGULATION  − 0.2127897 0.025583922  − 2.475223645 0.017692491 0.031593735  − 4.709543518
HALLMARK_ESTROGEN_RESPONSE_

EARLY
 − 0.187843957 0.045459847  − 2.439807504 0.019266732 0.033218503  − 4.78676532

HALLMARK_APOPTOSIS  − 0.168946738 0.013036017  − 2.048962075 0.047127834 0.078546391  − 5.581995336
HALLMARK_MTORC1_SIGNALING 0.445493558 0.01101426 4.534597729 5.23E-05 0.000237661 0.843652601
HALLMARK_DNA_REPAIR 0.46723911  − 0.005856936 6.032112289 4.41E-07 3.67E-06 5.566120294
HALLMARK_UNFOLDED_PROTEIN_

RESPONSE
0.471473118 0.005616814 5.245867165 5.52E-06 3.07E-05 3.057063587

HALLMARK_G2M_CHECKPOINT 0.60903831  − 0.006830057 6.271672453 2.04E-07 2.04E-06 6.335389667
HALLMARK_E2F_TARGETS 0.72030508 0.010602376 6.919560429 2.55E-08 3.18E-07 8.412804909
HALLMARK_MYC_TARGETS_V1 0.835619873 0.013633694 9.737820393 4.56E-12 1.14E-10 17.08120168
HALLMARK_MYC_TARGETS_V2 1.005417696  − 0.006993787 14.05244357 5.54E-17 2.77E-15 28.48237867
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Fig. 7   Assessment of the tumor microenvironment of DEGs associ-
ated with pyroptosis. A The immune infiltration results of the data-
set GSE113513 are grouped and compared. B–E Pyroptosis-related 
prognostic DEGs CXCL8 (B), IL13RA2 (C), MELK (D), POP1 (E) 
in the TCGA-COADREAD data set. The correlation results show 
that the expression of immune cells. The symbol ns is equivalent to 

P > 0.05, not statistically significant; the symbol * is equivalent to 
P ≤ 0.05, which is statistically significant; the symbol ** is equiva-
lent to P ≤ 0.01, which is highly statistically significant; the symbol 
*** is equivalent to P ≤ 0.01 ≤ 0.001, highly statistically significant. 
ssGSEA single-sample gene-set enrichment analysis, TCGA​ The can-
cer genome atlas, COADREAD colon and rectal cancer
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(AUC = 0.710, Fig. 9C) among the four genes selected by 
constructing the LASSO regression model in the TCGA-
COADREAD dataset is related to colorectal cancer, and 
the occurrence of cancer showed a slight correlation, 
while the expression of MELK (AUC = 0.938, Fig. 9D) 
and POP1 (AUC = 0.970, Fig. 9E) showed a significant 
correlation with the occurrence of CRC.

We performed the same analysis on the expression dif-
ferences of the four pyroptosis-related prognostic DEGs 
in the GSE113513 dataset. We first analyzed the four 
pyroptosis-related prognostic differential expression lev-
els using the Wilcoxon signed-rank test. The expression 
levels of genes in the CRC tissue samples (cancer group, 
group: tumor) of the GSE113513 dataset and the corre-
sponding matched normal colorectal tissue samples (nor-
mal group, group: normal) were analyzed. The differential 
analysis results showed that the expression differences of 
the four pyroptosis-related prognostic DEGs were statisti-
cally significant between colorectal cancer tissues (group: 
tumor) and normal colorectal tissues (group: normal) in 
the GSE113513 dataset (Fig. 9F): CXCL8 (P < 0.001), 
IL13RA2 (P = 0.002), MELK (P < 0.001), and POP1 
(P < 0.001). We drew the ROC curves of the four pyropto-
sis-related prognostic DEGs in the GSE113513 dataset and 
displayed the results (Fig. 9G‒J). The ROC curve results 
were as follows: the expression of IL13RA2 (AUC = 0.827, 
Fig. 9H) in the GSE113513 dataset showed a slight cor-
relation with the occurrence of CRC, while CXCL8 
(AUC = 0.954, Fig. 9G), MELK (AUC = 0.944, Fig. 9I), 
and POP1 (AUC = 0.995, Fig. 9J) were significantly cor-
related with the occurrence of CRC. This indicated that the 
expression of the four pyroptosis-related prognostic DEGs 
selected by constructing the LASSO regression model was 
correlated with the occurrence of CRC.

