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Abstract
Banana is an important food crop that is susceptible to a wide range of pests and diseases that can reduce yield and qual-
ity. The primary objective of banana breeding programs is to increase disease resistance, which requires the identification 
of resistance (R) genes. Despite the fact that resistant sources have been identified in bananas, the genes, particularly the 
nucleotide-binding site (NBS) family, which play an important role in protecting plants against pathogens, have received little 
attention. As a result, this study included a thorough examination of the NBS disease resistance gene family’s classification, 
phylogenetic analysis, genome organization, evolution, cis-elements, differential expression, regulation by microRNAs, and 
protein–protein interaction. A total of 116 and 43 putative NBS genes from M. acuminata and M. balbisiana, respectively, 
were identified and characterized, and were classified into seven sub-families. Structural analysis of NBS genes revealed 
the presence of signal peptides, their sub-cellular localization, molecular weight and pI. Eight commonly conserved motifs 
were found, and NBS genes were unevenly distributed across multiple chromosomes, with the majority of NBS genes being 
located in chr3 and chr1 of the A and B genomes, respectively. Tandem duplication occurrences have helped bananas’ NBS 
genes spread throughout evolution. Transcriptome analysis of NBS genes revealed significant differences in expression 
between resistant and susceptible cultivars of fusarium wilt, eumusae leaf spot, root lesion nematode, and drought, imply-
ing that they can be used as candidate resistant genes. Ninety miRNAs were discovered to have targets in 104 NBS genes 
from the A genome, providing important insights into NBS gene expression regulation. Overall, this study offers a valuable 
genomic resource and understanding of the function and evolution of NBS genes in relation to rapidly evolving pathogens, 
as well as providing breeders with selection targets for fast-tracking breeding of banana varieties with more durable resist-
ance to pathogens.
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Abbreviations
NBS	� Nucleotide-binding site
PTI	� Pathogen-triggered immunity
ETI	� Effector-triggered immunity
SAR	� Systemic acquired resistance

PAMPs	� Pathogen-associated molecular patterns
PRRs	� Pattern recognition receptors

Introduction

Being sessile, plants are constantly exposed to a variety 
of pathogens, which has prompted the evolution of strong 
immune systems and intricate defense mechanisms includ-
ing pathogen-associated molecular pattern-triggered immu-
nity (PTI) and effector-triggered immunity (ETI) to detect 
and combat pathogens (Zhang et al. 2014; Yu et al. 2017). 
Upon local induction, PTI and ETI cause systemic acquired 
resistance (SAR) (Fu and Dong 2013). The PTI is the first 
line of inducible defense in the plant, and it is activated by 
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highly conserved pathogen-associated molecular patterns 
(PAMPs) found in pathogens. Pattern recognition recep-
tors (PRRs) such as transmembrane receptor-like kinases 
(RLKs) or receptor-like proteins (RLPs) present in the 
plasma membrane recognize PAMPs and send downstream 
immune signaling. The second layer of inducible defense is 
the ETI, which is triggered by the resistant (R) genes upon 
recognition of the effector molecules, i.e., the genes that 
confer pathogen virulence (Avr), and this interaction typi-
cally results in the hypersensitive response (HR), a sort of 
programmed cell death (PCD), which stops the pathogen’s 
growth (Cui et al. 2015). Due to the emergence of new 
virulent strains, pathogens often manage to overcome ETI 
resistance (Yu et al. 2014). Therefore, identifying R genes 
is essential for comprehending the molecular basis of resist-
ance and creating resistant cultivars.

Currently, more than 300 R genes that confer resistance to 
various diseases have been cloned from various plant species 
(Yang and Wang 2016; Kourelis and van der Hoorn 2018). 
According to their domains, R genes can be divided into five 
groups, with the nucleotide-binding site leucine-rich repeat 
(NBS-LRR) class accounting for more than 60% of all char-
acterized R genes (Kourelis and van der Hoorn 2018). They 
identify the avirulence proteins from the pathogens either 
directly or via the Guard model, and this family of R genes 
encodes a variable domain at the N terminal, a central NBS 
domain, and an LRR domain at the C terminal end (Collier 
and Moffett 2009; Dangl and Jones 2001) .

Based on structural characteristics at the N terminal end, 
the NBS-LRR family of genes has further divided into three 
main subclasses. These include the TIR-NBS-LRR (TNL) 
proteins, which have a domain that resembles the intracel-
lular signaling domains of Drosophila Toll and mammalian 
IL-1 receptors, the CC-NBS-LRR (CNL) proteins, which 
contain a putative coiled-coil domain, and the RPW8-NBS-
LRR (RNL) proteins harbor resistance to powdery mildew8 
(RPW8) domains (Shao et al. 2016). TNLs are solely found 
in dicots, but CNL and RNL are found in both monocots 
and dicots (Shao et al. 2016). The NBS domain binds to 
ATP/GTP and performs the hydrolysis reaction, supplying 
energy for downstream signaling, whereas the C terminal 
LRR domain is involved in pathogen recognition and pro-
tein–protein interaction (Goyal et al. 2020). This class of 
genes primarily operates in disease resistance following 
pathogen detection, which initiates downstream cascades 
that result in a variety of defense responses, including HRs 
and PCD (Guo et al. 2011).

NBS-LRR genes evolved early in the plant lineage, and 
due to the ongoing arms race between pathogens and plants, 
plants maintain a large number of R genes in their genome 
(Gu et al. 2015; Li et al. 2016; Shao et al. 2019). Genomic 
and evolutionary studies have provided a detailed and accu-
rate understanding of how functional R genes evolved and 

were preserved. NBS-LRR genes are mostly involved in 
defense responses, but ADR1, an Arabidopsis CC-NBS-
LRR, and At5g17880, an Arabidopsis TIR-NBS-LRR, have 
been linked to drought tolerance (Chini et al. 2004) and pho-
tomorphogenic development, respectively (Faigón-Soverna 
et  al. 2006). NBS-LRR genome-wide analyses in many 
monocots and dicots have yielded a wealth of information 
on the structure and function of this gene family (Meyers 
et al. 1999, 2003; Bai et al. 2002; Mondragon-Palomino 
et al. 2002; Baumgarten et al. 2003; Ayliffe and Lagudah 
2004; Zhou et al. 2004; Ameline-Torregrosa et al. 2008).

