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Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) are critical regulators of diverse biological processes,
including adipogenesis. Despite being considered an ideal animal model for studying adipogenesis, little is known about the
roles of lncRNAs in the regulation of rabbit preadipocyte differentiation. In the present study, visceral preadipocytes isolated from
newborn rabbits were cultured in vitro and induced for differentiation, and global lncRNA expression profiles of adipocytes
collected at days 0, 3, and 9 of differentiation were analyzed by RNA-seq. A total of 2066 lncRNAs were identified from nine
RNA-seq libraries. Compared to protein-coding transcripts, lncRNA transcripts exhibited characteristics of a longer length and
lower expression level. Furthermore, 486 and 357 differentially expressed (DE) lncRNAs were identified when comparing day 3
vs. day 0 and day 9 vs. day 3, respectively. Target genes of DE lncRNAs were predicted by the cis-regulating approach.
Prediction of functions revealed that DE lncRNAs when comparing day 3 vs. day 0 were involved in gene ontology (GO) terms
of developmental growth, growth, developmental cell growth, and stem cell proliferation, and involved in Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways of PI3K-Akt signaling pathway, fatty acid biosynthesis, and the insulin signaling
pathway. The DE lncRNAs when comparing day 9 vs. day 3 were involved in GO terms that associated with epigenetic
modification and were involved in the KEGG pathway of cAMP signaling pathway. This study provides further insight into
the regulatory function of lncRNAs in rabbit visceral adipose and facilitates a better understanding of different stages of
preadipocyte differentiation.
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Introduction

Studies on the regulatory mechanisms of visceral adipocyte
differentiation have long become the core of fat development
research due to the excessive accumulation of visceral adipose

that was reported to be associated with cardiovascular disease
and hypertension (Fox et al. 2007; Kim et al. 2019; Pischon
et al. 2008). As an economically important domestic animal,
rabbits (Oryctolagus_cuniculus) have less fat deposit com-
pared with other mammals, such as swine, cattle, and sheep.
Due to the naturally low-fat deposition during rabbit growth,
rabbits are an ideal model for studying visceral adipose devel-
opment (Desando et al. 2013; Gong et al. 2014; Maneschi
et al. 2013; Wang et al. 2015) and have important clinical
value.

Adipose tissue is a complex, highly active metabolic, and
endocrine organ (Kershaw and Flier 2004). At the cellular
level, the development of adipose tissue is primarily due to
an increase in number and size of adipose cells. Moreover, the
process from preadipocyte to mature adipocyte was known as
preadipocyte differentiation or adipogenesis, which is a key
process for lipid accumulation (Kai et al. 2011). Although the
exact genetic mechanisms of adipogenesis remain unclear, it is
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generally accepted that preadipocyte differentiation is a highly
regulated process that involves several transcription factors,
including peroxisome proliferator-activated receptor gamma
(PPARG) (Tontonoz et al. 1994), CCAAT/enhancer-binding
protein α (CEBPA) (Lin and Lane 1994), and fatty acid bind-
ing protein 4 (FABP4) (Deng et al. 2019).

Long non-coding RNAs (lncRNAs) are a group of endog-
enous RNA molecules with a total length of more than 200
nucleotides, and lack a functional open reading frame (ORF)
(Batista and Chang 2013; Quinn and Chang 2016; Rinn and
Chang 2012). In previous studies, large-scale sequencing has
revealed that lncRNAs were involved in many biological pro-
cesses, such as skeletal muscle development in rabbit (Kuang
et al. 2018), intramuscular adipose generation in pigs (Miao
et al. 2018), and bovine mammary gland development (Tong
et al. 2017). In vitro, several lncRNAs including SRA (Xu
et al. 2010), lnc-RAP-n (Sun et al. 2013a), ADINR (Xiao
et al. 2015), and lnc-leptin (Lo et al. 2018) have been identi-
fied as critical regulators during preadipocyte differentiation
in human and mouse.

In our previous study, we identified many lncRNAs in rab-
bit adipose tissue (Wang et al. 2018a). However, at the cellular
level, the profile and function of lncRNAs in rabbit adipogen-
esis remain largely unknown. To investigate the roles of
lncRNAs at the cellular level, visceral preadipocytes were
isolated from rabbits and lncRNA expression profiles were
explored at days 0, 3, and 9 during preadipocyte differentia-
tion. In this study, we focused on the identification and char-
acterization of lncRNAs in rabbit visceral preadipocyte and
we detected dynamic changes in lncRNA expression during
visceral preadipocyte differentiation. The results of this study
provide further insight into the regulatory function of
lncRNAs in rabbit visceral adipose and facilitate a better un-
derstanding of different stages of preadipocyte differentiation.

