
ORIGINAL ARTICLE

Genome-wide analysis of long non-coding RNAs responsive
to multiple nutrient stresses in Arabidopsis thaliana

Jingjing Wang1,2,3
& Qi Chen4

& Wenyi Wu4
& Yujie Chen4,5

& Yincong Zhou4
& Guoji Guo1,2,3

& Ming Chen4,6,1

Received: 31 May 2020 /Revised: 19 October 2020 /Accepted: 25 October 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Nutrient stress is the most important environmental stress that limits plant growth and development. Although recent evidence
highlights the vital functions of long non-coding RNAs (lncRNA) in response to single nutrient stress in some model plants, a
comprehensive investigation of the effect of lncRNAs in response to nutrient stress has not been performed in Arabidopsis
thaliana. Here, we presented the identification and characterization of lncRNAs under seven nutrient stress conditions. The
expression pattern analysis revealed that aberrant expression of lncRNAs is a stress-specific manner under nutrient stress
conditions and that lncRNAs are more sensitive to nutrient stress than protein-coding genes (PCGs). Moreover, competing
endogenous RNA (ceRNA) network and lncRNA-mRNA co-expression network (CEN) were constructed to explore the poten-
tial function of these lncRNAs under nutrient stress conditions. We further combined different expressed lncRNAs with ceRNA
network and CEN to select key lncRNAs in response to nutrient stress. Together, our study provides important information for
further insights into the role of lncRNAs in response to stress in plants.
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Introduction

Generally, long non-coding RNAs (lncRNAs) are defined as
transcripts that are longer than 200 nucleotides (nt) and are not
translated into proteins. According to their genomic location,
lncRNAs are further classified into three types: antisense
lncRNA (antisense to coding genes), lincRNA (originated
from intergenic regions away from coding genes), and

incRNA (located at introns of coding genes) (Derrien et al.
2012). Over recent years, numerous studies have shown that
plant lncRNAs are developmentally regulated and responsive
to abiotic stress in various biological processes (Chekanova
2015; Liu et al. 2015; Shafiq et al. 2016). They have emerged
as key regulators at both transcriptional and posttranscription-
al level by acting as competing endogenous RNA (ceRNAs),
small RNA (smRNAs), precursors, and scaffolds (Chekanova
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2015; Liu et al. 2015; Wang et al. 2017). For example,
Shumayla et al. (2017) have predicted 19 lncRNAs as precur-
sors and 1047 as target mimics of known miRNAs in wheats
(Shumayla et al. 2017).

Nutrient stress is one of the most severe abiotic stresses that
seriously influence plant growth and development (Zeng et al.
2014). Vital macronutrients such as nitrogen (N), phosphorus
(Pi), and sodium (Na) are essential for optimal plant growth
and are required in relatively large amounts. Micronutrients
usually serve as cofactors of metabolic enzymes and protein
complexes in the electron transport chain, such as magnesium
(Mg), iron (Fe), and cuprum (Cu). The acquisition, transport,
and homeostasis of nutrients are fundamentally important for
plant physiology, whereas nutrient stress largely affects the
production and quality of crop plants. Recently, an increasing
number of lncRNAs were reported to be responsive to nutrient
stress in some model organisms. For example, 637 lncRNAs
were identified under N deficiency in maize (Lv et al. 2016),
and 98 antisense lncRNAswere identified in drought response
in rice (Chung et al. 2016). In Populus, 14 N-responsive
lncRNAs were identified as miRNA precursors (Chen et al.
2016), and 202 lincRNAs were differentially expressed under
Pi starvation (Cruz de Carvalho et al. 2016). Additionally, Xu
et al. (2016) identified 3170 altered expressed lincRNAs un-
der Pi starvation (Xu et al. 2016). Moreover, 7361 and 7874
salt-responsive lncRNAs were identified in leaf and root tis-
sues of Medicago truncatula, respectively. In A. thaliana, a
recent study identified 254 ploy (A) + and 58 ploy (A)-
lncRNAs, which were aberrantly expressed under four stress
conditions, including heat, cold, drought, and salt (Di et al.
2014). In particular, one lncRNA, called IPS1 (induced by
phosphate starvation 1), was found to be up-regulated under
Pi deficiency in A. thaliana, which acted as a target mimic for
miR399 and blocked the interaction between miR399 and
another miR399 target, phosphate2 (PHO2) (Franco-Zorrilla
et al. 2007).

Currently, studies on stress-responsive lncRNAs were
mostly carried out on single stress type, whereas there is no
systematic screening of lncRNAs under multiple nutrient
stresses and their convergent regulatory roles in stress-
related pathway. To investigate the potential role of
lncRNAs in response to multiple nutrient stresses, we per-
formed genome-wide lncRNA identification under seven nu-
trient stress conditions in A. thaliana. Eight hundred seventy-
four lncRNA transcripts with high-confidence were identified
through four filtration steps, of which 224 were lincRNAs, 53
were incRNAs (lncRNA form intron), and 597 were antisense
lncRNAs. The potential function of these lncRNAs under sev-
en nutrient stress conditions was investigated based on
ceRNA network and lncRNA-mRNA co-expression network
(CEN). Finally, we retained 357 key stress-responsive
lncRNA and constructed relevance network among the seven
nutrient stresses. Two stress-responsive lncRNAs functionally

shared by seven nutrient stresses were extracted for deep anal-
ysis. In summary, our results demonstrate that lncRNAs play a
significant role in response to multiple nutrient stresses in
A. thaliana and that integrative analysis of ceRNA network
and CEN provides new insights for further investigation on
the molecular mechanisms of stress-responsive lncRNAs and
related protein-coding genes (PCGs) in plants.

