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Blocked synthesis of sporopollenin and jasmonic acid leads to pollen
wall defects and anther indehiscence in genic male sterile wheat line
4110S at high temperatures

Xuetong Yang1
& Jiali Ye1

& Lingli Zhang1
& Xiyue Song1

Received: 2 February 2019 /Revised: 10 October 2019 /Accepted: 16 October 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Environment-sensitive genic male sterility is a valid tool for hybrid production and hybrid breeding, but there are no previous
reports of the molecular mechanism of fertility conversion. In this study, RNA-seq, phenotypic and cytological observations, and
physiological indexes were applied to analyze thermo-sensitive genic male sterility line 4110S under different temperature
conditions to explore the fertility transformationmechanism. In total, 3420 differentially expressed genes (DEGs) were identified
comprising 2331 upregulated genes and 1089 downregulated genes. The DEGs were apparently distributed among 54 Gene
Ontology functional groups. The phenylpropanoid, long-chain fatty acid, and jasmonic acid (JA) biosynthesis pathways were
related to male sterility, where their downregulation blocked the synthesis of sporopollenin and JA. Phenotypic and cytological
analyses showed that pollen wall defects and anther indehiscence at high temperatures induced sterility. Moreover, enzyme-
linked immunosorbent assay results indicated that the abundance of JA was lower in 4110S under restrictive conditions (high
temperature) than permissive conditions (low temperature). A possible regulated network of pathways associated with male
sterility was suggested. These results provided insights into the molecular mechanism of fertility conversion in the
thermosensitive male sterility system.
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Introduction

Hybrid vigor or heterosis is a natural phenomenon where the
progeny derived from interspecific crossings or the same spe-
cies with different genetic backgrounds outperform their

parents in terms of many characteristics such as production
and adaptability (Meyer et al. 2004; Fu et al. 2015). Heterosis
has been applied widely in some major crops such as maize
(Chen and Pan 2001), rice (Deng and He 2017), rapeseed
(Zhang 2000), and sunflower (Liu et al. 2006). The utilization
of heterosis in crops contributes significantly to the global
food supply. Wheat (Triticum aestivum L.) is a vital grain crop
and heterosis has been utilized to improve wheat production in
some cases (Geng et al. 2018). In particular, the two-line hy-
brid wheat system based on environment-sensitive genic male
sterility (EGMS) is the most efficient and simplest to imple-
ment, where it is based mainly on certain light and tempera-
ture conditions (Yang et al. 2018). For example, according to
the specific period of daylight or the environmental tempera-
ture, photo-thermosensitive male sterile plants can self-
fertilize or be employed to obtain hybrid seeds as female par-
ents (Xu and Kang 2001). These EGMS lines are crucial for
the utilization of heterosis in wheat because of their advan-
tages in terms of an uncomplicated hereditary basis, excellent
sterility and restoration properties, and capacity to yield good
crossing combinations (Fu et al. 2010). The mechanism of
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EGMS related to pollen abortion has been studied using phys-
iological (Ju et al. 2018), cytological (Meng et al. 2016), and
molecular biology techniques (Jiang and Shi 2009). The rapid
development of high-throughput transcriptome sequencing
means that wheat has been analyzed at the transcription level
to determine the characteristics of pollen abortion and the gene
expression profiles associated with male sterility. This tech-
nique has been applied widely to many different types of male
abortion, such as genic male sterility (Jeong et al. 2014; Chen
et al. 2015), cytoplasmic male sterility (An et al. 2014; Li et al.
2015; Ye et al. 2017), and EGMS (Tang et al. 2012).