Materials and methods

Ethics statement

This study was performed in accordance with the guidelines
of Good Experimental Practices adopted by the Institute of
Animal Science (Sichuan Agricultural University, Chengdu,
China). All surgical procedures involving rabbits were per-
formed according to approved protocols of the Biological
Studies Animal Care and Use Committee, Sichuan Province,
China.

Isolation and induction of rabbit preadipocytes

Visceral preadipocytes were isolated from perirenal adipose
tissue of newborn New Zealand rabbits under sterile condi-
tions. Briefly, adipose tissues were digested with 0.01%

collagenase I (Gibco, Carlsbad, CA, USA). Then,
preadipocytes were seeded into 6-well plates at a density of
6 × 105 cells per plate in complete medium (DME/F12, sup-
plemented with 10% fetal bovine serum [FBS]) (DME/F12
was obtained Gibco, Carlsbad, CA, USA; fetal bovine serum
was from Zeta life, Menlo Park, CA, USA), and preadipocytes
were cultured in a humidified incubator at 37 °C and 5%CO2.
Upon reaching confluency (set to day 0), cells were induced
by the addition of differentiation medium I (DME/F12 with
1 μM dexamethasone, 500 μM 1-methy1-3-iosbutylxanthine,
1.7 μM insulin, 10% FBS) (dexamethasone, 1-methy1-3-
iosbutylxanthine, and insulin were from Solarbio, Beijing,
China) for 72 h (day 3). Next, cells were cultured with differ-
entiation medium II (DME/F12, 1.7 μM insulin, 10% FBS)
for an additional 72 h and further cultured in complete medi-
um until day 9 (day 9). To identify lipid accumulation in cells
and obtain mature adipocytes, the accumulation of lipid drop-
lets was measured by Oil Red O staining. Based on three
different phenotypes of lipid accumulation (almost no lipid
droplets, a small amount of ring-shaped lipid droplets, and a
cluster of bigger lipid droplets), a total of nine cell samples
were collected, and each interval time point contained three
biological replicates. RT-qPCR was performed to determine
the mRNA expression levels of adipogenic marker genes, in-
cluding PPARG, CEBPA, and FABP4 (primer sequences are
shown in Table S1), and the 2-ΔΔCt method was used to ana-
lyze the relative expression. The housekeeping gene GAPDH
served as control.

Library preparation and sequencing

Total RNA was isolated using TRIzol reagent (Invitrogen,
Hong Kong, China). The RNA purity, integrity, and concen-
tration were determined by Nanodrop (ThermoFisher,
Carlsbad, CA, USA), Agilent Bioanalyzer2100 system
(Agilent Technologies, Carlsbad, CA, USA), and a Qubit 2.0
fluorometer (Life Technologies, Carlsbad, CA, USA), respec-
tively. RNA samples with an optical density 260:280 ratio >
1.9 and integrity number value > 8.0 were selected for library
construction. The library construction and sequencing of sam-
ples were performed by Haplox Genome Center (Jiangxi,
China). Briefly, 1 μg RNA was used per sample and rRNA
was removed using NR603-VAHTS Total RNA-Seq Library
Prep Kit (Vazyme Biotech Co., Ltd Nanjing, China). First-
strand cDNA was synthesized using First Strand Enzyme
Mix (Vazyme Biotech Co., Ltd Nanjing, China). The
second-strand of cDNA was synthesized using Maturity
Strand Marking buffer (Vazyme Biotech Co., Ltd Nanjing,
China). Subsequently, the USER enzyme was used to degrade
the cDNA strands that contained U instead of T. All purified
libraries were sequenced on an Illumina Hiseq X platform,
and then 150-bp paired-end reads were generated.
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Transcript assembly and lncRNA identification