Prognostic analysis and prognostic performance 
of pyroptosis‑related prognostic DEGs

We performed prognostic analysis on the LASSO regres-
sion model constructed with the four pyroptosis-related 
prognostic DEGs (CXCL8, IL13RA2, MELK, and POP1), 
with P < 0.05, as the standard; the related molecules were 
considered statistically significant, and we performed 
LASSO regression. The prognostic survival KM curve of 
the model in the TCGA-COADREAD dataset show that the 
constructed LASSO regression model has significant statisti-
cal significance in the prognosis and survival prediction of 
patients with CRC (P = 0.026, Fig. 10A).

We then drew the KM curve of prognosis and survival 
for the four pyroptosis-related prognostic DEGs, and took 
P < 0.05, as the standard to consider the related molecules 
to be statistically significant, and obtained three that met 
the requirements. Of the prognostic DEGs, three were 

associated with pyroptosis (Fig.  10B‒E), these genes 
were CXCL8 (P = 0.011, Fig. 10B), IL13RA2 (P = 0.018, 
Fig. 10C), and POP1 (P = 0.026, Fig. 10E). However, the 
results of the prognostic survival KM curve analysis of 
MELK (P = 0.059, Fig. 10D) showed that the expression of 
MELK did not significantly affect the occurrence of CRC in 
the TCGA-COADREAD dataset.

To further confirm our established LASSO regression 
prediction model, we used single and multivariate COX 
regression analysis methods on the TCGA-COADREAD 
data. Three prognostic DEGs (CXCL8, IL13RA2, and POP1) 
met the requirements for association with pyroptosis. In 
addition to the correlation between different clinical stages 
and prognosis of the tumor, the results showed the expres-
sion of CXCL8, IL13RA2, POP1, tumor clinical stage T, 
clinical N, clinical M, age, and pathologic stage showed clin-
ically significant correlation with the prognosis (Table 6). 
We organized the results of the univariate and multivariate 
COX regressions and displayed them in the form of a forest 
plot (Fig. 11A). We then performed nomogram analysis to 
determine the prognostic power of the LASSO‒Cox regres-
sion model and drew a nomogram (Fig. 11B). The nomo-
gram is based on multi-factor regression analysis by setting 
a certain scale to characterize the situation of each variable 
in the multi-factor regression model and finally calculating 
the total score to predict the probability of the event.

In addition, we performed 1-, 3-, and 5-year prognostic 
calibration analyses on the nomograms in univariate and 
multivariate COX regression and plotted calibration curves 
(Fig. 11C, calibration graphs). This was used to evaluate the 
prediction effect of the model on the actual result by drawing 
the fitting situation between the actual probability and the 
probability predicted by the model under different conditions 
in the figure and is mainly used for the fitting analysis of the 
model established by the COX regression method and the 
actual situation. The horizontal axis of the calibration curve 
represents the survival probability predicted by the model, 
and the vertical axis represents the survival probability dis-
played by the actual data. The lines and dots in different 
colors represent the predictions of the model at different 
time points. The lines with different colors are closer to the 
ideal grey line, indicating that the prediction effect is better 
at this time point.

We then used DCA to assess the role of the constructed 
LASSO-Cox regression prognostic model in terms of 
clinical utility at 1- (Fig. 11D), 3- (Fig. 11E), and 5-years 
(Fig. 11F). The results were displayed (Fig. 11D‒F), and 
the x-axis in the DCA diagram represents the probability 
threshold or threshold probability, and the y-axis represents 
the net benefit. The results can be judged by observing that 
the line of the model can be stably higher than the x value 
range of the all-positive and all-negative lines. The larger the 
x value range, the better the model effect.
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Clinical analysis of prognostic pyroptosis‑related 
DEGs

To further determine whether there was a correlation 
between the expression levels of pyroptosis-related prog-
nostic DEGs and prognostic clinical characteristics of 
patients in the TCGA-COADREAD dataset, we analyzed 
pyroptosis-related prognostic factors in CRC tissues. The 
effect of prognostic DEGs (CXCL8, IL13RA2, and POP1) 
expression levels on tumor OS, DSS, and PFI (Fig. 12A‒I) 
was assessed.

It could be seen from the results that the expression level 
of the DEGs CXCL8 in relation to pyroptosis has a statisti-
cally significant difference in the expression of the overall 

survival (OS) of the tumor, with a (P = 0.01, Fig. 12A), 
while the expression level was not statistically significant 
for DSS (P = 0.603, Fig. 12B) or PFI (P = 0.78, Fig. 12C) 
in the tumor group.

The expression level of pyroptosis-related prognostic 
DEG IL13RA2 was related to the OS of the tumor (P < 0.001, 
Fig. 12D), and the DSS (P = 0.026, Fig. 12E), which was 
statistically significant. The P value of the PFI (P = 0.06, 
Fig. 12F) was greater than 0.05, indicating that the expres-
sion level of the gene BHLHE40 had no statistical signifi-
cance on the tumor PFI.