Banana is a major food crop in many developing coun-
tries, but it is susceptible to a variety of biotic (Fusarium 
wilt, leaf spot, bacterial wilt, bunchy top virus disease, 
weevils, and nematodes) and abiotic (salinity and drought) 
stresses that limit its production (Nansamba et al. 2020). 
To reduce the impact of these stresses, it is necessary to 
identify resistance genes and use novel transgenic strate-
gies to develop improved banana cultivars. Furthermore, 
understanding genetic variations in NBS-LRR genes and 
the number of conserved genes in bananas will greatly aid 
in estimating the genetic diversity of R genes available in 
Musa species (Yang et al. 2006). In addition, studies on the 
genomic evaluation and evolutionary patterns of R genes 
will result in a better understanding of the basis of resistance 
and susceptibility, leading to the identification of functional 
R genes in bananas. As a result, there is a need for system-
atic evaluation of NBS genes from bananas, and with the 
availability of complete genome sequences (D'Hont et al. 
2012; Wang et al. 2019), characterization is much needed 
to elucidate the diverse molecular mechanisms underlying 
host–pathogen interaction, as well as for mapping and clon-
ing of R genes, which will help with the mining and exploi-
tation of R genes for developing improved resistant varieties.

Materials and methods

Identification of NBS gene family members 
in banana

To create a local protein database, NBS gene and protein 
sequences were downloaded from the banana genome hub 
database (https://​banana-​genome-​hub.​south​green.​fr/) for 
both the A and B genomes. NBS-encoding genes were 
identified, and motif architecture was investigated using a 
method similar to that used in Oryza sativa L. var. Nippon-
bare, Arabidopsis thaliana, and Brachypodium distachyon 
(Meyers et al. 2003; Zhou et al. 2004; Tan and Wu 2012). A 
reiterative process was used to identify NBS gene sequences 
from both the A and B genomes of bananas. The Hidden 
Markov Model (HMM) (Eddy 1998) was used to choose 
candidate NBS genes from the entire set of predicted M. 

https://banana-genome-hub.southgreen.fr/
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acuminata (DH Pahang) and M. balbisiana (DH PKW) pro-
teins with NBS motifs, as well as the Pfam database for 
NBS domain (PF00931; http://​pfam.​sanger.​ac.​uk/​search). 
BLASTP searches in NCBI (Altschul et al. 1990) were used 
to compare the sequences of the predicted NBS-containing 
proteins to the non-redundant (nr) database (the threshold 
expectation value was set to 1e−10), allowing the identifica-
tion of regular and non-regular NBS genes. NBS encod-
ing genes were classified into sub-groups based on domain 
information from the NCBI conserved domain database 
(CDD) (Tan and Wu 2012) . The genome IDs of NBS genes 
were arranged according to their chromosomal location, 
from Chr01 to Chr11 (Supplementary Data: 1a, 1b).

Phylogenetic tree construction

Using the CLUSTALW tool in the BioEdit sequence align-
ment editor version 7.0.3.1, NBS gene sequences from both 
genomes were aligned (Hall 1999). Multiple sequence align-
ments were performed using MUSCLE v.3.8.31 with default 
parameters to examine the evolutionary relationships of NBS 
between Musa (A, B genome), O. sativa, and A. thaliana, 
and MEGA X was used to create a maximum likelihood 
(ML) phylogenetic tree using all sites with bootstrap analysis 
(1000 replicates) (Kumar et al. 2018).

Gene structure, cis‑regulatory elements, 
and genomic distribution of NBSgenes

The Bio-sequence Structure Illustrator application of the 
TBtools software version 1.077 was used to illustrate the 
exon–intron structure of NBS genes (Chen et al. 2020). The 
MEME tool (http://​meme-​suite.​org/​tools/​meme) was used 
to identify conserved motifs with the default parameter set-
tings: maximum number of motifs = 20, and the results were 
displayed by TBtools. Using TBtools, each NBS gene was 
assigned to a chromosome based on its location on the Musa 
A and B genomes. We utilized the TBtools Quick MCS-
canX Wrapper program to find the tandem and segmental 
duplication gene pairs. PlantCARE (http://​bioin​forma​tics.​
psb.​ugent.​be/​webto​ols/​plant​care/​html/) was used to inves-
tigate the upstream sequences (2 kb) of each NBS gene to 
determine the expected cis-regulatory elements.

Synteny and gene duplication analysis

Using the default settings of MCScanX (Wang et al. 2012), 
duplication events of NBS genes were examined. On the 
basis of details regarding collinear pairs and genetic location 
for both Musa A and B genomes, advanced Circos was uti-
lized to produce diagrams for collinear analysis (Chen et al., 
2020). Using TBtools, a multiple synteny plot was created 

between the Musa A and B genomes and the O. sativa and 
A. thaliana species.

Ka/Ks analysis and estimated divergence time 
for the duplicated Musa NBS genes

Using the PAML tool (Yn00 package), the non-synonymous 
substitution rate and synonymous replacement rate of gene 
duplication events were calculated (Xu and Yang 2013) . 
The approximate date of the duplication time (T) (million 
years ago, Mya) was calculated using the Ks values for each 
gene pair because Ks of duplication genes are expected 
to be similar over time in a molecular clock (Shiu et al. 
2004), using the formula: T = Ks/2λ*10−6, where λ = clock-
like substitution rate (Lynch and Conery 2000) and λ for 
banana = 4.5 × 10−9 (Lescot et al. 2008).

Expression analysis of NBS genes

The differential expression (DE) value (log2fold change) of 
each NBS gene under Pseudocercospora eumusae, Pratylen-
chus coffeae, and drought stress conditions in the corre-
sponding contrasting cultivars was obtained from the data-
base maintained at ICAR-NRCB (http://​nrcb.​res.​in/​nrcbb​io/​
about.​html), along with Fusarium oxysporum f.sp. cubense, 
(Foc) race1 (VCG 0124), and Foc tropical race 4 (TR4) DE 
values. In order to create a heat map, TBtools employed the 
significant log2fold change values of the variously expressed 
NBS genes.

Plant materials and stress treatments

Three-month-old healthy tissue cultured Foc race1 (VCG 
0124) (Thangavelu et al. 2021) resistant (cv. Rose, AA) and 
susceptible cultivars (Namarai, AA) and Foc TR4 resistant 
(cv. Rose, AA) and susceptible cultivars (Matti, AA) were 
individually planted in the pots containing a pasteurized pot-
ting mixture and maintained in a greenhouse at 25 °C with 
a 12-h photoperiod. Separately, 30 g of Foc race1 and TR4 
fungal mixtures were inoculated around the root zone of 
the respective contrasting genotypes at 2–3 cm below the 
soil surface. Root and corm samples were collected from 
Foc inoculated plants on the 0th, 2nd, 4th, 6th, and 8th after 
inoculation. Leaf and root samples were collected and snap 
frozen in liquid nitrogen before being stored at − 80 °C until 
use.