Results

Genome-wide identification and properties of
lncRNAs in A. thaliana

We developed a pipeline to identify lncRNAs in A. thaliana
under seven nutrient stress conditions (Table 1), which was
initiated by RNA-seq data processing and followed by multi-
ple filter stages (Fig. 1a). The details of the pipeline are
showed in the section of “Materials and methods.” A total of
874 isoforms (721 loci) were obtained from the RNA-seq data
(Supplementary Table S1). To verify the accuracy, we used
COME software by Hu et al. (2017) to test our identified
lncRNAs (Hu et al. 2017). The results show that 81.6% (713
out of 874) was marked as “non-coding,” and 97.5% (852 out
of 874) was detected in poly A+ RNA libraries. In addition,
193 identified lncRNAs have been reported in CANTATA
database (Szczesniak et al. 2019), and 41 have been annotated
in GREENC database (Paytuvi Gallart et al. 2016)
(Supplementary Table S2). The comparison result between
lncRNAs and long miRNAs suggested that long miRNA se-
quences have no effect on lncRNAs analysis. Although ath-
MIR5647 gene completely overlaps with TCONS_00026952,
ath-MIR5647 gene is a lot shorter than TCONS_00026952.

According to their proximity to coding genes in the ge-
nome, the predicted lncRNAs were divided into three types
(Fig. 1b). Most lncRNAs (68.3%) were antisense to coding
genes (antisense lncRNA). 25.6% originated from intergenic
regions away from coding genes (lincRNA), and 6.1% were
located at introns of coding genes (incRNA). We then com-
pared the sequence length, exon number, expression level, and
GC content between lncRNAs and PCGs in A. thaliana (Fig.
1c–f). Not surprisingly, lncRNAs were shorter than PCGs
with fewer exons and lower expression levels (P value =
1.098e-14, Student’s t test), consistent with the previous study
in rice and cassava (Li et al. 2017; Zhang et al. 2014). It is also
worth mentioning that GC content volatility of lncRNAs was
significantly higher than that of PCGs (Fig. 1f). GC content of
lncRNAs was between 0.3 and 0.5, whereas GC content of
PCG was focused largely on 0.4.

The expression pattern of stress-responsive genes was re-
ported to be closely correlated with histone methylation (Haak
et al. 2017). For instance, H3K4me3 is usually considered a
stimulative epigenetic mark, while H3K27me3 is regarded as

18 Funct Integr Genomics (2021) 21:17–30



a repressive mark. Our histone methylation results showed
that H3K4me3mark of protein-coding genes was high around
the transcription start site (TSS) but low around the transcrip-
tion termination site (TTS) (Fig. 1g), suggesting the increased
expression of stress-responsive genes was up-regulated by
H3K4me3. We also observed different epigenetic modifica-
tion signal distributions in our identified lncRNAs, compared
with PCGs in A. thaliana (P value < 0.005, Wilcoxon rank
sum test). The histone methylation of lncRNAs presented
small ups and downs frequently, while there were no big
overall changes. Comparatively, lncRNAs tend to have weak-
er H3K4me3 signals than PCGs around the transcription start
site (TSS) but stronger signal around the transcription termi-
nation site (TTS), while the H3K27me3 signal of the
lncRNAs was weaker than that of PCGs along the whole
region (Fig. 1 g and h). Altogether, the different signal distri-
bution of H3K4me and H3K27me3 between lncRNAs and
PCGs may give a hint to the potential effects of chromatin
modification on lncRNA expression.

Expression pattern of lncRNAs responding to nutrient
stress

Based on the lncRNAs identified in the A. thaliana genome
mentioned above, we systematically analyzed their expression
patterns under seven nutrient stress types, including salt_H,
Cu_L, Mg_H, Mg_L, Fe_L, Pi_L, and N_H. We found that
the expression levels and fold change (FC) values of lncRNAs
changed with various stress conditions (Fig. 2a and
Supplementary Fig. S1). Comparatively, Mg_H and Mg_L
share similar expression pattern. More lncRNAs were up-
regulated under salt_H and Cu_L stresses, while most
lncRNAs were down-regulated under other five stresses
(Fig. 2a). Subsequently, we defined lncRNAs that were dif-
ferentially expressed under two stress conditions to have two

linked stress conditions. By that analogy, we observed that
most lncRNAs (78.46%) had less than three linked stress con-
ditions (Fig. 2b), suggesting that aberrant expression of
lncRNAs was a stress-specific manner. To confirm these re-
sults, we calculated the stress specificity scores using Tau (τ)
(Yanai et al. 2005), a widely used method for the tissue spec-
ificity scores. The stress specificity score τ values range from
0 for stress-independent genes to 1 for stress-specific genes.
Our result showed that more than 80% associated lncRNAs
had higher stress specificity scores (τ > 0.7, P value < 2.2e-16,
Wilcoxon rank sum test) (Fig. 2c). We then compared the
altered expression pattern between lncRNAs and PCGs under
seven stress conditions, respectively. The percentage of dif-
ferential expressed lncRNAs and PCGs was calculated and
shown in Fig. 2d. Comparing with PCGs, more lncRNAs
tended to be differentially expressed under seven stress con-
ditions (P value < 2.2e-16, Pearson chi-square test). All these
observations demonstrate that lncRNAs have higher stress
specificity than PCGs in response to various nutrient stresses.