The expression level of the differentially expressed prog-
nostic gene POP1 related to pyroptosis affected the OS of 
the tumor (P = 0.028, Fig. 12G) and PFI (P = 0.04, Fig. 12I). 
Differences in expression were statistically significant. How-
ever, the expression of POP1 in the TCGA-COADREAD 
dataset had no significant effect on the DSS (P = 0.214, 
Fig. 12H).

Gene mutation analysis of pyroptosis‑related 
prognostic DEGs

The cBioPortal database converts complex genetic, epi-
genetic, gene expression, and proteomic events in cancer 
tissues and cell lines into simple genetic and epigenetic 
events. For the final determined pyroptosis-related prog-
nostic DEGs (CXCL8, IL13RA2, and POP1), we queried 
the gene mutation sites of the three genes in the TCGA-
COADREADcolorectal Cancerdataset through the cBio-
Portal database and analyzed the results (Fig. 13).

The results showed (Fig. 13A) that the genetic muta-
tions of the three pyroptosis-related prognostic DEGs in 
the TCGA-COADREAD dataset samples were mainly 
divided into six types: (1) Missense mutation (unknown 
significance), (2) splice mutation (unknown significance), 
(3) truncating mutations (unknown significance), (4) 
structural variant (unknown significance), (5) significant 
amplification (amplification), and (6) Deep Deletion (deep 
deletion).

There are three main types of mutations in the dif-
ferentially expressed gene CXCL8 related to pyroptosis: 
missense mutations (unknown significance), significant 
amplification, and deep deletion. The total number of 
mutations in CXCL8 accounts for the total number of 
samples in the TCGA-COADREAD dataset. 1%, while 
the mutation types of the pyroptosis-related prognostic 
differentially expressed gene IL13RA2 mainly include 
missense mutations (unknown significance), truncat-
ing mutations (unknown significance), and significant 
amplification. The total number of mutations accounted 
for 1.9% of the total samples in the TCGA-COADREAD 
dataset; there are 5 types of mutations in the differen-
tially expressed gene POP1 associated with pyroptosis, 

Fig. 8   CIBERSORT immunoinfiltration analysis of TCGA data set 
of CRC. A, B CIBERSORT immunoinfiltration analysis results of 
TCGA-COADREAD data set are shown by the accumulation histo-
gram of infiltration abundance (A) and the grouping comparison chart 
(B). C The correlation analysis results of infiltration abundance of 
16 kinds of immune cells in TCGA-COADREAD data set show. Ns 
symbol is equal to P ≥ 0.05, which has no statistical significance; The 
symbol * is equivalent to P < 0.05; The symbol ** is equivalent to 
P < 0.01. The symbol *** is equivalent to P < 0.001. TCGA​ The can-
cer genome atlas, COADREAD colon adenocarcinoma/rectum adeno-
carcinoma esophageal carcinoma

◂

Table 5   Patient characteristics of CRC patients in the TCGA datasets

CRC​ colorectal cancer, TCGA​ The cancer genome atlas

Characteristic Levels Overall

n 644
T stage, n (%) T1 20 (3.1%)

T2 111 (17.3%)
T3 436 (68%)
T4 74 (11.5%)

N stage, n (%) N0 368 (57.5%)
N1 153 (23.9%)
N2 119 (18.6%)

M stage, n (%) M0 475 (84.2%)
M1 89 (15.8%)

Pathologic stage, n (%) Stage I 111 (17.8%)
Stage II 238 (38.2%)
Stage III 184 (29.5%)
Stage IV 90 (14.4%)

Age, n (%)  ≤ 65 276 (42.9%)
 > 65 368 (57.1%)

OS event, n (%) Alive 515 (80%)
Dead 129 (20%)

DSS event, n (%) Alive 544 (87.5%)
Dead 78 (12.5%)

PFI event, n (%) Alive 479 (74.4%)
Dead 165 (25.6%)
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including missense mutations (unknown significance), 
splicing mutations (unknown significance), and trunca-
tion mutations (unknown significance), structural vari-
ants (unknown significance), and significant amplification. 
These account for 6% of the total samples in the TCGA-
COADREAD dataset.

In addition, we analyzed the specific mutation sites 
of three pyroptosis-related prognostic DEGs (CXCL8, 
IL13RA2, and POP1) in the TCGA-COADREAD dataset 
(Fig. 12B‒D). The results showed that the type of post trans-
lational modification (PTM) of CXCL8 was citrullination, 
with a total of two main mutation sites (variant of undeter-
mined significance, VUS: E97D, R87M). In this type of mis-
sense mutation, the main function of the mutation site is to 
cause protein change (protein change), which is distributed 
in exons 3 and 4 (Fig. 13B).