Regulation by microRNAs

M. acuminata miRNAs were retrieved from the Prediction 
miRNA site (PmiREN2.0:https://​www.​pmiren.​com/) as 
miRNAs from Musa spp. were not found in mirBase. The 
downloaded mature miRNAs and the NBS CDS of both the 

http://pfam.sanger.ac.uk/search
http://meme-suite.org/tools/meme
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://nrcb.res.in/nrcbbio/about.html
http://nrcb.res.in/nrcbbio/about.html
https://www.pmiren.com/
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genome were submitted to identify the targets from psRNA-
Target: A Plant Small RNA Target Analysis Server using 
default search parameters after selecting the option “submit 
small RNAs and targets” (https://​www.​zhaol​ab.​org/​psRNA​
Target/).

Gene Ontology classification

The functional annotation of the NBS proteins from Musa 
spp. was investigated using the Gene Ontology Functional 
Annotation Tool Blast2GO version 3.3.5 (https://​www.​blast​
2go.​com/​blast​2go-​pro) (Conesa et al. 2005) . BLASTP was 
used for the annotation with default setup parameters and 
an E-value filter of ≤ 10−5 against the NCBI non-redundant 
(nr) protein database. GO terms associated with each of the 
hits were examined based on their molecular functions, bio-
logical processes, and cellular localization to illustrate the 
potential functions of our genes.

Interaction network of NBS proteins

Using STRING v11.0 for NBS-LRR, protein–protein inter-
action (PPI) was investigated, and a PPI network was built 
using A. thaliana as a reference (Szklarczyk et al. 2019). 
The medium confidence level was chosen for the minimum 
needed interaction score parameters.

Results and discussion

NBS genes are the largest R gene family in the plant genome, 
and they play an important role in pathogen response. A 
comprehensive analysis of NBS-encoding genes across 
the entire banana genome (A and B) was performed in this 
study, providing an opportunity to mine and use these in 
disease resistance breeding.

Identification and features of NBS genes

Musa A and B genomes contained 116 and 43 NBS genes, 
respectively, and the number of R genes was lower than that 
of A. thaliana (174), rice (636), B. distachyon (239), Zea 
mays (129), Sorghum bicolor (245), Grapevine (535), and 
Popular (416) (Table 1). This demonstrates that the total 
number of NBS genes is not related to genome expansion, 
and one possible explanation for the lower number of genes 
in Musa species could be transposable elements that cause 
pseudogenization of the NBS genes, resulting in gene loss 
(Li et al. 2010a). Moreover, the number of NBS genes in the 
B genome is significantly lower than that of the A genome, 
and similar findings have been reported in orchids (Zhang 
et al. 2016) and in the three Cucurbitaceae species Cucumis 
sativus, C. melo, and Citrullus lanatus, particularly in Ci 

lanatus, where only 45 genes have been reported (Lin et al. 
2013). This could be due to stringent gene loss or to a lim-
ited number of gene duplication and diploidization events 
that occurred extensively in the B genome following whole 
genome duplication (WGD) events in the Musa lineage 
(Wang et al. 2019; Zhang et al. 2016). Alternatively, the 
threefold difference in the number of NBS genes between the 
A and B genomes could be explained by the recent expan-
sion of NBS genes in the A genome. Similar intra-species 
variation events have also been observed in the potato and 
tomato (Qian et al. 2017), as well as in Oryza, Glycine, and 
Gossypium (Zhang et al. 2010).

In addition, Li et al. (2010a) reported that gene gain and 
loss events cause inconsistency, resulting in a shrinking pat-
tern of NBS genes in Asian rice, maize, S. bicolor, and B. 
distachyon. Gene family expansion and contraction studies 
between M. acuminate and M. balbisina revealed that 83 
gene families, including those involved in plant-pathogen 
interaction, notably expanded in the A genome, while they 
significantly contracted in the B genome (Wang et al. 2019). 
Similarly, varied evolutionary patterns have been reported, 
like the NBS genes in Fabaceae and Rosaceae families were 
continuously expanding (Shao et al. 2014; Jia et al. 2015), 
but in Brassicaceae family, the genes were expanding then 
contracting (Zhang et al. 2016). In the Solanaceae family, 
genes showed shrinking and consistent expanding patterns 
in pepper and potato, respectively, and first expanding and 
then shrinking in tomatoes (Qian et al. 2017).

Furthermore, NBS genes were classified as regular if the 
aligned region shared ≥ 50% identity with the nr database, 
and non-regular for the remaining hits. Contrary to regu-
lar genes, non-regular genes have short motif lengths and 
diverse motifs despite harboring NBS structure (Tan and 
Wu 2012). By comparing with the nr database, 38 and 13 
hits were defined as regular NBS genes, primarily show-
ing ≥ 50% identity with the subject sequence of the nr data-
base, and the remaining hits, 78 and 30, were defined as 
non-regular NBS encoding genes from the banana A and 
B genomes, respectively. Similar to this, not all of the dis-
covered NBS genes from plants such as rice, B. distachyon, 
tomatoes, potatoes, peppers, and orchids have all of the 
domains intact, which could be the result of recombination, 
fusion, and pseudogenization (Zhou et al. 2004; Tan and Wu 
2012; Qian et al. 2017; Xue et al. 2020). Given that their 
genomes have been thoroughly sequenced and annotated, 
rice and Arabidopsis have less truncated genes than both 
the genomes of Musa spp (Meyers et al. 2003; Zhang et al. 
2016; Xue et al. 2020).

In a prior work, Chang et al. (2020) reported 98 NBS-
LRR genes in M. acuminata, whereas we have reported 116 
genes (Anuradha et al. 2022a) which could be due to strin-
gent criteria followed and the use of the HMM model, and 
similar results have been reported in case of A. lyrata and 

https://www.zhaolab.org/psRNATarget/
https://www.zhaolab.org/psRNATarget/
https://www.blast2go.com/blast2go-pro
https://www.blast2go.com/blast2go-pro
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B. distachyon (Guo et al. 2011; Tan and Wu 2012). NBS 
protein family typically contains two major subfamilies toll/
interleukin-1 receptor-NBS-LRR (TNL) and coiled-coil 
NBS-LRR genes, out of 38 and 13 regular NBS genes, 24 
and 5 were NBS-LRR types of which 21, 3 were CC-NBS-
LRRs, having all the domains and 3, 2 were NBS-LRRs 
without coiled-coil motif (CC) from A and B genomes, 
respectively. Further, among the regular NBS genes, 5 and 3 
were CC-NBSs lacking LRR domains, 2 and 3 were X-NBS, 
where X is an unknown motif, and, 7 and 2 had only NBS 
in the A and B genomes, respectively (Supplementary data: 
1a, 1b). Many crops including rice, B. distachyon, maize, 
sorghum, Arabidopsis, C. sativus, grapevine, popular, cab-
bage have a similar grouping of NBS genes (Li et al. 2010a; 
Guo et al. 2011; Wan et al. 2013; Goyal et al. 2020; Liu et al. 
2021a, b). Furthermore, banana being a monocot, there are 
no TNL groups of NBS-LRR, which are usually present in 
dicots, and reports of TIR in monocots are scarce (Li et al. 
2010b; Pan et al. 2000).