Raw reads in FASTQ format were analyzed and filtered using
Fastp software (Chen et al. 2018) with default parameters.
After removing the adapter sequences and low-quality reads,
clean reads were obtained and mapped to the rabbit reference
genome OryCun2.0 (ftp://ensembl.org/pub/release95/fasta/
oryctolagus_cuniculus/) together with the genome
annotation (OryCun2.0.95.gtf) using an aligner Histat2 (Kim
et al. 2015), with parameters of “–rna-strandness RF” and “-
dta”. Transcripts of each sample were initially assembled
using the Stringtie program (Pertea et al. 2016). Then, tran-
scripts from nine samples were merged to create a consensus
transcriptome. The fragment per kilobase of transcript per
million mapped reads (FPKM) and raw counts that mapped
to corresponding transcripts were estimated using the Stringtie
program (Pertea et al. 2016) with the parameter of “-e -B”
(Pertea et al. 2016). To identify lncRNA candidates and clas-
sify lncRNAs based on location, merged transcripts were
compared to the rabbit reference transcripts using
Gffcampare software (Trapnell et al. 2012) and only tran-
scripts that were marked with either an “x” (exonic overlap
with a reference on the opposite strand, potential anti-sense
lncRNA), “u” (unknown intergenic transcript, potential
intergenic lncRNA), “o” (exonic overlap with a reference on
the sense strand, potential sense lncRNA), or “i” (a transfrag
falling entirely within a reference intron, potential intronic
lncRNA) were retained (Kuang et al. 2018; Wu et al. 2016).
The identification pipeline of lncRNAs consisted of two steps:
transcript basic filtration and potential coding ability filtration.
First, transcripts were selected that had a length of > 200 bp,
contained ≥ 2 exons, and displayed a FPKM of > 0.5 through
basic filtration. Subsequently, CPC (Kong et al. 2007), CNCI
(Sun et al. 2013b), CPAT (Wang et al. 2013), and Pfam (Finn
et al. 2014) were used to identify putative lncRNAs by ana-
lyzing their coding potential, and only those simultaneously
identified by all these four different types of software were
considered credible lncRNAs.

Differentially expressed lncRNAs and functional
enrichment analysis

To identify lncRNAs that are associated with the differentia-
tion of rabbit preadipocytes, lncRNA expression profiles of
RNA-Seq libraries were compared according to the different
stages of preadipocyte differentiation. The raw counts that
yielded from the Stringtie program (Pertea et al. 2016) were
applied in differential expression analysis using R package
Deseq2 (Love et al. 2014). LncRNA transcripts with a thresh-
old of Padj < 0.05 and |log2Fold-Change)| > 1 were consid-
ered as differentially expressed (DE) lncRNAs. All DE
lncRNAs in nine libraries were clustered using the Python
module Seaborn (Hunter 2007). Coding genes located at DE

lncRNAwithin 100 kbwere considered potential cis-regulated
target genes. The prediction of DE lncRNAs functions was
based on the functional annotation of the potential cis-regulat-
ed target gene. Gene ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis for the candidate target gene were performed using the
David database (Da et al. 2009).

RT-qPCR for validation of DE lncRNAs

The RT-qPCR primers for the validation of DE lncRNAs were
designed by online software Primer-BLAST (https://www.
ncbi.nlm.nih.gov/tools/primer-blast/) (Table S1). Total RNA
was converted to cDNA using the PrimeScripts RT Reagent
Kit containing gDNA Eraser (TAKARA, Dalian, China). The
qPCR was determined using a SYBR II master mix kit
(TAKARA, Dalian, China) and performed on a Bio-Rad
CFX manager according to the manufacturer’s instructions.
The amplification reaction program was as follows: 95 °C
for 10 s, followed by 40 cycles of 95 °C for 5 s, and 20 s at
the melting temperature (Tm). Melting curve analysis was
performed from 55 to 95 °C with increments of 0.5 °C, and
the 2-ΔΔCt method was used to analyze relative expression.
The housekeeping gene GAPDH served as control.

Statistical analyses

Statistical analysis was performed using SPSS Statistics 20.0
(SPSS Inc., Chicago, IL, USA).

Results

Differentiation of visceral preadipocytes

Adipocytes were stained with Oil Red O on day 0, day 3, and
day 9 after induction of differentiation (Fig. 1a). As shown in
Fig. 1b, different amounts of lipids accumulated within these
three staged adipocytes, showing almost no lipid droplets on
day 0, a small amount of ring-shaped lipid droplets on day 3,
and a cluster of bigger lipid droplets on day 9. The expression
level of adipogenic marker genes showed a significant in-
crease over the course of induced differentiation of the
preadipocytes, reached the highest level on day 5 (7-fold in-
crease for PPARG, 23-fold increase for CEBPA, and 59-fold
increase for FABP4), and then decreased on day 7 and day 9
(Fig. 1c, 1d, 1e).