The PTM type of gene IL13RA2 in the TCGA-COAD-
READ dataset is N-linked glycosylation, with a total of 10 
major mutation sites (VUS: *381Rext*23, F376L, G360C, 
F344L, R343H, D209Y, H106R, A103V, D93Y, R74Q). 
The mutation type of *381Rext*23 mutation site is a trun-
cating mutation, and the mutation types of other mutation 
sites are missense mutations. The main function of the site 
is to cause protein changes that are distributed in exons 3, 
4, 6, 9, and 10. The topological regions involved corre-
sponded to three parts: cytoplasmic, transmembrane, and 
extracellular (Fig. 13C).

The types of PTMs of POP1 include phosphorylation, 
acetylation, ubiquitination, methylation, and glutathionyla-
tion. A total of 23 major mutation sites (VUS: T752Lfs*12, 
S371Kfs*4, POP1-ERICH5, E92K, L580R, R241W, R513Q, 
S801N, E378K, R241Q, R954H, L276P, G820E, R55Q, 
K313E, H138R, R465H, S865I, D902G, G401S, R141*, 
W818*, X807_splice), where the mutation type of the X807 
splice mutation site is splice mutation, the mutation type 
of the POP1-ERICH5 mutation site is fusion mutation, as 
well as for the mutation site R141. The mutation type of *, 

W818*, T752Lfs*12, S371Kfs*4 is truncating mutation, and 
the mutation type of the other 17 mutation sites are missense 
mutations. The main function of the mutation site is to cause 
protein changes were distributed in the region of exon 3–16 
(Fig. 13D).

Analysis of expression distribution 
of pyroptosis‑related prognostic DEGs and single 
cell analysis

In addition, we analyzed the distribution of RNA and protein 
expression of differentially expressed genes related prog-
nostic DEGs (CXCL8, IL13RA2, POP1) in HPA database 
in human as well as the expression in colonic and rectal 
tissues. The results showed that the significant upregulation 
of CXCL8 was found to be characteristic of bone marrow 
and lymphoid tissue. In addition, the protein encoded by 
CXCL8 was expressed in multiple human tissues such as 
stomach, kidney, and male tissue with high content distribu-
tion (Fig. 14A). We also analyzed the correlation between 
the expression of CXCL8 and tissue cell type in human colon 
tissue and rectal tissue (Fig. 14B, C). The results showed 
that the expression of CXCL8 in human colon tissue was 
most significantly correlated with c-12 B-cells (Fig. 14B). 
The expression of CXCL8 in human rectal tissue was also 
correlated with many cells, but it was most significantly cor-
related with C-11 Entero Endocrine cells (Fig. 14C).

The significant upregulation of the IL13RA2 was found 
to be characteristic of Male tissues testis. In addition, there 
is currently no clear information on the distribution of the 
protein expression encoded by the IL13RA2 in human tissues 
(Fig. 13D). We also analyzed the correlation between the 
expression of IL13RA2 and tissue cell type in human colon 
tissue and rectal tissue (Fig. 13E, F). The results showed 
that the expression of IL13RA2 in human colon tissue was 
significantly related to several cells such as C-14 Entero 
Endocrine cells (Fig. 13E), while the expression of IL13RA2 
in human rectal tissue was only related to C-11 Entero Endo-
crine cells (Fig. 14F).

The POP1 is expressed in many tissues of the human 
body, such as the gastrointestinal tract. In addition, there is 
no clear information about the distribution of the expres-
sion of the protein encoded by the POP1 in human tissues 
(Fig. 15A). We also analyzed the correlation between the 
expression of POP1 in human colon tissue and rectal tissue 
and tissue cell type (Fig. 15B, C), and the results showed 
that the expression of POP1 in human colon tissue was 
correlated with multiple cells. In addition, the correla-
tion with C-5 distinct enterocytes and C-8 undivided cells 
was more significant (Fig. 14B), while the expression of 
POP1 in human rectal tissue had a certain correlation with 
many cells, but none of them was particularly significant 
(Fig. 15C).