Male sterility is mainly caused by pollen wall defects, an-
ther dehiscence, and other mechanisms. Successful pollen
wall formation is a necessary prerequisite for the normal de-
velopment of pollen grains. The main pollen wall component
is sporopollenin, which is a dimer formed via the polymeriza-
tion of phenolics and long-chain aliphatic acids (Dobritsa et al.
2009). These two types of substances are generated by the
phenylpropanoid and long-chain fatty acid biosynthesis path-
ways, and thus these pathways should not be neglected in
studies of the fertility transformation mechanism. Jasmonic
acid (JA) is another vital material with important roles in the
control of plant growth and development, stress responses,
anther dehiscence, and the regulation of various physiological
functions through rapid signal transduction pathways (León
and Sánchez-Serrano 1999). JA is ubiquitous in the plant
kingdom and widely distributed in the young tissues, flowers,
and developing reproductive organs of plants, and it was orig-
inally isolated from the essential oil of jasmine as an odorant
substance (Jiang et al. 2010). The JA biosynthetic pathway is
essential for male sterility and the enzymes in this pathway
have important specific roles. The key enzymes in the
phenylpropanoid biosynthesis and JA synthesis pathways
comprise phenylalanine ammonia-lyase (PAL), lipoxygenase
(LOX), 4-coumarate: coenzyme A ligase (4CL), allene oxide
cyclase (AOC), allene oxide synthase (AOS), and 12-oxo-
phytodienoic acid reductase (OPR) (Ye et al. 2017). The dy-
namic changes in these pathways can directly affect the nor-
mal development of pollen grains.

4110S is a novel thermo-sensitive genic male sterility
(TGMS) wheat line that is completely sterile at high temper-
atures (daily average temperature of ~ 20 °C in Zadoks growth
stages 45–50) but fertile in low-temperature conditions. The
crucial growth period is the later uninucleate stage (Zadoks
50). TGMS line 4110S can be applied in a two-line hybrid
system to maintain male sterility via self-pollination at lower
temperatures, whereas hybrid wheat seeds are produced at
higher temperatures. Thus, the two-line breeding system
based on TGMS line 4110S has been used in hybrid wheat
breeding. In this study, we investigated the transcription pro-
file of wheat anthers by RNA sequencing (RNA-seq) to iden-
tify the differentially expressed genes (DEGs) and some met-
abolic pathways related to fertility conversion. To further

elucidate the molecular mechanisms responsible for fertility
conversion in wheat, the possible effects of these DEGs on
fertility and their biological functions were determined. The
results of this study provide novel insights into the fertility
conversion mechanism in TGMS wheat lines.

Materials and methods

Plant material

The TGMSwheat line 4110S used in this study was planted in
10 flower pots (30 cm high and 30 cm in diameter) at
Northwest A&F University Experiment Station in Yangling
(34° 29′ N, 108° 08′ E), China, during 2017–2018, and they
were kept in there before they were moved into incubators.
The pots containing the 4110S plants at the connectives stage
(Zadoks 37) were transferred to two incubators, each with five
pots, and they were exposed to two different sets of tempera-
ture conditions until the pollen production stage. The treat-
ments were designated as ASd and ASg. The incubators had
a day/night period of 14 h/10 h and a light intensity of 10000
lux, with day/night temperatures of 17 °C/15 °C for ASd and
22 °C/20 °C for ASg. The plants were cultivated until the later
uninucleate stage and the anthers were then collected from the
plants in the two incubators. After harvesting, the samples
were frozen immediately in liquid nitrogen and stored at –
80 °C until RNA sequencing and determination of the JA
contents. Anthers from the later uninucleate (Zadoks 50), bi-
nucleate (Zadoks 58), and trinucleate (Zadoks 58) stages were
also preserved in formalin–acetic acid–alcohol and glutaralde-
hyde solution, before performing phenotypic and cytological
observations (Supplementary File S1).