Overview of RNA sequencing

A total of nine RNA-seq libraries were constructed from rabbit
preadipocyte cells that underwent induced differentiation of 0
day, 3 days, and 9 days, and three biological repetitions were
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set for per stage. An average of 18.94 Gb pair-end raw reads in
all nine samples were generated from these libraries. After
quality control, a total of 1,109,630,370 clean reads (155.03
Gb) were obtained. The Q20 (percentage of reads with a Phred
quality value > 20) and Q30 (percentage of reads with a Phred
quality value > 30) of clean reads ranged from 97.01 to
97.50% and 92.40 to 93.53%, respectively. The mapped rate
of nine samples ranged from 90.67 to 91.77% (Table S2).

Identification and characterization of lncRNAs

The lncRNA-set contained 2878, 3032, 2864, and 2809 puta-
tive lncRNA transcripts and was predicted by CPC2, CNCI,
CPAT, and Pfam, respectively. The intersection of these
lncRNA-sets yielded 2066 credible lncRNAs (Fig. 2a).
These lncRNAs included 103 sense lncRNAs, 878 intronic
lncRNAs, 976 intergenic lncRNAs, and 109 anti-sense
lncRNAs (Fig. 2b). The ORF length size of most lncRNA
transcripts was less than 100 (Fig. 2c). When compared to
protein-coding RNAs, lncRNAs were found to be longer in
transcript length (Fig. 2d) and lower in expression level (Fig.
2e).

Screening and clustering of differentially expressed
lncRNAs

Dynamic changes of lncRNA expression during rabbit
preadipocyte differentiation were detected using Deseq2.
When comparing day 3 vs. day 0 (Fig. 3a and Table S3) and
day 9 vs. day 3 (Fig. 3b and Table S4), 486 DE lncRNAs (219
up-regulated, 267 down-regulated) and 357 DE lncRNAs

(208 up-regulated, 149 down-regulated) were detected, re-
spectively. Venn diagram analysis showed 242 DE lncRNAs
that identified in the day 3 vs. day 0 also differentially
expressed in the day 9 vs. day 3 (Fig. 3c). The expression level
(FPKM) of the union set of 601 DE lncRNAs in the two
comparisons (day 3 vs. day 0 and day 9 vs. day 3) showed a
similar pattern across different libraries at the same stage, and
the expression pattern of DE lncRNAs between day 0 and day
9 was similar (Fig. 3d and Table S5).

Functional enrichment analysis when comparing day
3 vs. day 0 of the differentiation

Between day 0 and day 3 of rabbit visceral preadipocyte dif-
ferentiation, the prediction of cis-regulated target genes
showed that 399 out of 486 DE lncRNAs corresponded to
656 protein-coding RNAs. GO enrichment results showed
that 118 GO terms were significantly enriched, and the top
10 significantly enriched GO terms in the categories biologi-
cal processes (BP), cellular components (CC), and molecular
functions (MF) are presented in Fig. 4. In addition, several GO
terms associated with preadipocyte proliferation or differenti-
ation such as stem cell proliferation, growth, positive regula-
tion of cellular biosynthetic process, and developmental cell
growth were significantly enriched (Table S6). KEGG path-
way analysis showed that 25 pathways were significantly
enriched, and the top 20 significantly enriched pathways are
presented in Fig. 5. Several pathways associated with
preadipocyte differentiation, such as the PI3K-Akt signaling
pathway, fatty acid biosynthesis, and insulin signaling path-
way were also significantly enriched (Table S7).

a b

c d e

Fig. 1 Differentiation of rabbit visceral preadipocytes. a Oil red O
staining of lipid droplets in cells that were induced differentiation at day
0, day 3, and day 9. b Identification of mature adipocyte with Oil red O
staining, 50 μm. c–e The relative expression level of adipogenic maker

genesPPARG,CEBPA, andFABP4.GAPDH served as a control. The data
shows the means of three independent experiments, *P < 0.05, **P <
0.01, ***P < 0.001 versus day 0
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Functional enrichment analysis when comparing day
9 vs. day 3 of the differentiation