Next, we analyzed the expression pattern between anti-
sense lncRNAs and their sense genes. Compared with ran-
domly selected gene pairs (P value < 0.05, Wilcoxon rank
sum test), antisense lncRNAs could either present a positive
(co-expression) relationship with their sense genes or show a
negative (anti co-expression) relationship (Pearson correlation
coefficient, |r| > 0.5, Supplementary Table S3). Studies dedi-
cated to antisense lncRNAs have demonstrated their versatile
mechanisms to elicit regulatory effects as positive and nega-
tive modulators of protein-coding genes (Villegas and
Zaphiropoulos 2015). Accordingly, antisense lncRNAs in re-
sponse to nutrient stress are likely to regulate their counterpart
sense genes by bridging epigenetic effectors and regulatory
complexes at specific genomic loci. Besides, antisense
lncRNAs may be processed into nat-siRNAs in nutrient stress
response based on our previous study that cis-nature antisense

Table 1 Summary of RNA-seq data used in the study

Project Nutrient Stress condition Accession Ref.

1 Sodium (Na) Control ERR274309 Sani et al. (2013)
High salt ERR274308

2 Cuprum (Cu) Control SRR069565; SRR069566; SRR069567 Bernal et al. (2012)
Low Cu SRR069568; SRR069569

3 Magnesium (Mg) Control SRR1734689;SRR1734690 Niu et al. (2016)
High Mg SRR1734693; SRR1734694

Low Mg SRR1734697; SRR1734698

4 Ferrum (Fe) & phosphate (Pi) Control SRR331227 Li et al. (2013)
Low Fe SRR331228

Low Pi SRR331229

5 Phosphate (Pi) Control SRR420813; SRR420814; SRR420815 Lan et al. (2012)
Low Pi SRR420816; SRR420817; SRR420818

6 Nitrogen (N) Control SRR671946; SRR671947 Vidal et al. (2013)
High N SRR671948; SRR671949
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transcripts (cis-NATs) can produce nat-siRNAs (Yuan et al.
2015).

ceRNA network of nutrient-responsive lncRNAs

Previous studies have shown that lncRNAs could serve as
competing endogenous RNAs (ceRNAs) to compete for

binding microRNAs (miRNAs). Those miRNA sponges can
inhibit the activity of targeted miRNAs and relieve the repres-
sion to the originally paired mRNAs. The ceRNA phenome-
non of lncRNAs has been widely found in plants (Yuan et al.
2016a). A recent study of rice lncRNAs has found a couple of
lincRNAs competing with genes and playing important roles
under Pi starvation (Xu et al. 2016). Based on the lncRNAs

Fig. 1 Identification and characteristics of lncRNAs in A. thaliana. (a)
The framework to identify and characterize lncRNAs. (b) Classification
of lncRNAs according to their proximity to coding genes in the genome.
(c) Transcript length comparison between protein-coding genes (PCGs)
and lncRNAs. (d) Proportions of exons in PCGs and lncRNAs. (e) The
expression level of the PCGs and lncRNAs. (f) GC content of PCGs and

lncRNAs. (g–h) The epigenetic markers level of PCGs and lncRNAs.
The average enrichment levels of H3K4me3 (g) and H3K27me3 (h) in
PCGs and lncRNAs, respectively. TSS means transcription start site and
TTS means transcription termination site. In all cases, the red represents
the lncRNA, and blue refers to the PCG
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under seven nutrient stress conditions in A. thaliana, we sys-
tematically assayed nutrient stress-associated competing en-
dogenous RNA (ceRNA) network (Supplementary Fig. S2).
We integrated multiple data sources to identify a total of 4157
miRNA-mediated ceRNA crosstalk and then constructed
ceRNA network (see “Materials and methods”), which
contained 4803 nodes (386 miRNAs, 59 lncRNAs, and
4353 mRNAs) and 6046 edges (miRNA-target pairs). The
degree distribution of these nodes in ceRNA network showed
a power law distribution with a slop of − 1.292 and R2 =
0.697. That is to say, most nodes had relatively few interacting
partners, while only a small subset of nodes had a large num-
ber of interacting partners, suggesting our ceRNA network is
scale-free. These findings are consistent with recent ceRNA
studies in rice (Xu et al. 2016) and human (Ning et al. 2016;
Xu et al. 2015; Zhou et al. 2016).