RNA quantification and qualification, clustering,
and sequencing

The anthers obtained from spikelets at the later uninucleate
stage in ASd and ASg were used to construct cDNA libraries
for RNA-seq analysis, with six samples (three biological rep-
licates for each sample) comprising ASd-1, ASd-2, ASd-3,
ASg-1, ASg-2, and ASg-3 (Supplementary File S1). The total
RNA was extracted according to the instruction manual pro-
vided with the RNAprep Pure Plant Kit (TIANGEN
BIOTECH (Beijing) Co. Ltd., China). RNA concentrations
were measured using a NanoDrop 2000 system (Thermo).
RNA integrity was assessed using an RNA Nano 6000
Assay Kit with an Agilent Bioanalyzer 2100 system (Agilent
Technologies, CA, USA). In total, 1 μg of RNA per sample
was used for RNA sample preparation. Sequencing libraries
were generated using a NEBNext UltraTMRNA Library Prep
Kit for Illumina (NEB, USA) according to the manufacturer’s
instructions and index codes were added to assign sequences
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to each sample. Briefly, mRNA was purified from the total
RNA using poly-T oligo-attached magnetic beads.
Fragmentation was conducted using divalent cations at an
elevated temperature in NEBNext First Strand Synthesis
Reaction Buffer (5×). First-strand cDNA was synthesized
using a random hexamer primer and M-MuLV reverse tran-
scriptase. Second-strand cDNA synthesis was subsequently
performed using DNA polymerase I and RNase H. Any re-
maining overhangs were converted into blunt ends via
exonuclease/polymerase activities. After adenylating the 3′
ends of the DNA fragments, the NEBNext adaptor with a
hairpin loop structure was ligated before hybridization. In or-
der to select cDNA fragments with preferred lengths of 240
bp, the library fragments were purified with the AMPure XP
system (Beckman Coulter, Beverly, USA). Next, 3 μL of
USER Enzyme (NEB, USA) was incubated with the size-se-
lected, adaptor-ligated cDNA at 37 °C for 15min, followed by
5 min at 95 °C before PCR. PCRwas performed with Phusion
high-fidelity DNA polymerase, universal PCR primers, and
index (X) primer. Finally, the PCR products were purified
(AMPure XP system) and the quality of the library was
assessed with an Agilent Bioanalyzer 2100 system. The clus-
tering of the index-coded samples was performed on a cBot
Cluster Generation System using TruSeq PE Cluster Kit v4-
cBot-HS (Illumina) according to the manufacturer’s instruc-
tions. After cluster generation, the library preparations were
sequenced on an Illumina platform and paired-end reads were
generated.

Quality control and comparative analysis

In order to obtain high-quality data for subsequent analyses,
we filtered the raw data as follows: (a) adaptor sequences; (b)
Q30 < 7.8% (Q30 means the percentage of sequences with
sequencing error rates < 0.1%); and (c) N% > 10% (N means
the percentage of ambiguous nucleotides). The clean reads
were then mapped onto the reference genome sequence
(IWGSC_RefSeq_v1.0, https://urgi.versailles.inra.fr/
download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0)
(International Wheat Genome Sequencing Consortium 2014)
using HISAT2.0.4 (http://ccb.jhu.edu/software/hisat2/index.
shtml) (Kim et al. 2015). StringTie1.3.4b was used to assem-
ble and quantify reads (https://ccb.jhu.edu/software/stringtie/
index.shtml) (Pertea et al. 2015) (Supplementary File S1).

Screening and analysis of DEGs

FPKM values were estimated and the differential expres-
sion levels of genes in the three biological replicates were
determined using the DEseq R package (1.10.1) (http://
www.bioconductor.org/packages/release/bioc/html/
DESeq.html) (Anders and Huber 2010), which provides
statistical routines for determining the differential

expression levels in digital gene expression data by using
a model based on the negative binomial distribution. Fold
changes ≥ 4 and FDR < 0.01 were used as the threshold
values for significantly different expression levels. The P
values obtained were adjusted by using Benjamini and
Hochberg’s approach for controlling the FDR (false discov-
ery rate). Genes with an adjusted P value < 0.05 were final-
ly assigned as DEGs (Supplementary File S1).