In the A and B genomes, the length of NBS family pro-
teins varied from 51 to 2275 and 118 to 2254 amino acids 
(aa), respectively. The molecular weight of these proteins 
ranged from 5.78 to 258.01 kDa in the A genome and 12.79 
to 255.59 kDa in the B genome. The isoelectric point (pI) 
of NBS proteins ranged from 5.55 to 9.88 and 4.82 to 9.56 
in the A and B genomes, respectively. Out of 116 and 43 
proteins from A and B genomes, only 23 and 6 had sig-
nal peptides and the signal peptide of NBS family mem-
bers ranged from 16 to 31aa and 17 to 54aa in the A and B 
genomes, respectively (Supplementary data: 1a, 1b). The 
signal peptides had mitochondrial and chloroplast targeted 
peptides that are targeted to mitochondrion and chloroplast, 
respectively, and some proteins may be localized in the 
secretory pathway. Similar findings have been reported on 
protein length, molecular weight, and isoelectric point of 
NBS of grapevine and cabbage (Goyal et al. 2020; Liu et al. 
2021a, b).

Phylogenetic analysis

A phylogenetic analysis of 159 NBS genes, including regular 
and non-regular genes, was constructed to investigate the 
evolutional relationship between all of the identified NBS 
genes from both banana genomes (Fig. 1). The tree showed 
the clustering of CNL, CN, XNL, XN, XL and N separately 
and TIR motif harboring NBS genes as an out-group. There 
were few mixtures of other classes of genes in many of the 
clusters, indicating that they are co-evolving or that genetic 
material is being exchanged between the genes (Yang and 
Wang 2016). Further, most NBS genes on the same chro-
mosome as well as those having high sequence similarity 
and similar motifs were grouped in the same clades except 
for a few genes which showed that tandem duplication has 

occurred (Guo et al. 2011; Wan et al. 2013; Mace et al. 
2014; Yang and Wang 2016; Chang et al. 2020). None of the 
banana NBS genes clustered with Arabidopsis TNL genes, 
indicating that TIR motifs are absent in monocots (Meyers 
et al. 2002; Richly et al. 2002; Tan and Wu 2012; Chang 
et al. 2020). Representative NBS genes from Arabidopsis, 
rice and Brachipodium were found to cluster in different 
clades, which may be due to species differences because of 
the loose functional domain structures of the CC domain, 
NBS, and LRRs (Liu et al. 2021a, b).

Gene structure, conserved protein motifs

The structural evolution of the NBS gene family will be 
better understood as a result of gene structure research. 
Both genomes have similar gene structures with few varia-
tions, which is common in many functional genes (Lescot 
et al. 2008; Wang et al. 2019). Most of the genes, i.e., 21 
and 35 from regular and non-regular NBS genes of the A 
genome and 6 and 11 from regular and non-regular genes of 
the B genome had no introns, and 42, 11 genes had single 
exon from A and B genomes, respectively (Supplementary 
Fig. 1a, 1b, 1c, 1d). A total of 6, 12 from regular and non-
regular NBS genes of the A genome and 2, 11 from regular 
and non-regular NBS genes of the B genome had more than 
two introns. Meyers et al. (2003) reported lesser diversity 
in exon number and most of the CNLs to have only one 
exon. In general, NBS genes have fewer introns and are 
not conserved, and our findings are consistent with NBS 
genes from other crops (Meyers et al. 2003; Mun et al. 2009; 
Lozano et al. 2015; Shao et al. 2016; Chang et al. 2020; Liu 
et al. 2021a, b; Goyal et al. 2020). Exon/intron gain, dele-
tions/insertions, and exonization/pseudo-exonization are the 
main causes of the variation in gene structure, which may 
contribute to enhanced gene expression (Roy and Gilbert 
2005; Long et al. 2013; Xu et al. 2012; Wan et al. 2013; Jo 
and Shim 2015; Goyal et al. 2020; Anuradha et al. 2022b). 
Furthermore, the majority of NBS genes with the same 
exon–intron organization clustered together, indicating a 
high degree of conservation throughout evolution (Chang 
et al. 2020; Liu et al. 2021a, b). In addition, the number of 
motifs increases with the number of exons, which is associ-
ated with gene length in both genomes (Yang and Wang 
2016), and similar results were also reported by Yu et al 
(2021).

NBS proteins in both the genomes were examined to see 
whether they shared any common motifs, and a total of 20 
motifs were discovered (Supplementary Fig. 1a, 1b, 1c, 1d). 
Motifs 1, 3, 7, and 13 were found in the NBS domain of 
all the genes, and motifs 4 and 8 were present only in one 
cluster of the regular genes whereas motifs 2, 4, 6, 8, 9, 
10 of the NBS domain were present in all the non-regular 
genes of A genome of banana. The most conserved motifs 
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are the P-loop, GLPL, Kinase-2, RNBS-A, RNBS-B, RNBS-
D, and MHDV, with the C1, P-loop, GLPL, Kinase-2 being 
the most common, and many have reported the presence of 
these motifs in the NBS genes (Meyers et al. 2003; Zhou 
et al. 2004; Tan and Wu 2012) (Supplementary data 2a, 2b). 
The motifs are highly conserved and ordered in the signaling 
NBS domains, whereas the LRR domain interacts with the 

pathogen, resulting in changes in the LRR binding specifici-
ties (Yu et al. 2021). Moreover, the members with similar 
motifs clustered together in the phylogenetic tree as well 
(Fig. 1; Supplementary Fig. 1). The P-Loop and Kinase-2 
motifs are involved in ATP/GTP binding and their high con-
servation is critical for protein function (Traut 1994; Meyers 
et al. 2003; Habachi-Houimli et al. 2018) and the presence 

Fig. 1   Phylogenetic analysis of NBS genes from Musa A, B genomes 
and representatives sequences from A. thaliana and O. sativa. Maxi-
mum likelihood phylogenetic tree was constructed by using MEGA X 

with 1000 bootstrap replications. Squares, circles, diamonds, triangles 
(pink), and triangles (blue) represent the NBS genes of Musa A, B, 
rice, Arabidopsis, Brachipodium, respectively
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of GLPL motif is essential for disease resistance (Dodds 
et al. 2001). Furthermore, the last amino acid of the kinase-2 
motif was W (tryptophan) and many have also reported the 
presence of W in non-TNL genes, and based on the presence 
of W/D as the last residue we could distinguish the type of 
NBS genes as Non-TNL/TNL (Meyers et al. 2003; Wan et al. 
2013; Die et al. 2018) (Supplementary data 2a, 2b).