In order to explore the potential functional implication of
lncRNAs in response to nutrient stress, we selected the sub-

ceRNA network that contains lncRNAs, related miRNAs, and
related mRNAs (Fig. 3a, Supplementary Table S4). Studies
dedicated to plant transcriptomes have revealed a large num-
ber of miRNAs and affirmed their critical involvement in nu-
merous abiotic stresses during their growth cycle (Stauffer and
Maizel 2014). Therefore, we first exacted 41 miRNAs in our
sub-ceRNA network and compared them with differentially
expressed miRNAs reported under different nutrient stress
conditions in A. thaliana (Supplementary Table S5). We
found that 82.93% of the selected miRNAs were responsive
to high-salt conditions (Meng et al. 2015) and 21.95% were
differentially expressed in response to carbon (C), sulfur (S),
and N starvation (Liang et al. 2015). In addition, the involve-
ment of ath-miR824-5p, ath-miR780.1, and ath-miR160c-3p
has been observed to be up-regulated in Pi-deficient condition
(Kumar et al. 2017), and 5 miRNAs (ath-miR854a-e) were
induced by arsenic (As) stress (Srivastava et al. 2013). These
stress-responsive miRNAs in our ceRNA network has well

Fig. 2 Expression pattern of lncRNAs in response to different type of
nutrient stress. (a) Heat map suggesting the differentially expressed
lncRNAs expression pattern under seven nutrient stress conditions.
Colors represent high (red), low (blue), or average (white) expression
values based on Z-score normalized FPKM values. (b) Overlap of the

number of differentially expressed lncRNAs in different types of nutrient
stress. (c) Stress-specific expression scores of PCGs and lncRNAs are
calculated, and their densities are plotted. (d) The proportion of differen-
tially expressed PCGs and lncRNAs in different nutrient stress conditions
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demonstrated the role of lncRNA regulation under multiple
nutrient stresses. Accordingly, we speculate that some stress-
responsive lncRNAs might participate in conservative stress-
related signal pathways, thus being sensitive to various nutri-
ent stresses.

We then conducted the functional analysis of the related
mRNA genes in sub-ceRNA network. These genes were

found to be involved in immune response, cell death, locali-
zation, metabolic process, and cellular component organiza-
tion (Fig. 3b). Based on the function of lncRNAs’ nearest
mRNAs and the second nearest mRNAs in the sub-ceRNA
network, 17 lncRNAs were successfully annotated with
stress-responsive related GO terms (Fig. 3c). Among these
lncRNAs, 16 lncRNAs were annotated as “immune

Fig. 3 The ceRNA network under nutrient stress conditions. (a) lncRNA-
associated ceRNA network under nutrient stress conditions. mRNAs
(blue), lncRNAs (red), and miRNAs (orange) are represented as circles.
The color of circle border refers to the number of linked stress conditions.
(b) Enrichment of nutrient stress-related GO terms of the coding genes in
this ceRNA network. Among the enriched GO categories, immune

response, cell death, and nitrogen metabolic were related to stress re-
sponse. (c) The function of lncRNAs that are involved in ceRNA net-
work. Rows correspond to lncRNAs, and the columns represent GO
terms. The type refers to the number of linked stress conditions. The heat
map color intensities indicate the level of enrichment score of each GO
term
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response”–related GO terms, such as response to abiotic stim-
ulus (GO:0009628), response to metal ion (GO:00100038),
and detection of chemical stimulus (GO:0051606). Notably,
TCONS_00042474 was enriched in cell death–related GO
terms, and TCONS_00005112 was significant in nitrogen
compound catabolic process. Altogether, our results suggest
that lncRNAs could function as important regulatory nodes of
different nutrient stress pathways to block the interactions
between miRNAs and their mRNA targets.

lncRNA-mRNA co-expression network

To further identify functionally important lncRNAs, we con-
structed co-expression network (see “Materials and
methods”). In the co-expression network, there are 68,622
connections between 468 lncRNAs and 10,668 coding genes.
Similar to previous studies (Di et al. 2014), a small subset
(20.8%) of lncRNA-mRNA co-expression pairs were within
the same chromosome, and only 20 lncRNAs were located
within 10 kb of their mRNA neighbors. Most lncRNAs were
involved in trans-regulation, while only a small part of
lncRNAs were involved in cis-regulation with their co-
expression associated genes. Similar to the ceRNA network,
network topology exhibited a hallmark of scale freeness (slop
value = − 1.059 and R2 = 0.731). We defined top 1.2% (top
130) of nodes by degree as hubs and found that all these hubs
are lncRNAs that co-expressed with almost 80.1% of nodes in
the CEN, suggesting the centrality and essentiality of
lncRNAs in CEN. The MCODE algorithm with default sug-
gested parameters was applied to mine the subnetwork of
CEN. In total, 29 modules were screened from the CEN,
whereas there were two modules only containing lncRNAs.
According to the previous studies, some lncRNAs might act
synergistically to regulate genes via chromosome organization
(Fu 2014). The co-expression pattern of lncRNAs in these two
modules may be associated with the significant co-regulation
of genes by a group of synergistic lncRNAs.