Between day 3 and day 9 of rabbit visceral preadipocyte dif-
ferentiation, the prediction of cis-regulated target genes
showed that 293 out of 357 DE lncRNAs corresponded to
558 protein-coding RNAs. GO enrichment results showed
that 119 GO terms were significantly enriched, and the top
10 significantly enriched GO terms in the categories BP, CC,
and MF are presented in Fig. 6. Furthermore, several GO
terms associated with preadipocyte differentiation, such as
regulation of cell differentiation, developmental cell growth,
and positive regulation of protein phosphorylation, were sig-
nificantly enriched (Table S8). In addition, the GO terms as-
sociated with epigenetic modification, such as chromosomal
part, chromosomal region, and H4/H2A histone acetyltrans-
ferase complex, were also significantly enriched. KEGG path-
way analysis showed that 12 pathways were significantly
enriched, including the cAMP signaling pathway (Table S9),
and all the 12 significantly enriched pathways are presented in
Fig. 7.

Validation of DE lncRNAs

To validate the RNA-seq results, we randomly selected six DE
lncRNAs and evaluated their expression level at the initial
stage or maturity stage of adipogenesis by RT-qPCR. The
RT-qPCR results demonstrated that all six lncRNAs
(MSTRG.1657.2, MSTRG.2112.1, MSTRG.6545.1,
MSTRG.7207.5, MSTRG.13853.1, and MSTRG.16280.4)
were differentially expressed when comparing day 3 vs. day
0 or day 9 vs. day 3. In addition, the expression patterns were
similar to the RNA-seq results (Fig 8). Therefore, lncRNA
expression levels as demonstrated in this study by RNA-seq
are reliable.

Discussion

In this study, rabbit preadipocytes were induced for differen-
tiation using the well-known induction cocktail DEX-IBMX-
insulin (DMI) (Zebisch et al. 2012). The expression level of
adipogenesis-related transcriptional factor genes PPARG,

Fig. 2 Identification of lncRNAs during the rabbit visceral preadipocyte
differentiation and comparing of lncRNA transcripts to protein-coding
transcripts. a The Venn diagram of lncRNA transcripts which yield from
four types software of CPC2, CPAT, CNCI, and Pfam. Only the lncRNA
identified by all the four types of software were used for downstream

analyses. b Classification of identified lncRNAs. c The ORF length dis-
tribution of lncRNA transcripts. d Transcripts length distribution of
lncRNA transcripts and mRNA transcripts. e Expression analysis of
lncRNAs and protein-coding RNAs
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CEBPA , and FABP4 significantly increased after
preadipocytes were induced for differentiation and many of
big lipid droplets were observed after mature adipocytes were
stained by Oil red O on day 9. Together, these results indicated
that the rabbit adipocytes model was successfully established.

LncRNAs were explored according to the structure and
protein-coding ability for the assembled transcripts using bio-
informatics analysis. To obtain credible lncRNAs, we calcu-
lated the intersection of non-coding results that yielded from
four types of software of CPC2, CNCI, CPAT, and Pfam. In

Fig. 3 Analysis of DE lncRNA
during rabbit preadipocyte
differentiation. a, b Vocalo plot
analysis of DE lncRNAs in the
comparison day 3 vs. day 0 and
day 9 vs. day 3, red refer to up-
regulated lncRNA and blue refer
to down-regulated lncRNA
(|log2(Fold_Change)| > 1 and
Padj < 0.05). c Venn diagram of
showing the number of DE
lncRNAs. d Hierarchical
clustering analysis of DE lncRNA
expression profiles based on
FPKM, red refer to higher
expression level, and blue refer to
lower expression level

Fig. 4 GO enrichment of the cis-
regulated target genes of DE
lncRNAs when comparing day 3
vs. day 0 during rabbit
adipogenesis, with showing the
top 10 significantly enriched GO
terms in BP, CC, and MF (P <
0.05)
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this study, a total of 2066 lncRNAs identified in rabbit visceral
preadipocytes during differentiation. When compared to
protein-coding RNA, the lncRNAs identified in visceral
preadipocytes showed common characteristic of lower expres-
sion levels with those identified in other species, such as pigs