Fig. 9   Differential expression analysis of pyroptosis-related prognos-
tic DEGs in TCGA-COADREAD dataset and GSE113513 dataset. 
A Differential expression analysis of pyroptosis-related prognostic 
DEGs in the TCGA-COADREAD dataset. Results of grouping com-
parison chart show. B–E ROC curves of pyroptosis-related prognos-
tic DEGs CXCL8 (B), IL13RA2 (C), MELK (D), POP1 (E) in the 
TCGA-COADREAD dataset. results of grouping comparison chart 
show. F Differential expression analysis of pyroptosis-related prog-
nostic DEGs in GSE113513 dataset. G–J ROC curves of pyroptosis-
related prognostic DEGs CXCL8 (G), IL13RA2 (H), MELK (I), POP1 
(J) in the GSE113513 dataset. P > 0.05, no statistical significance; 
P < 0.05, statistically significant; P < 0.01, highly statistically sig-
nificant; P < 0.001, extremely statistically significant. The closer the 
AUC in the ROC curve was to 1, the better the diagnosis would be. 
AUC ranged from 0.5 to 0.7 with low accuracy; AUC ranged from 
0.7 to 0.9 with some accuracy; High accuracy above 0.9 AUC. TCGA​ 
The cancer genome atlas, COADREAD colon and rectal cancer, ROC 
receiver operating characteristic curve

◂
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Finally, we also analyzed differential expression genes 
pyroptosis-related prognostic DEGs (CXCL8, IL13RA2, and 
POP1) in different tissues and organs of the human body 
and their corresponding cell lines (Fig. 15D–F). The results 
showed that CXCL8, one of the pyroptosis-related prognostic 
DEGs, was significantly expressed in BJ hTERT + cell line 
in mesenchymal. Second, there is low expression in GAMG 
cell lines in Brain (Fig. 15D). IL13RA2 was significantly 
expressed in both Mesenchymal cell lines and Brain cell 
lines (Fig. 15E). POP1 was significantly expressed in vari-
ous cell lines of Brain, Mesenchymal, Lymphoid and bone 
marrow (Fig. 15F).

Discussion

CRC is one of the most common malignant tumors that 
is characterized by a high recurrence rate and poor prog-
nosis, particularly in developed countries. It is the third 
most common cancer among males and ranks second 

among females (Kraus et al. 2014; Ferlay et al. 2010). 
Although great progress has been made in terms of treat-
ment and diagnosis of CRC, its mortality and morbidity 
remain high. In particular, the age of patients with CRC 
are prominently becoming younger, and the early diagno-
sis and prognosis of CRC should be improved (Zhang et al. 
2020c). In recent years, several indicators, such as age, 
sex, and pathological stage, have appeared and at present, 
the imaging and serum markers of CRC are the main basis 
for judging its prognosis. However, owing to individual 
differences, the prediction of improved treatment effect 
and prognosis by the above factors alone is often limited. 
With the rapid development of gene sequencing technol-
ogy, multiple gene models can be constructed based on the 
expression characteristics of key regulators of the same 
signaling pathway, which can improve the prediction accu-
racy and explore new targeted therapies. Currently, mul-
tiple biomarkers are used to predict the prognosis of CRC 
(Akagi et al. 2013). Targeting pyroptosis can be used as 
an effective antitumor drug and is expected to become a 

Fig. 10   Prognostic analysis of DEGs related to pyroptosis. A KM 
curve for prognostic analysis of LASSO regression model of pyrop-
tosis-related prognostic DEGs in the TCGA-COADREAD data set. 
B–E Prognostic analysis KM curve of pyroptosis-related prognos-
tic DEGs CXCL8 (B), IL13RA2 (C), MELK (D), POP1 (E) in the 
TCGA-COADREAD data set. P > 0.05, no statistical significance; 

P < 0.05, statistically significant; P < 0.01, highly statistically signifi-
cant; P < 0.001, extremely statistically significant. TCGA​ The cancer 
genome atlas, COADREAD colon and rectal cancer, LASSO least 
absolute shrinkage and selection operator, KM curve Kaplan–Meier 
curve
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new treatment method (Wu et al. 2020). However, current 
research on tumor markers cannot be fully adapted to the 
diagnosis and prognosis of CRC. Therefore, identifying 
new biomarkers for CRC is crucial (Yang et al. 2022). 
Studies have shown that, in a variety of tumors, an increas-
ing number of genes are associated with pyroptosis (Du 
et al. 2022), but it is unknown if there is a link between 
genes related to pyroptosis and the prognosis of patients 
with CRC. This study aimed to understand the effects of 
PRGs on the prognosis of CRC. Patients with CRC were 
successfully stratified and predicted based on GEO and 
TCGA databases. In addition, we confirmed that many 
immune cells and pathways are significantly different in 
patients with different risk levels; this can be used as a 
new method for predicting CRC immunotherapy. CXCL8, 
IL13RA2, and MELK were selected as prognostic genes. 
POP1 is a prognostic gene that showed a better progno-
sis in GEO and TCGA. Genetic characteristics have been 
shown to be independent prognostic factors of CRC.