Gene distribution, collinearity, and synteny analysis

NBS genes are unevenly distributed and exist as clusters, 
a region that contains four or more genes within 200 kb or 
less (Holub, 2001), across the chromosomes of both A and 
B genomes of bananas (Supplementary Fig. 2a, 2b, 2c, 2d) 
and similar findings have been reported for rice, Arabidop-
sis¸ grapevine, poplar, and Brachipodium (Richly et al. 2002; 
Meyers et al. 2003; Zhou et al. 2004; Yang et al. 2008; Tan 
and Wu 2012). The majority of NBS genes are found in clus-
ters, which serve as a reservoir of genetic variation for NBS 
genes via gene conversion, duplication, and diversifying selec-
tion (Meyers et al. 2005; Ameline-Torregrosa et al. 2008).

Regular NBS genes were distributed across all the 8 chro-
mosomes except for chr2, 5, 11 and were located in chr1, 4, 
7, and 8 in the A and B genomes, respectively, whereas non-
regular NBS genes were distributed across all the 11 chromo-
somes in A genome and in all chromosomes except for chr3, 
11 in B genome. A maximum number of regular NBS genes 
were found in chr3 (23 genes) and chr1 (10 genes) and non-
regular NBS genes were located in chr6, chr10 (13 genes), 
and chr6 (8 genes) of the A and B genomes, respectively. 
Gene duplication, uneven crossing over, ectopic recombi-
nation, gene conversion, and diversifying selection may all 
have contributed to the distribution of R genes (Friedman and 
Baker 2007; Yang et al. 2015a; Chang et al. 2020).

A total of two clusters (chr3) in regular and six clus-
ters (chr1, 3, 6, 7, 9, 10) in non-regular NBS genes were 
observed in the A genome, whereas in the B genome a single 
cluster (chr1) was observed. The clusters may be monophy-
letic (sequence with high sequence similarity and a close 
relationship) or mixed clusters (sequence with low sequence 
similarity and a diverged relationship). NBS genes in Musa 
spp. have monophyletic clusters in both regular (chr3, 6, 9 
and chr1) and non-regular genes (chr1, 3, 6, 7, 9 and chr1, 
6, 9) of the A and B genomes, respectively and mixed clus-
ters of genes (Supplementary data: 3a, 3b, 3c, 3d). NBS 
genes in monophyletic clusters are small and have higher 
sequence similarity than NBS genes in the mixed clusters, 
indicating that they evolved through different mechanisms. 
Most monophyletic clusters may have resulted from a local 
duplication event, which contributes to the gene diversifica-
tion and increase in the number, and the difference in num-
bers may also be attributed to the pressure exerted by the 
pathogens (Mace et al. 2014; Yang and Wang 2016) whereas 

mixed clusters may have resulted from ectopic recombina-
tion (Yang and Wang 2016). Eitas and Dangl (2010) discov-
ered that two NBS genes are involved in resistance, with the 
majority of them coming from clusters. Most NBS genes are 
clustered, but some are present as singletons on the chromo-
some, which could be due to gene loss by pseudogene for-
mation, or deletion or these genes may not have undergone 
local duplication (Zhang et al. 2014). These singletons may 
further act as trailblazers, resulting in the formation of new 
NBS regions and clusters.

Tandem duplication events were discovered in both 
banana genomes, resulting in the clustering of NBS genes 
on the chromosome (Fig. 2a–d). Tandem duplication events 
were found in chr1, 3 and chr1, 3, 4, 6, 7, 9, and 10 in the 
A genome’s regular and non-regular genes, respectively. 
In the case of the B genome, tandem duplication events 
were found in chr1 (regular genes) and chr6, 9 (non-regular 
genes), respectively. This demonstrates that tandem dupli-
cation events played a significant role in the expansion of 
the NBS genes in bananas and similar findings have been 
reported in many other crop species (Meyers et al. 2003; 
Li et al. 2010b; Kang et al. 2012; Wan et al. 2013; Shao 
et al. 2014; Yang and Wang 2016; Zhang et al. 2016, 2020; 
Qian et al. 2017; Chang et al. 2020; Liu et al. 2021a, b). 
Many studies have revealed that the evolution of most of 
the NBS genes falls under medium to high tandem dupli-
cation classes (Santamaria et al. 2001; Die et al. 2018). 
Further, the low number of duplication events in the B 
genome indicates a lack of recent duplication events, as 
well as contraction of gene families involved in plant–path-
ogen interactions following divergence from the A genome 
(Wang et al. 2019). The low number of genes and duplica-
tion events also revealed that these genes are sufficient for 
pathogen surveillance (Porter et al. 2009).

The synteny relationship of NBS genes from bananas 
was investigated to explore the evolutionary events that 
that occurred between the orthologous from O. sativa and 
A. thaliana (Fig. 3a). The results revealed that NBS genes 
from both banana genomes had homologous regions in rice 
and Arabidopsis but the degree of synteny was higher with 
rice than Arabidopsis, which could be due to whole genome 
duplication (WGD) even before Musa spp. diverged from 
poaceae, as well as due to the existence of microsynteny 
between Musa, rice and Arabidopsis followed by inde-
pendent cycles of WGD and diploidization (Lescot et al. 
2008; D'Hont et al. 2012). In addition, a high degree of 
orthologous relationship was observed between the A and 
B genomes of bananas, which might be attributed to a high 
degree of homology between the two genomes (Davey et al. 
2013) (Fig. 3b). Lescot et al. (2005, 2008) reported high 
level of microsynteny with gene order preservation in the 
genic regions between the two genomes. Wang et al. (2019) 
also reported greater genomic collinearity and sequence 
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similarity between the two genomes. However, the number 
of orthologous genes between the two banana genomes is 
lower, which could be due to less expansion and more con-
traction of the gene family in the B genome after divergence 
from the A genome (Liu et al. 2021a, b).