(Huang et al. 2018), goats (Bakhtiarizadeh and Salami 2019),
and chickens (Zhang et al. 2017), but were relatively longer in
transcript length. The longer length of lncRNAs when com-
pared to protein-coding RNAs might be attributed to the poor
conservation of lncRNA structure among different species
(Johnsson et al. 2014). Rabbit lncRNAs with longer length
might tend to acquire complex secondary and tertiary struc-
tures, whereas links between these complex structure and
function are still not well defined. To our knowledge,
lncRNA structure might be associated with the rapid rate of
evolution (Ulitsky and Bartel 2013), but whether the longer

Fig. 6 GO enrichment of the cis-
regulated target genes of DE
lncRNAs when comparing day 9
vs. day 3 during rabbit
adipogenesis, with showing the
top 10 significantly enriched GO
terms in BP, CC, and MF (P <
0.05)

Fig. 5 KEGG pathway analysis of the cis-regulated target genes of DE
lncRNAs when comparing day 3 vs. day 0 during rabbit adipogenesis,
with showing the top 20 significantly enriched pathways (P < 0.05)

Fig. 7 KEGG pathway analysis of the cis-regulated target genes of DE
lncRNAs when comparing day 9 vs. day 3 during rabbit adipogenesis,
with showing the significantly enriched pathways (P < 0.05)
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length of lncRNA is related to evolution in rabbit requires
more systematic sequence analysis among different species.

In this study, a considerable number of lncRNAs partici-
pated in the differentiation of rabbit preadipocytes. A total of
486 and 357 DE lncRNAs were detected when comparing of
day 3 vs. day 0 and day 9 vs. day 3, respectively. The number
of DE lncRNAs at the initial stage was higher compared to the
maturity stage. The result was similar to a study of lncRNA
expression during the differentiation of preadipocytes in
chickens (Zhang et al. 2017). At the initial stage of
preadipocytes induced differentiation, cells changed from pro-
liferative state to differentiation state, and this process was
accompanied by fading of stem cell pluripotency and the gen-
eration of lipids (Ding et al. 2015), and therebymight require a
more complex regulation of multiple lncRNAs. However, at
the maturity stage of induced differentiation, most cells were
in the state of differentiation and the principal change involved
lipid accumulation; this monotony of changes in cell state
might require the regulation of relatively less lncRNAs. In this
study, the expression pattern of lncRNA in mature adipocytes
was close to that of undifferentiated preadipocytes, whereas
486 and 357 DE lncRNAs were detected on the day 3 vs. day
0 and day 9 vs. day 3, thereby indicating that some lncRNAs
might act on specific stages during rabbit adipogenesis. To our
knowledge, non-coding RNAs could play regulatory role in
specific stages of adipogenesis (Liu et al. 2011; Peng et al.
2013), including a lncRNA of slincRAD identified in early
adipogenesis in mouse (Yi et al. 2019); our DE lncRNAs
identified in rabbit suggested that some lncRNAs might

specifically play roles in the initiation of differentiation.
Taken together, the DE lncRNAs identified in our study might
be important regulators of preadipocyte differentiation. Most
lncRNAs present in current databases have not yet been an-
notated, and studies have suggested that lncRNA expression
could act on neighboring protein-coding genes by a cis-regu-
lating approach (Ren et al. 2016; Wang et al. 2016). To inves-
tigate DE lncRNA functions in rabbit visceral preadipocyte
differentiation, we predicted potential cis-regulation target
genes based on the distance of lncRNA to protein-coding
genes. Subsequently, GO enrichment and KEGG pathway
analysis were performed based on the cis-regulated targets.

Between the day 0 and day 3 of rabbit preadipocyte differ-
entiation, cis-regulated target genes of the DE lncRNAs were
principally enriched in GO terms that were associated with
preadipocyte cell growth or differentiation, such as positive
regulation of cellular metabolic process, developmental
growth, growth, stem cell proliferation, and developmental
cell growth. The enrichment of these GO terms indicated that
a percentage of cells was already differentiated, and a percent-
age of cells were still proliferating in the initial stage of
preadipocyte differentiation. Protein phosphorylation plays
an important role in adipogenesis (Mota de Sa et al. 2017).
Protein phosphorylation changes of PPARG, CEBPA, and
STAT have been reported to regulate the expression of down-
stream adipogenesis genes and modulate adipogenesis (Yang
et al. 2018). The enrichment of GO terms, such as positive
regulation of protein phosphorylation, positive regulation of
tyrosine phosphorylation of Stat5 protein, and positive