There were five pyroptosis-related DEGs in the PPI net-
work: CTSG, CXCL8, CHI3L1, IL13RA2, and GZMB which 
are related to other genes. The mRNA‒RBP interaction net-
work consisted of 7 mRNAs. DEGs related to pyroptosis: 
BHLHE40, PCSK9, CXCL8, MELK, POP1, CHI3L1, and 
DPEP1. The pyroptosis-related DEG BHLHE40 had the 
most interaction relationship with TFs in the mRNA-TF 
interaction network. C‒X‒C motif chemokine 8 (CXCL8), 
also known as interleukin 8 (IL-8), is primarily derived from 
macrophages. In addition, it plays an important role in the 
inflammatory response and chemotaxis of neutrophils (Ha 
et al. 2017). At present, the relationship between the CXCL8 
gene and tumor biology is still debated, and a study by Do 
HTT et al. (Do et al. 2020) showed that overexpression of 
CXCL8 can promote the proliferation, migration, and inva-
sion of CRC cells. It is also associated with CRC angiogen-
esis, metastasis, poor prognosis, and asymptomatic survival, 
among other factors. The other studies (Wang et al. 2017; 
Li et al. 2021) showed that high expression of CXCL8 can 

Table 6   COX regression to 
identify clinical features of 
pyroptosis-related differentially 
expressed genes

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

T stage 640
T1 20 Reference
T2 111 1.000 (0.216–4.639) 1.000 0.615 (0.065–5.866) 0.673
T3 435 2.047 (0.504–8.317) 0.316 0.740 (0.059–9.325) 0.816
T4 74 6.151 (1.458–25.953) 0.013 1.834 (0.142–23.659) 0.642
N stage 639
N0 367 Reference
N1 153 1.774 (1.131–2.781) 0.013 0.299 (0.106–0.845) 0.023
N2 119 3.873 (2.588–5.796)  < 0.001 0.576 (0.207–1.599) 0.289
M stage 563
M0 474 Reference
M1 89 3.989 (2.684–5.929)  < 0.001 20.723 (3.723–115.354)  < 0.001
Age 643
 <  = 65 276 Reference
 > 65 367 1.939 (1.320–2.849)  < 0.001 2.756 (1.750–4.340)  < 0.001
Pathologic stage 622
Stage I 111 Reference
Stage II 237 1.735 (0.765–3.933) 0.187 2.122 (0.392–11.474) 0.382
Stage III 184 3.263 (1.462–7.283) 0.004 10.769 (1.822–63.644) 0.009
Stage IV 90 8.065 (3.605–18.043)  < 0.001
CXCL8 643
Low 322 Reference
High 321 0.656 (0.459–0.936) 0.020 0.737 (0.484–1.123) 0.155
IL13RA2 643
Low 322 Reference
High 321 0.694 (0.487–0.988) 0.042 0.970 (0.636–1.479) 0.886
POP1 643
Low 322 Reference
High 321 0.647 (0.455–0.920) 0.015 0.724 (0.487–1.076) 0.110
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Fig. 11   Prognostic performance of pyroptosis-related prognostic 
DEGs. A–C Forest plot (A), nomogram (B), 1, 3, and 5-year cali-
bration curve plot (C) of univariate and multivariate COX regres-
sion analysis of pyroptosis-related prognostic DEGs, in the TCGA-
COADREAD data set. D–F: 1-year (D), 3-year (E), 5-year (F) DCA 

plots of the LASSO-Cox regression prognostic model. TCGA​ The 
cancer genome atlas, COADREAD colon and rectal cancer, LASSO 
Least absolute shrinkage and selection operator, DCA decision curve 
analysis
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prevent CRC liver metastasis, thereby contributing to better 
survival in patients with CRC, and provide a better prog-
nosis. GO results showed that 12 pyroptosis-related DEGs 
were mainly enriched in neutrophil-mediated cytotoxicity, 
leukocyte-mediated cytotoxicity, receptor internalization, 
antimicrobial humoral response, and other BPs in CRC; as 

well as secretory granule lumen, cytoplasmic vesicle lumen, 
vesicle lumen, external side of plasma membrane, and other 
CCs; and were enriched in endopeptidase activity, serine-
type endopeptidase activity, serine-type peptidase activ-
ity, serine hydrolase activity, and other MFs. The GSEA 
results indicated that 180 functional pathways, including 