Cis‑elements

Cis-elements of promoters are crucial for gene regulation, 
and the types of the cis-elements indicate the gene’s poten-
tial function in response to the pathogens (Rushton et al. 
2002). Cis-elements were identified in the 2 kb promoter 
region of banana NBS genes (Supplementary data: 5a, 5b). 
Many cis-elements were identified from both the genomes 

Fig. 2   a, b Collinearity mapping of regular and non-regular NBS 
genes in Musa A genome. Different chromosomes are shown in yel-
low color. The gene density is displayed in the form of histogram. 
The inner colored lines represent the collinearity relationships of 
NBS families. c, d Collinearity mapping of regular and non-regular 

NBS genes in Musa B genome. Different chromosomes are shown 
in yellow color. The gene density is displayed in the form of histo-
gram. The inner colored lines represent the collinearity relationships 
of NBS families
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(Supplementary Fig. 3a, 3b, 3c, 3d) which were similar to 
the cis-elements identified from NBS genes of Brachipo-
dium, grapes, Chinese cabbage (Tan and Wu 2012; Goyal 
et al. 2020; Liu et al. 2021a, b). The NBS promoter regions 
contained cis-elements from various classes, including 
defense and stress-related, development-related, and hor-
mone-related elements, particularly salicylic acid-responsive 
elements, ethylene-responsive elements, methyl jasmonate 
responsive elements, and abscisic acid-responsive elements, 
indicating their extensive role in the resistance mechanism 
(Goyal et al. 2020) (Supplementary Fig. 4a, 4b).

Many of the NBS genes had defense and stress-related 
elements, wound and pathogen responsive elements like 
WUN-motif and W BOX, which are associated with WRKY 
transcription factors, and stress-responsive element GT-1 
box associated with GT-1-like transcription factors, respec-
tively resulting in induced expression upon pathogen infec-
tion (Dong et al. 2003; Goyal et al. 2020; Liu et al. 2021a, 
b) (Supplementary Fig. 5a, 5b, 5c, 5d). The binding of GT-1 
factors to the promoter’s GT-1 elements reduced TMV infec-
tion and influenced the expression of genes induced by SA 
(Buchel et al. 1999). WBOX is a distinctive disease-related 
element present in NBS genes as well as the upstream pro-
moter region of NPR1, a positive regulator of inducible plant 
disease resistance and PR1 (Yu et al, 2001; Rushton et al. 

1996) and most Arabidopsis and Brachipodium pathogen 
response genes (Li et al. 2004; Tan and Wu 2012). WRKY 
transcription factors bind specifically to WBOX elements 
of PR10 and also play a role in ABA and GA signaling 
(Eulgem et al. 2000; Zhang et al. 2004). Additionally, it was 
discovered that the NBS genes in both the banana genomes 
have an excess of regulatory regions linked to stress-related 
transcription factors like MADS, C2H2, MYB, HD-ZIP, 
WRKY, bHLH, ERF, and bZIP (Tan and Wu 2012; Goyal 
et al. 2020; Liu et al. 2021a, b). Overall, the various types 
and number of regulatory elements present in the promoter 
region of NBS genes indicate that these genes may be 
involved in the defense mechanism.

Ka/Ks analysis and estimated divergence time 
for the duplicated NBS genes

Positive selection drives host–pathogen co-evolution and 
selection for new resistance genes. The driving force behind 
gene duplication was examined using the non-synonymous 
(Ka) and synonymous (Ks) nucleotide substitution rates 
of the duplicated genes, and the Ka/Ks ratio was used to 
identify and quantify the direction and strength of selection 
(Habachi-Houimli et al. 2018). A total of 119 (53 in regular, 
66 in non-regular) and 20 (17 in regular, 3 in non-regular) 

Fig. 3   a Synteny analysis of NBS genes between Musa A genome, 
Musa B genome, A. thaliana, and O. sativa. The grey lines in the 
background indicate the collinear blocks within Musa A, B, A. thali-
ana, and Oryza sativa genomes, while the blue and red lines high-

light the syntenic NBS gene pairs. b Synteny analysis of NBS genes 
between Musa A and B genomes. The grey lines in the background 
indicate the collinear blocks within Musa A, B genomes, while the 
blue lines highlight the syntenic NBS gene pairs
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putative paralogous gene pairs were identified from A and 
B genomes, respectively (Supplementary data: 5a, 5b) and 
maximum number of paralogs was observed for non-regular 
genes in the case of the A genome and regular genes in the 
case of the B genome.

The analysis of selection pressure among the duplicated 
NBS genes in both genomes revealed that the genes were 
under purifying or negative selection, which could be due 
to a highly conserved NBS domain with strictly ordered 
motifs involved in signaling (Ka/Ks was less than one in 
each duplicated gene pair) (Mace et al. 2014). Moreover, 
many of the paralogous gene pairs that are under negative 
selection belong to the N, CN, and XN categories of genes 
and they lack the LRR region that is involved in pathogen-
ligand recognition and are highly variable because they typi-
cally evolve binding specificities and are subject to positive 
selection (Yoshimura et al. 1998; Mace et al. 2014; Yang 
and Wang 2016). Our findings are consistent with those of 
Andersen et al. (2016), Habachi-Houimli et al. (2018), and 
Li et al. (2016).

The average Ka/Ks ratio of NBS genes in a banana is 
much higher than in bread wheat and barley; this higher 
value, as well as the presence and absence of genes between 
the two genomes, indicate that NBS genes are rapidly evolv-
ing following natural ploidization and artificial selection 
expansion (Gu et al. 2015; Habachi-Houimli et al. 2018). 
Duplication events between gene pairs may have occurred 
as a result of negative selection, implying an expansion due 
to tandem duplication, indicating that this gene family is 
conserved and may not be quickly overcome by virulence 
evolution, and the natural diversity available in NBS genes is 
likely an important source of durable resistance (Santamaria 
et al. 2001; Cannon et al. 2004; Li et al. 2010b). However, 
evolutionary pressure may cause structural and functional 
variation within paralogs (Lan et al. 2009).

Based on the divergence rate of 4.5 × 10–9 synonymous 
mutations per synonymous site year proposed for banana, 
the estimated time of occurrence of duplicated events of par-
alogous NBS gene pairs was calculated. Paralog duplication 
events may have occurred between 1.10 and 20.91 in regular 
NBS genes and 0.28 and 19.43 in non-regular NBS genes in 
the A genome, and between 6.13 and 21.09 in regular NBS 
genes and 8.43 and 21.10 in non-regular NBS genes in the 
B genome. Many pairs of duplication events were discov-
ered to have occurred lately in both banana genomes, which 
may have contributed to the evolution of various NBS gene 
functions.

Differential expression of NBS genes under various 
stress conditions

To investigate the potential biological functions of NBS 
genes, we examined the expression patterns of various NBS 

genes in bananas using challenged and unchallenged tran-
scriptome data from resistant and susceptible cultivars under 
various biotic and abiotic stress conditions (Fig. 4).