Next, we performed GO analysis for the coding genes in
the whole CEN by BiNGO (Maere et al. 2005). There were
three types of GO terms that are related to stress response:
immune response, localization and transport, and death
(Fig. 4a). Among the 29 modules of CEN, 18 modules were
enriched in stress response GO terms (Fig. 4b). Based on the
module function, 77 lncRNAs were successfully annotated
with immune response, 61 were annotated as “localization
and transport”–related GO terms, and 5 were identified as
“death”-related GO terms (Fig. 4c). We found four stress-
related GO terms enriched for lncRNAs in both ceRNA net-
work and co-expression network. These four biological pro-
cesses (detection of stimulus, respond to stimulus, respond to
stress, and respond to metal ion) were closely related and
intersect with each other, indicating versatile roles of
lncRNAs in response to various nutrient stresses.

Key lncRNAs play critical roles in responding to
nutrient stresses

We finally selected key lncRNAs as those were differentially
expressed under at least one nutrient stress conditions and also
involved in the ceRNA network or CEN (Supplementary
Table S6). In totally, there were 34 and 348 lncRNAs identi-
fied as key lncRNAs in ceRNA network and CEN, respective-
ly. Among 34 key lncRNAs in the ceRNA network, 12
lncRNAs were annotated as being involved in stress response,
suggesting that they may participate in the nutrient stress re-
sponse by serving as ceRNAs to block the activity of
miRNAs. On the other hand, 64 out of 348 key lncRNAs in
the CEN were annotated to nutrient stress-responsive associ-
ated GO terms. Notably, we found that differentially
expressed lncRNAs are more likely to be co-expressed with
coding genes (P value < 1.432e-12, Fisher test), suggesting
their significant roles in the gene regulatory network.

Currently, the characterization and the functional analysis
of stress-responsive lncRNAs are very limited in plants, which
are less well studied than that of miRNAs and mRNAs. To
explore the stress-responsive function of our key lncRNAs,
we compared them with lncRNAs identified by Yuan et al.
(2016) and found 21 key lncRNAs involved in Pi starvation
signaling pathways. Eight key lncRNAs work as targets of
PHR1, a key transcription factor for transcriptional response
to Pi starvation (Yuan et al. 2016b). Among 142 identified
A. thaliana lincRNAs, 46 were found in the study of Liu
et al. (2012) with 5 key lincRNAs regarded as the regulators
involved in cold, drought, and high-salt response (Liu et al.
2012), while for antisense lncRNAs, 14% (89 out of 597)
were involved in stress response as well as their sense genes,
including 23 key antisense lncRNAs.

Based on the key lncRNAs in the seven stress condi-
tions, we further constructed the nutrient stress-key
lncRNAs network (Fig. 5a) and delineated the distribution
features of key lncRNAs in different nutrient stress condi-
tion (Fig. 5b). There were the most stress-specific key
lncRNAs in Pi deficiency condition, whereas only four
stress-specific key lncRNAs were related to Mg abnormity.
The majority of key lncRNAs were related with two or three
stress conditions (Fig. 5 a and b), and those lncRNAs func-
tionally shared by different types of nutrient stresses are
likely to serve as “convergent points” of signal transduc-
tion, transcriptional regulation in nutrient stress-related
pathways. Based on the result of key lncRNA network,
we then calculated the “convergence degree” between each
pair of the seven nutrient stresses (Fig. 5c). The Mg_L and
Mg_H stresses showed the highest convergence with each
other, whereas salt_H showed the lowest convergence com-
pared with any of the other stresses (Fig. 5c). Among five
lncRNAs linked to six stress conditions in key lncRNA
network, four of them (XLOC_017401, XLOC_018003,
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XLOC_018264, XLOC_030820) were involved in multiple
nutrient stresses except for the salt_H.

Notab ly , two key lncRNAs (XLOC_014118 ,
XLOC_001771) were related to all seven stress conditions.
Expression analysis has revealed that XLOC_014118 was
up-regulated in low Pi, low Mg, and high salt and down-
regulated in other stress conditions, while XLOC_001771
was up-regulated in low Cu, low Mg, low Pi deficiency, and
high-salt conditions and down-regulated in other stress condi-
tions. XLOC_014118 is an antisense lncRNA with four iso-
fo rms (TCONS_00041596 , TCONS_00042008 ,
TCONS_00042400, TCONS_00042762) that were expressed

under different stress conditions via alternative splicing. For
example, TCONS_00041596 was only up-regulated in low Pi
deficiency condition; TCONS_00042008 was up-regulated
both in low Pi deficiency and high-salt conditions, whereas
TCONS_00042762 was up-regulated in multiple stress con-
ditions, including low Pi deficiency, high salt, low Cu, low Fe,
and low Mg deficiency conditions. XLOC_014118 is tran-
scribed from antisense strand to the protein-coding gene
(AT2G41510) (Supplementary Fig. S3) that encodes a protein
whose sequence is similar to cytokinin oxidase/dehydroge-
nase, which catalyzes the degradation of cytokinins (CKs).
Phytohormones were found critical in helping the plants to