Fig. 8 Validation of six randomly selected DE lncRNAs by RT-qPCR
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regulation of tyrosine phosphorylation of Stat5 protein
(Table S6), suggested that DE lncRNAs might regulate rabbit
adipogenesis via modulating protein phosphorylation. KEGG
pathway analysis showed that cis-target genes of the DE
lncRNAs when comparing day 3 vs. day 0 were involved in
the PI3K-Akt signaling pathway, fatty acid biosynthesis, and
insulin signaling pathway (Table S7). The PI3K-Akt signaling
pathways have been found as a critical pathway in adipogen-
esis (Song et al. 2017; Wang et al. 2018b, 2019), and in a
recent study, it was shown that lncRNA lnc-ORA (Cai et al.
2019) was involved in PI3K-Akt signaling pathway in 3T3-L1
adipogenesis. Our DE lncRNAs enriched in PI3K-Akt signal-
ing pathway suggested that these DE lncRNAs might be a
regulator in the early differentiation of rabbit preadipocytes
(28 DE lncRNAs and their target genes are listed in
Table S10). As expected, the enrichment pathway of the fatty
acid biosynthesis signal pathway explained the formation of
lipids in our study and indicated that someDE lncRNAsmight
regulate genes involved in fatty acid biosynthesis via cis-reg-
ulation (six lncRNAs and their target genes are listed in
Table S10). The insulin signaling pathway is also a well-
known pathway in adipogenesis (Lee 2017). Our DE
lncRNAs enriched in the insulin signaling pathway suggested
that these DE lncRNAs might regulate rabbit adipogenesis via
the insulin signaling pathway by cis-regulating (10 lncRNAs
and their target genes are listed in Table S10).

Previous studies have reported that lncRNAs could modu-
late cell processes via chromatin remodeling or histone mod-
ification (Hacisuleyman et al. 2014; Huang et al. 2017; Wei
et al. 2016). Between the day 3 and day 9 of rabbit
preadipocyte differentiation, cis-regulated target genes of DE
lncRNAs were principally enriched in the GO terms of cellu-
lar component category associated chromatin remodeling and
histone modification, such as the chromosomal part, chromo-
some, nuclear chromosome part, nuclear chromosome, chro-
mosomal region, H4/H2A histone acetyltransferase complex,
NuA4 histone acetyltransferase complex, or H4 histone ace-
tyltransferase complex. Enrichment of those GO terms indi-
cated the possible roles of the DE lncRNAs in regulating
rabbit adipogenesis via chromatin remodeling and histone
modification at the maturity stage. Several GO terms includ-
ing the positive regulation of cellular metabolic process, de-
velopmental cell growth, and positive regulation of protein
phosphorylation were enriched. These GO terms were simul-
taneously enriched by the DE lncRNAs in day 3 vs. day 0 and
those in day 9 vs. day 3, which may suggest similar ways in
regulating adipogenesis in both the early and late stages of
rabbit preadipocyte differentiation. The cAMP signaling path-
way has been reported to play a key role in regulating adipo-
genesis in mouse (Billert et al. 2018; Lee et al. 2018; Rogne
and Tasken 2014). Our DE lncRNAs enriched in the KEGG
pathway of cAMP signaling pathway suggested that some DE
lncRNAs might regulate rabbit adipogenesis via the cAMP

signaling pathway between day 3 and day 9 (11 lncRNAs
and their targets are listed in Table S10).

Conclusions

Based on the analysis of the lncRNAs transcriptome of three
stages during differentiation in rabbit visceral preadipocytes, a
total of 2066 lncRNAs were identified in rabbit visceral
preadipocytes by RNA-seq, and a total of 486 and 357
lncRNAs were differentially expressed when comparing day
3 vs. day 0 and day 9 vs. day 3, respectively. Some DE
lncRNAs were found to be involved in the critical KEGG
pathways that have been extensively studied in adipogenesis
in other species. Those lncRNAs might modulate the rabbit
preadipocyte differentiation and lipid accumulation through
cis-regulating. Taken together, in this study, we provided a
valuable resource for further exploring of rabbit lncRNA and
to facilitate a better understanding of preadipocyte differenti-
ation in the rabbit.
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