Fig. 12   Clinical analysis of prognostic DEGs related to pyroptosis. 
A–C Correlation analysis of pyroptosis-related prognostic differen-
tially expressed gene CXCL8 with clinical OS (A), DSS (B), and PFI 
(C) in the TCGA-COADREAD data set. D–F Correlation analysis of 
pyroptosis-related prognostic differentially expressed gene IL13RA2 
with clinical OS (D), DSS (E), and PFI (F) in the TCGA-COAD-
READ data set. G–I Correlation analysis of pyroptosis-related prog-

nostic differentially expressed gene POP1 with clinical OS (G), DSS 
(H), and PFI (I) in the TCGA-COADREAD data set. P > 0.05, no sta-
tistical significance; P < 0.05, statistically significant; P < 0.01, highly 
statistically significant; P < 0.001, extremely statistically significant. 
OS overall survival, DSS disease-specific survival, PFI progression-
free interval
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Fig. 13   Mutation analysis of DEGs associated with pyroptosis. A 
Mutation analysis results of pyroptosis-related prognostic DEGs 
CXCL8, IL13RA2, and POP1 in the TCGA-COADREAD dataset. 
B–F Pyroptosis-related prognostic DEGs CXCL8 (B), IL13RA2 (C), 

POP1 (D) gene mutation site analysis results in the TCGA-COAD-
READ dataset. All data are from the cBioPortal database. TCGA​ The 
cancer genome atlas, COADREAD colon and rectal cancer
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Reactome chromosome maintenance, Reactome meiotic 
recombination, and Reactome condensation of prophase 
chromosomes, were significantly enriched by both datasets 

simultaneously. Interestingly, this finding has not been previ-
ously reported. The DEGs in the dataset GSE113513 were 
significantly enriched in the Reactome cell cycle checkpoints 

Fig. 14   Analysis of expression distribution of pyroptosis-related 
prognostic DEGs CXCL8 and IL13RA2 and single cell analysis. A 
mRNA and protein expression of CXCL8, a differentially expressed 
gene related to pyroptosis, in normal human body tissues. B, C Dis-
play of results from single-gene analysis of CXCL8, a differentially 
expressed gene related to apoptosis prognosis in the HPA database, 

in colon (B) and rectum (C) tissues. D mRNA and protein expres-
sion of IL13RA2, a differentially expressed gene related to apoptosis, 
in normal human body tissues. E, F Single gene analysis of IL13RA2, 
a differentially expressed gene related to cell scorch in HPA database, 
in colon (E) and rectum (F) tissues. All data are from The Human 
Protein Altas database
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Fig. 15   Analysis of expression distribution of pyroptosis-related 
prognostic DEGs POP1 and single cell analysis. A mRNA and pro-
tein expression of POP1, a differentially expressed gene related to 
pyroptosis, in normal human body tissues. B, C Display of results 
from single-gene analysis of POP1, a differentially expressed gene 

related to apoptosis prognosis in the HPA database, in colon (B) and 
rectum (C) tissues. All data are from The Human Protein Altas data-
base. D–F Cell line analysis of differentially expressed of pyropto-
sis-related prognostic DEGs genes CXCL8, IL13RA2, and POP1 in 
homotissues and organs of normal human body



Functional & Integrative Genomics (2023) 23:21	

1 3

Page 29 of 31  21

and Reactome mitotic spindle checkpoints. A previous study 
(Grady 2004) showed that the chromosomal region (CIN) 
was acquired and lost in most patients with CRC and caused 
different types of gene changes, thus causing tumorigen-
esis. CIN is mainly caused by abnormalities in DNA replica-
tion and spindle checkpoints. The DEGs were significantly 
enriched in TCGA-COADREAD during DNA methylation. 
A study by Rui Yang et al. on eight patients (Yang et al. 
2019) showed that DNA methylation plays an important role 
in the formation of tumor responses and the observation of 
CD8+ tumor infiltrating lymphocytes.

The expression levels of the four pyroptosis-related 
prognostic DEGs were closely associated with the occur-
rence of CRC. Meanwhile, the ROC curve showed that 
the expression of MELK and POP1 was significantly cor-
related with the occurrence of colorectal cancer in both the 
TCGA-COADREAD and GSE113513 datasets. In addi-
tion, the results of analyzing the differences in immune 
infiltration showed that the expression of CXCL8 and 
IL13RA2 in the TCGA-COADREAD dataset was posi-
tively correlated with the significant differential enrich-
ment of most immune cells, while the expression of MELK 
and POP1 in the TCGA-COADREAD dataset was posi-
tively correlated with the significant differential enrich-
ment of most immune cells was negatively correlated. Liu 
et al. (Liu et al. 2020) believed that MELK accelerates the 
progression of CRC by activating the FAK/Src pathway, 
and Fan et al. (Fan et al. 2020) considered POP1 to play an 
important role in the pathogenesis of CRC and had prog-
nostic value. After drawing the prognosis survival KM 
curve individually, it was found that CXCL8, IL13RA2, 
and POP1 were the DEGs related to pyroptosis that met 
the threshold requirements.