Fig. 4 The functional analysis of co-expression network under nutrient
stress conditions. (a) Functional enrichment of the coding genes in the
associated co-expression network. There are three types of GO categories
that were related to stress response. (b) Functional GO term annotation of

co-expression modules. Rows correspond to one module, and the col-
umns represent an associated GO term. The heat map color intensities
indicate the level of enrichment score of each GO term. (c) Venn dia-
grams showed the overlap of lncRNAs among the three GO categories
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adapt to abiotic stress responses (Verma et al. 2016).
Cytokinins could crosstalk with salicylic acid (SA) signaling
cascade to regulate plant defenses, and the stabilized CK
levels could exhibit enhanced resistance to abiotic stress
(Jiang et al. 2013). In addition, there is a negative expression
correlation between XLOC_014118 and AT2G41510
(Pearson correlation coefficient, r = − 0.396). Therefore, we
proposed that XLOC_014118 may down-regulate its anti-
sense protein-coding gene and relieve the repression of deg-
radation of cytokinins under multiple nutrient stress condi-
tions. In addition, we found that splice sites of four lncRNA
isoforms are in well-agreement with splice sites of identified
lncRNAs in NONCODE (Fang et al. 2018), as well as with re-
annotated new small peptide genes in Araport11 (Cheng et al.

2017). Therefore, the alternative splicing events of
XLOC_014118 make sense. XLOC_001771 is an intergenic
lncRNA between two protein-coding genes (AT1G33330,
AT1G33340), whose expression patterns showed positive
correlation (Pearson correlation coefficient, r = 0.39 between
XLOC_001771 and AT1G33330, and r = 0.34 between
XLOC_001771 and AT1G33340, respectively). Of note,
AT1G33330 and AT1G33340 both are involved in stress re-
sponse (Winter et al. 2007). Furthermore, one of the most
well-characterized functions of plant lincRNAs is to epigenet-
ically regulate gene expression by recruiting proteins for chro-
mosome modification to specific loci (Yamada 2017).
According to the prediction result of lncPro (Lu et al. 2013),
XLOC_001771 is likely to interact with a chromatin structure-

Fig. 5 The nutrient stress-key lncRNA network. (a) lncRNAs (circle) are
differentially expressed under nutrient stress (rhombus). Different color
rhombuses refer to different nutrient stress conditions, and different color
circles refer to the number of linked stress conditions. (b) The distribution
of key lncRNAswith respect to the number of linked stress conditions (1–

7) in each nutrient stress condition. The first figure (stress) refers to the
total seven nutrient stress conditions. (c) “Convergence degree” between
the seven nutrient stresses. Node degree refers to the number size of key
lncRNAs under seven nutrient stress conditions; edge degree refers to
convergence coefficient between two stress conditions
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remodeling complex protein (F4IHS2), which is involved in
transcription regulation and nucleosome positioning.

Considering the merging trends of epigenetic regulation to
nutrient stress response in plants, we further explored the
DNA methylat ion pat tern of XLOC_014118 and
XLOC_001771 (Supplementary Fig. S4). We found that
DNA methylation was enriched in the 5 kb upstream of TSS
regions but not in ORF regions in leave (Ausin et al. 2012),
endosperm (Hsieh et al. 2009), and flower (Qian et al. 2012b).
Importantly, both lncRNAs were targeted by a histone acetyl-
transferase named IDM1 (for increased DNA methylation 1),
a regulator of DNA demethylation in A. thaliana that can
induce the demethylation and activate lncRNA transcription
(Qian et al. 2012a).

Discussion

Numerous stress-responsive signaling pathways have incor-
porated miRNAs for many plants, while lncRNAs were less
extensively studied. In this study, we presented a comprehen-
sive investigation of lncRNAs in response to seven nutrient
stresses in A. thaliana (salt_H, Cu_L, Mg_H, Mg_L, Fe_L,
Pi_L, and N_H). Our integrative analysis of histone modifica-
tion by ChIP-chip and RNA-seq data revealed several
lncRNA properties regarding their epigenetic signatures, se-
quence features, and expression patterns. Key lncRNAs re-
sponsive to nutrient stresses were identified by conjoint anal-
ysis of ceRNA network and co-expression network. To our
knowledge, this is the first attempt to characterize of lncRNAs
under multiple nutrient stress conditions for A. thaliana,
which sheds new light on the complex responsive signaling
pathways involving lncRNAs to complement the miRNA par-
ticipation in previous reports.

According to our lncRNA identification pipeline, 874
lncRNA transcripts were obtained (Supplementary
Table S1), of which 455 were characterized and associated
with seven types of nutrient stress response. It should be noted
that they tend to be differentially expressed under no more
than three nutrient stress conditions (Fig. 2b), suggesting that
the aberrant expression of lncRNAs in response to nutrient
stress is a stress-specific manner. Furthermore, these
lncRNAs have high-stress specificity scores (Fig. 2c), and
the ratio of differentially expressed lncRNAs is significantly
higher than do PCGs in all seven stress conditions (Fig. 2d).
This conservation is consistent with the previous study (Di
et al. 2014) that lncRNAs are more sensitive to nutrient stress
than PCGs.