The results indicated that the NBS genes such as 
Macma4_03_g09360.1 (Ma03_g09130), Macma4_05_
g04110 (Ma05_g04000), Macma4_06_g00260.1 (Ma06_
g00230), Macma4_06_g00610.1 (Ma06_g00230), 
Macma4_10_g11850.1 (Ma10_g08140), Macma4_07_
g23010.1 (Ma07_g21730), Macma4_09_g02770.1 (Ma09_
g02710), Macma4_04_g35000.1 (Ma04_g32720) were 
significantly up-regulated in resistant (cv. Rose, AA) than 
susceptible cultivars (Matti, AA) upon Foc TR4 infection. 
NBS genes such as Macma4_03_g10980.1 (Ma03_g10480), 
Macma4_06_g25530.1 (Ma06_g23910), Macma4_10_
g11840.1 (Ma10_g08250), Macma4_03_g09360.1 (Ma03_
g09130) showed significant up-regulation in resistant (cv. 
Rose, AA) than susceptible cultivars (Namarai, AA) upon 
Foc race1 infection. Despite the fact that Macma4_03_
g09360.1 (Ma03_g09130) showed higher expression in 
resistant cultivars upon both the Foc races, significant up-
regulation was observed upon Foc TR4 rather than race1. 
Different NBS genes responded to Foc race1 and TR4 infec-
tion, implying the involvement of race-specific pathogen 
effectors and furthermore, NBS genes confer race-specific 
resistance, confirming the gene for gene hypothesis (Jones 
and Dangl 2006; Chen et  al. 2018). Peraza-Echeverria 
et al. (2008) identified NBS-type resistance gene candi-
dates, RGC1-5 (Macma4_08_g32130.1, Macma4_03_
g09360.1, Macma4_04_g37480.1, Macma4_03_g 10,980.1, 
Macma4_06_g38310.1) from Foc TR4 resistant wild 
banana, M. acuminata ssp. malaccensis. Among these 
five genes, RGC2 (Macma4_03_g09360.1) and RGC5 
(Macma4_06_g38310.1) were compared with I2, and the 
expression of RCG2 correlated with resistance to Foc STR4 
(Peraza-Echeverria et al. 2009). Sutanto et al. (2014) iso-
lated RGAs from three fusarium-resistant banana cultivars 
and identified that MNBS17 which shared 50.5% identity 
with RGC2 (ABY75802), an NBS gene associated with Foc 
TR4 resistance in bananas. The above finding shows that 
Macma4_03_g09360.1 is up-regulated upon Foc infection 
which corroborates with our results. Dale et al. (2017) also 
reported transgenic Cavendish lines transformed with RGC2 
and its expression strongly correlated with resistance to Foc 
TR4. Miller et al. (2008) reported significant up-regulation 
of Macma4_04_g35000.1 (Ma04_g32720) upon TR4 infec-
tion. Macma4_03_g10980.1 was found to be significantly 
up-regulated in resistant cultivars upon Foc race1 (Peraza-
Echeverria et al. 2008). Chang et al. (2020) found that the 
genes Ma09_g12410, Ma07_g22920, and Ma09_g08180, 
Ma07_g22920 were significantly up-regulated in resistant 
cultivars after Foc race1 and TR4 infection, our results also 
showed similar trends, but they were not significant. This 
could be due to the genetic background of the hosts used in 
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both studies (Wang et al. 2019). Furthermore, the number of 
NBS responsive genes against TR4 was higher than race1, 
which could be due to race-specific recognition against dif-
ferent races of a pathogen (Chang et al. 2020).

Upon P. eumusae infection, Macma4_10_g11850.1 
(Ma10_t08140.1) gene showed significant up-regu-
lation, along with this, other genes like Macma4_06_
g21640.1 (Ma06_g21200.1), Macma4_03_g24860.1 
(Ma03_g23360.1) also showed significant differen-
tial expression in resistant cultivar (Manoranjitham, 
AAA) as compared to the susceptible cultivar (Grand 
Nain, AAA). According to Timm et al. (2016), RGA1 

(Ma06_g21200.1) was up-regulation in resistant culti-
var (Calcutta-4) rather than susceptible cultivar (Grand 
Nain) against P. fijiensis. Passos et  al. (2013) also 
reported that NBS genes are the most abundant class 
of R genes that were expressed upon P. musicola infec-
tion. Emediato et al. (2013) compared the transcriptional 
activity of NBS genes in Calcutta-4 (AA, resistant) and 
Cavendish Grand Nain (AAA, susceptible) cultivars after 
P. musicola infection and found that some RGAs dis-
played higher/lower expression constitutively in resist-
ant cultivars at an early stage, whereas some expressed 
across the infection time course.

Fig. 4   a, b A graphical representation of expression details of NBS 
genes under biotic and abiotic stresses in Musa cultivars [a Eumusae 
leaf spot, nematode, and drought, b Foc race 1 and TR4]. The heat 
map was drawn using log2 logarithmic transformed expression val-

ues. Green to red represents low and high expression levels, respec-
tively. Based on the expression, the NBS genes were hierarchically 
clustered and divided into various gene clusters in the figure
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Macma4_06_g25510.1 (Ma06_t23890.1) was signifi-
cantly up-regulated in P. coffeae resistant cultivar (YKM5, 
AAA) than in the susceptible cultivar (Nendran, AAB). 
Backiyarani et al. (2013) reported that root lesion nematode 
infection induced RGA clusters, C1 and C5 in the resistant 
(cv. Karthobiumtham) but not the susceptible (cv. Nendran) 
cultivar.

Some of the NBS genes expressed more in sensitive 
cultivars than in tolerant cultivars, indicating that these 
genes play an active role in drought response. Chini 
et  al. (2004) reported that drought tolerance is asso-
ciated with increased expression of the CC-NBS-LRR 
genes. CC-NBS-LRR expression was found to be higher 
in hexaploid sweet potato and soybean during drought 
(Arisha et al. 2020; Kim et al. 2020). Many studies have 
reported that B-genome contributes to resistance to both 
biotic and abiotic stresses (Davey et al. 2013; Hu et al. 
2015). Generally, cultivars with AAB or ABB genomes 
are more drought tolerant and hardy due to the presence 
of the B genome and this could be one of the possible 
reasons for the tolerant nature of Saba (ABB) to drought 
stress (Davey et al. 2009; Liu et al. 2010; Vanhove et al. 
2012; Ravi et al. 2013; Muthusamy et al. 2016). Fur-
thermore, despite the fact that the B genome contains 
fewer NBS genes, the resistance nature may be due to 
B genome-specific miRNAs regulating these R genes. 
Even though a similar number of miRNA families were 
reported in both the genomes of bananas, additional 
miRNAs were discovered in the B genome, which is 
unique and they may have predicted targets indicating 
novel stress-related pathways that evolved separately 
in M. balbisiana (Davey et  al., 2013). Hence, there 
is a need to investigate the NBS genes and miRNAs 
expressed in B genome cultivars to gain a better under-
standing of resistance mechanisms to various biotic and 
abiotic stresses.