Their expression levels, as well as tumor clinical T, N, 
and M stage, as well as age and pathological stage, are sig-
nificantly correlated with prognosis. Our analysis showed 
that high expression of CXCL8 or POP1 can contribute to 
better survival in patients with CRC and provide a better 
prognosis. The predicted and actual results were in agree-
ment. The level of CXCL8 expression showed a statistically 
significant difference in tumor OS, and the level of POP1 
expression showed a statistically significant difference in 
tumor OS and PFI. “Pyrin-only” 1 (POP1, POPDC1, and 
BVES) is a protein that can regulate the formation of tight 
junctions between cells and prevent the occurrence of epi-
thelial-mesenchymal transition (EMT), and through its epi-
genetic silencing, can promote the occurrence of EMT. Liu 
et al. (Liu et al. 2021) considered POP1 to be an oncogene in 
breast cancer. C‒X‒C motif ligand 8 (CXCL8) is a cytokine 
with multiple functions that can regulate tumor proliferation, 
invasion, and migration in a paracrine manner. The interac-
tion between CXCL8 and CXCR1/2 in the tumor microenvi-
ronment is key to tumor development and metastasis. The 

regulatory role of the CXCL8‒CXCR1/2 axis is involved in 
tumorigenesis and metastasis (Ha et al. 2017).

SsGESA is an extension of the GSEA method, which 
calculates the enrichment score for each sample and gene 
set pair. Each ssGSEA enrichment score represented the 
degree to which members of a particular gene set in the 
sample were coordinated upregulated or downregulated. 
SsGSEA transformed the gene expression profiles of a 
single sample into a gene set enrichment profile. This 
transformation enables researchers to describe the cell 
state based on the level of activity of biological pro-
cesses and pathways rather than by the expression level 
of individual genes. Therefore, ssGESA can calculate 
the immune cell infiltration score if it uses the gene set 
related to the immune cell marker. The results of ssGSEA 
analysis showed that the expression levels of CXCL8 
and IL13RA2 in the TCGA-COADREAD data set were 
positively correlated with significant differential enrich-
ment in most immune cells. The expression of MELK and 
POP1 in the TCGA-COADREAD data set was negatively 
correlated with significant differential enrichment in most 
immune cells.

TIMER2.0 (Barbie et al. (n.d.)) is an immune infil-
trate used for the systematic analysis of different types 
of cancer. Various immune deconvolution methods are 
provided to estimate the abundance of immune infiltra-
tion and to fully explore the immunological, clinical 
and genomic features of the tumor. The characteristic 
genes were identified separately for each cancer type by 
selecting genes negatively correlated with tumor purity 
from immune cell markers. It could not be directly 
interpreted as a cellular component or compared 
between different immune cell types and data sets. 
Due to the upgrade and revision of TIMER database, 
immune infiltration analysis related to immune cells 
cannot be performed at present. However, in TIMER2.0 
database, we found eight differentially expressed genes 
related to cell apoptosis (BHLHE40, CHI3L1, CASP5, 
CTSG, GZMB, MPEG1, POP1, MELK) analyzed their 
correlations in the COAD and READ tumor data sets: 
CTSG and MPEG1 were moderately strongly correlated, 
BHLHE40 and MPEG1, CHI3L1 and GZMB, GZMB and 
MPEG1 were not correlated.

Our study had certain limitations. First, the number of 
CRC samples and clinical data are limited. A single micro-
array analysis results in a high false-positive rate and has 
a one-sided bias effect. Therefore, multisample data will 
be further integrated to improve the detection capability of 
the detector ii the model. Second, to confirm the predictive 
model, a large body of evidence must be collected from 
multiple research institutions. Further clinical and popu-
lation data of patients with CRC await further analysis. 
Third, clinical, cellular, and animal functional tests are 
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lacking; therefore, the reliability of the data analysis needs 
to be further tested. PCR, Western blotting, and immuno-
histochemistry are necessary to fully understand the func-
tion and possible mechanism of CRC.

Conclusion

In summary, from the GEO (GSE113513) and TCGA-
COADREAD CRC datasets, a total of 12 CRC‒PRG‒
DEGs were found, that is, in relation with CRC. The PRGs 
signature proposed in this paper has excellent character-
istics and deserves further in-depth research and long-
term use. However, large prospective studies are needed 
to determine the prognostic value of CRC‒PRG-DEGs, 
and further experimental validation should be performed 
to demonstrate the biological role of CRC‒PRG‒DEGs 
in CRC.
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