To date, the function of lncRNAs in multiple nutrient
stresses remains poorly understood. The construction of
ceRNA network and CEN provides a glimpse into the poten-
tial functions of lncRNAs in nutrient stress response. On one
hand, many miRNAs in the ceRNA network have been

reported as being dysregulated under different stress condi-
tions, such as high salinity, nutrient starvation (C, S, N, Pi),
and As stress. Those multifunctional miRNAs in the ceRNA
network serve as good indicators of lncRNA regulation under
different nutrients stresses. On the other hand, GO enrichment
was carried out to speculate possible functions of lncRNAs
involved in these two networks, respectively. Seventeen
lncRNAs in ceRNA network and 86 lncRNAs in CEN were
successfully annotated with stress-responsive related GO
terms, respectively (Fig. 3c and Fig. 4b). In total, we found
67 key lncRNAs enriched in nutrient stress-responsive asso-
ciated GO terms, such as “transport of copper ion and iron
ion” and “response to salt stress.” Here, we propose that some
lncRNAs may act as ceRNAs to block the miRNA functions,
whereas some lncRNAs might be selectively regulated upon
stress stimulus together with protein-coding genes to have
synergetic responses.

Comparative analysis of reported work revealed that 21
key lncRNAs were responsive to Pi deprivation (Yuan et al.
2016b) and five lincRNAs were also involved in other stress
types (Liu et al. 2012). Therefore, it is important to figure out
the convergent downstream responses among different nutri-
ent stress types and understand the involvement of lncRNAs
in various biological processes, such as transcriptional, post-
transcriptional, and epigenetic processes. However, determi-
nation of the precise mechanism of lncRNA function and
elaborate experiments still remain challenging. Among seven
nutrient stresses, Pi_L has more stress-specific expressed
lncRNAs, while Mg_H and Mg_L have more lncRNAs
shared between multiple stresses. In general, the majority of
key lncRNAs were related with two or three stress conditions
(Fig. 5b). The convergence degree has revealed highest con-
vergence between Mg_L and Mg_H stresses (Fig. 5c), which
is reasonable as two stress conditions refer to the abnormity of
the same nutrient. The perception mode and several signaling
pathways may be essential for both Mg deprivation and Mg
excess, in which lncRNAs share largely overlapping transcrip-
tional patterns. Comparatively, salt_H showed the lowest con-
vergence compared with any of the other stresses (Fig. 5c).

In addition, two key lncRNAs (XLOC_014118,
XLOC_001771) were related to all seven stress conditions.
XLOC_014118 may function as the nature antisense tran-
script of mRNA that down-regulates cytokinin oxidase/
dehydrogenase to maintain the stabilized CK levels. The role
of CKs crosstalk with other phytohormones to function in
drought and salinity stress responses has been demonstrated
by several studies (Argueso et al. 2009; Jiang et al. 2013; Tran
et al. 2007). The potential relationship between the key
lncRNA and phytohormones has enhanced our understanding
of lncRNAs’ role in response to nutrient stresses. Based on the
lncRNA-protein interaction, XLOC_001771 is possible to in-
teract with chromatin structure-remodeling complex proteins
involved in the transcription regulation and nucleosome

26 Funct Integr Genomics (2021) 21:17–30



positioning. Our epigenetic analysis showed that the promoter
regions of these two key lncRNAs all presented high DNA
methylation levels in wide-type tissues (Supplementary Fig.
S4). However, their detailed function mechanisms are unable
to be disclosed in our study. Subsequent experimental charac-
terization is needed for these two candidate lncRNAs.

To conclude, our genome-wide analysis of stress-
responsive lncRNAs has provided a foundation for wet-
bench experiments that are highly required to validate model-
ing results and to determine the precise roles of key lncRNAs
related to multiple nutrient stresses.

Materials and methods

Data collection and processing

Raw data (RNA-seq datasets) were downloaded from NCBI
SRA, including 14 nutrient stress samples and 12 untreated
control (“normal”) samples (Table 1). The samples involve six
nutrients, sodium (Na), cuprum (Cu), magnesium (Mg),
ferrum (Fe), phosphate (Pi), and nitrogen (N), and seven stress
conditions, high salt (salt_H), low Cu (Cu_L), high Mg
(Mg_H), low Mg (Mg_L), low Fe (Fe_L), low Pi (Pi_L),
and high N (N_H). For all the RNA-seq data, sequence reads
were aligned to A. thaliana genome (TAIR10) using TopHat
v2.1.1 with default parameters (Kim et al. 2013). The aligned
files (in bam format) from TopHat were then fed to Cufflinks
v2.1.1 to perform transcript assembly and abundance estima-
tion (Trapnell et al. 2010). Finally, we merged all assemblies
into final transcripts using Cuffcompare (Trapnell et al. 2010).

To evaluate differential lncRNA expression between stress
and normal samples, we used sequence counts estimated by
HTSeq (Anders et al. 2015) as input for DESeq (Anders and
Huber 2010). Replicates were used independently for statisti-
cal analysis of gene expression. We filtered lncRNAs whose
expression fold changes (FC) less than 2.