Interaction of NBS genes with miRNAs

A total of 247 miRNAs from M acuminate was retrieved 
and used for the identification of miRNA targets in NBS 
genes of both the genomes, of which 90 and 77 miRNAs 
were found to have targets in 104 and 34 NBS genes 
in the A and B genomes, respectively. The percentage 
of miRNA to NBS target is higher for the B genome 
and it was suggested that several miRNAs from the B 
genome are involved in tolerance/response to biotic and 
abiotic stresses (Davey et al. 2013). Eight and four sig-
nificantly up-regulated NBS genes against Foc TR4 and 
race1 in resistant cultivars have target sites for miRNAs. 
Macma4_03_g09360.1 which was found to be up-regu-
lated in resistant cultivars against both the Foc races had 
target sites for three miRNAs (Supplementary data: 6a, 

6b). Similarly, all the significantly up-regulated NBS 
genes against leaf spot disease and nematodes had miRNA 
target sites, indicating that these miRNAs may regulate 
gene expression in susceptible cultivars. By producing 
phased trans-acting siRNAs (phasiRNAs) that target the 
domains of NBS, miRNAs serve as a master regulator that 
modifies the arms race between hosts and pathogens (Park 
and Shin 2015; Koroban et al. 2016; Yang et al. 2021). 
Yang et al. (2015a, b) reported that miR482 modulate 
resistance in potato during Verticillium dahlia infection by 
suppressing the expression of NBS-LRR genes. Resistance 
to V. dahlia, Fusarium oxysporum in cotton and tomato 
was due to reduced expression of miR482 and increased 
expression of the NBS gene, respectively (Zhu et al. 2013; 
Ouyang et al. 2014). Yang et al. (2021) reported decaying 
of NBS-LRR mRNAs by miR482 in potato, tomato, and 
tobacco, and miR9863 against Mla transcripts in barley 
upon powdery mildew fungus by triggering the produc-
tion of phasiRNAs. Hence, the low expression of the NBS 
genes in susceptible cultivars in bananas against various 
stresses might be due to miRNAs and this has to be vali-
dated through miRNA expression studies and their targets 
in both the resistant and susceptible cultivars upon specific 
pathogen infections.

GO functional annotation of NBS genes

NBS genes from both genomes were annotated into 
different classes such as biological process, molecular 
function, and cellular component, which allows us to 
gain insight into the protein’s molecular and biologi-
cal functions (Ashburner et al. 2000) (Supplementary 
data: 7a, 7b). Most of the genes were under biological 
processes (238, 205) followed by molecular functions 
(181, 200) and cellular components (67, 67) in the A 
and B genomes, respectively (Fig. 5a, b). NBS genes 
under biological processes are diverse and are in a broad 
range of GO terms. In both the genomes, the maximum 
number of genes under the biological processes category 
belonged to the GO term, response to stimuli, response to 
stress, and defense response and it is in tandem with their 
function, disease resistance. Under molecular function 
and cellular components, most of genes were under bind-
ing and cell periphery in both the genomes, respectively. 
Similar outcomes have been documented for blueberry, 
Brassica napus, grapes, and durian (Die et al. 2018; Fu 
et al. 2019; Goyal et al. 2020; Cortaga et al. 2022). NBS 
genes under molecular function are involved in binding 
as they are mostly cellular receptors engaged in signaling 
via kinase cascades (Cristina et al. 2010). NBS genes in 
cellular components convert external stimuli into intra-
cellular responses for defense activation because they are 
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primarily found in the cell membrane, cytoplasm, and 
nucleus and serve as recognition sites for PAMP/MAMP 
and effector proteins (Cortaga et al. 2022). In general, 
GO term analysis supports the NBS genes’ ability to 
recognize conserved binding sites and trigger defense 
responses.

Interaction network of NBS proteins

The NBS protein interaction network was built using 
the interaction relationships of homologous NBS pro-
teins from A. thaliana (Supplementary Fig.  6). The 
interaction network analysis revealed that NBS pro-
teins from both genomes interacted with CAX7, sol-
ute carr ier family 24 (sodium/potassium/calcium 
exchanger), member 6; CYTC-1, cytochrome C-1; 
electron carrier protein; CYTC-2, cytochrome C-2-
eletron carrier protein; DAR5, DA1-related protein 
5 (DAR5); AT5G45510, probable disease resistance 
protein At5g45510; At5g46520, disease resistance 
protein (TIR-NBS-LRR class) family; RLP36, disease 
resistance family protein/LRR family protein; ASA2, 
anthranilate synthase alpha subunit 2, chloroplastic; 
At5G53850, probable bifunctional methylthioribu-
lose-1-phosphate dehydratase/enolase-phosphatase 
E1; AT2G34930, disease resistance family protein/
LRR family protein. Santaella et al. (2004) found that 
NBS and the solute carrier family were up-regulated in 

Manihot esculenta during infection with Xanthomonas 
axonopodis pv. manihotis. According to Wang et al. 
(2022), NBS genes from Lagenaria siceraria were 
found to interact with two electron carrier proteins 
(CYTC-1 and CYTC-2), transporter family proteins, 
NB-ARC domain-containing proteins (SNC1, ADR1-
L2, ADR1, ZAR1, TIR, RPM1), anthranilate synthase 
(ASA2), and receptor-like protein (RLP36).

Conclusion

A comprehensive analysis of NBS genes is a valuable 
resource for many questions about immune system evo-
lution, such as natural variation in innate immunity and 
hybrid failure. This study provides a thorough under-
standing of the NBS gene family in bananas, including its 
classification, genome organisation, phylogenetic rela-
tionship, gene structure, motifs, evolution, gene expres-
sion patterns, and regulation by miRNA against biotic 
and abiotic stresses. Even though NBS genes are present 
in susceptible cultivars, higher expression of NBS genes 
in resistant cultivars indicates NBS gene family resist-
ance to various biotic and abiotic stresses. More research 
on NBS genes, as well as the expression of miRNA and 
its targets under different stresses, is needed to function-
ally validate their biological significance and molecular 
mechanisms for using these genes as defence sentinels.

Fig. 5   a, b Functional classification of NBS genes from Musa A and B genomes on the basis of Gene Ontology (GO) terms assigned to various 
genes using BLAST2GO tool
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