The ChIP-chip data for histone modification was
GSE24710 (Roudier et al. 2011), which included H3K4me3
and H3K27me3 in the root. The normalized datasets of ChIP-
chip were downloaded and converted into TAIR10 compati-
ble coordinates using Perl script from http://1001genomes.
org/. We applied average enrichment signal for two histone
modifications in coding sequencing (ORF) and upstream reg-
ulatory (promoter) regions (500 bp upstream of the TSS).

lncRNAs identification pipeline

The assembled transcripts of 14 nutrient stress samples and 12
normal RNA-seq samples from Cuffcompare were used to
identify lncRNAs through the following steps (Fig. 1a).
Firstly, transcripts were retained as the potential lncRNAs
with a class code of “u,” “i,” or “x,” standing for intergenic,

intronic, and antisense transcripts, respectively. Secondly,
transcripts with protein-coding potential were discarded. The
coding potential of each remaining transcript was estimated by
two software packages: CPAT (Wang et al. 2013) and CNCI
(Sun et al. 2013). We kept the transcripts that were marked as
“non-coding” by two software packages. Third, the transcripts
shorter than 200 nt were removed. At last, the remaining tran-
scripts with FPKM values less than 1 were filtered out in all of
the samples.

Furtherly, we compared the sequences of identified
lncRNAs with known lncRNAs and miRNAs. NCBI
BLASTALL (version 2.2.26) was run with options –p
blastn. We assessed whether an identified lncRNA
matched any annotated lncRNA in CANTATA database
(Szczesniak et al. 2019) and GREENC database (Paytuvi
Gallart et al. 2016). BLASTALL was run against the
miRBase (Kozomara et al. 2019) and PMRD (Zhang
et al. 2010) to check whether the identified lnRNAs
matched long miRNA hairpin sequences that are bigger
than 200 nt. In all cases, an E value of 0.01 and a bits score
of 50 were taken as thresholds.

Construction of competing endogenous RNA network

The ceRNA network was constructed based on the crosstalk
of miRNAs and their targets. First, for each transcript (mRNA
or lncRNA), all its miRNAs regulators were predicted using
psRNATarget (Dai and Zhao 2011) and TAPIR (Bonnet et al.
2010). Second, for a given RNA pair (A and B), the
hypergeometric test is used to compute the significance of
shared miRNAs for A and B.

P−value ¼ 1−F x=U ;M ;Nð Þ ¼ 1− ∑
x−1

i¼0

M
i

� �
U−M
N−i

� �

U
N

� �

where M is the number of miRNAs regulating A, N is the
number of miRNAs regulating B, U is the number of
miRNAs that regulate A or B, and x presents the number of
commonmiRNAs that regulate both A and B. RNA pairs with
P value less than 0.05 were kept as the candidate ceRNA
pairs.

Third, it has been reported that the expression of ceRNA
pairs was positively correlated with each other (Salmena et al.
2011). Thus, Pearson correlation coefficient of each candidate
ceRNA pairs was calculated based on gene expression data
from all of the stress samples, and only positively correlated
pairs with a P value less than 0.05 were set as the final ceRNA
pairs. Finally, all the ceRNA pairs were combined together to
construct the whole ceRNA network, and we then generated
the lncRNA-related ceRNA network based on the whole
ceRNA network.
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In addition, the GO enrichment analysis was performed on
all the known coding genes in the ceRNA network using
Cytoscape plug-in BiNGO with the “GO Biological
Process” category (Maere et al. 2005). REVIGO (Supek
et al. 2011) was applied to remove redundant GO terms and
visualize the GO enrichment results.

lncRNA-associated co-expression network and cluster
construction

We built a stress-related co-expression network based on 14
stress samples. The Pearson correlation coefficient (Pcc) was
calculated to define co-expression pairs (Pcc > 0.9 as the cut-
off and FDR cutoff of 1e-4). After assembling lncRNA-
associated co-expression pairs, we generated lncRNA-
associated CEN. Moreover, network clustering was per-
formed on CEN with the MCODE package (Bader and
Hogue 2003). Default suggested parameters were used, and
then the GO enrichment analysis was conducted for the genes
in each cluster using BiNGO plug-in (Maere et al. 2005).
REVIGO software (Supek et al. 2011) was used to summarize
GO terms together with their P value and visualize the
enriched GO terms.

Statistical analysis and data visualization

Student’s t test, Wilcoxon rank sum test, and Pearson chi-
square test were used to compare the genetic and epigenetic
features between lncRNAs and PCGs. P value less than 0.05
was considered statistically significant. All statistical analyses
in this study were performed by using the R software (https://
www.r-project.org/, release 3.3.0).

“Convergence degree” was deduced between each pair of
the seven nutrient stresses based on the Jaccard similarity
coefficient to measure the fractions of key lncRNAs that were
shared between two stresses. The ratio value ranges from 1
(absolute convergence) to 0 (no convergence) and is defined
as the size of the intersection divided by the size of the union

of the sample sets: J X;Yð Þ ¼ jX∩Y j
jX∪Yj, where X and Y present

the number of key lncRNAs in stress X and stress Y, respec-
tively. Interactions between lncRNA-protein pairs were pre-
dicted by the software lncPro (Lu et al. 2013). The networks
presented in this study were visualized using Cytoscape plat-
form (Shannon et al. 2003). The network topology analysis
was performed using NetworkAnalyzer (Assenov et al. 2008)
plug-in for Cytoscape. In addition, The MeV (Saeed et al.
2003) software was used to view the gene expression profiling
data.
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