Gene functional annotation of DEGs

Functional annotation was conducted based on the NR (ftp://
ftp.ncbi.nih.gov/blast/db/), Swiss-Prot (http://www.uniprot.
org/), GO (http://www.geneontology.org/), KOG (http://
www.ncbi.nlm.nih.gov/KOG/), Pfam (http://pfam.xfam.org/)
, and KEGG (http://www.genome.jp/kegg/) databases by
BLAST2.2.31 (Altschul et al. 1997). The results for new
genes based on KEGG Orthology were obtained using
KOBAS2.0 (Wu et al. 2006; Xie et al. 2011; Ai and Kong
2018). Alignment with the Pfam database was conducted
using HMMER3.1b2 after predicting the amino acid se-
quences for new genes. Transcription factors were annotated
with iTAK1.7 (http://itak.feilab.net/cgi-bin/itak/index.cgi)
(Zheng et al. 2016) (Supplementary File S1).

Data validation and gene expression analysis
by qRT-PCR

qRT-PCR validation was conducted by using the total RNA
from samples ASd and ASg, which we employed for RNA-
Seq analysis. Sequence-specific primers were designed using
Primer Premier 5.0 software (Primer, Palo Alto, CA, USA)
and tested with Primer-BLAST (Ye et al. 2017). The
sequence-specific primers employed for qRT-PCR comprised
the actin gene and the five selected genes listed in
Supplementary Table S1. The primers were synthesized by
Sangon Biotech (Shanghai) Co. Ltd (China). qRT-PCR was
performed with the QuantStudioTM Real-Time PCR System
(Applied Biosystems, USA) using 2× RealStar Green Power
Mixture (GenStar BioSolutions (Beijing) Co. Ltd, China). The
three-step cycling parameters were as follows: an initial hot
start at 95 °C for 30 s, followed by 40 cycles at 95 °C for 15 s
and 60 °C for 30 s. At least three technical replicates were
conducted for each sample, and the relative gene expression
levels were calculated using the 2–ΔΔCt method (Livak and
Schmittgen 2001).

Phenotypic and cytological characteristics

Anthers were harvested at three developmental stages com-
prising the later uninucleate stage, binucleate stage, and
trinucleate stage (Supplementary File S1). Ten anthers of
each sample were fixed in glutaraldehyde solution for
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phenotypic observation by scanning electron microscopy
(JSM-6360LV, JEOL) and the pollen wall was observed
by transmission electron microscopy (JEM-1230, JEOL)
(Supplementary File S1). Ten anthers for each sample at
t h e l a t e r u n i n u c l e a t e s t a g e , b i n u c l e a t e
stage and trinucleate stage, were preserved in formalin–
acetic acid–alcohol fixing solution to analyze the chromo-
somes by DAPI staining and determine fertility at
trinucleate stage by I2-KI solution staining for 10 and 5
min, respectively (Supplementary File S1). All images
were captured using an Axio Imager A2 microscope.

Determination of JA contents of anthers by ELISA

We collected 400 mg of anthers at the later uninucleate stage
from ASd and ASg to measure the amounts of JA (this stage
was the same as that used for RNA-seq analysis)
(Supplementary File S1). The anthers were rinsed in ice-cold
phosphate-buffered saline and the samples then cut into small
pieces in homogenizing medium containing Tris-HCl (0.05
mol/L) and phosphate-buffered saline (pH 7.4) in an ice-cold
water bath. The tissue was ground into a homogenate (10
s/time, 3–5 times) and centrifuged (3000×g, 10 min, 4 °C).
Finally, the supernatant was analyzed by ELISA according to
the kit manufacturer’s protocol (Sino Best Biotech (Shanghai)
Co. Ltd, China). ASd and ASg were each tested three times
and the data were analyzed with Excel 2010.

Results

Primary data analysis

In order to obtain an overview of the transcriptome com-
ponents that are involved in the fertility conversion mech-
anism in 4110S, cDNA libraries were constructed from
4110S under permissive conditions (low temperatures,
day/night = 17 °C/15 °C, designated as ASd) and 4110S
under restricted conditions (high temperatures, day/night =
22 °C/20 °C, designated as ASg) in the late uninucleate
stage (Zadoks 50) based on three biological replicates.
Pearson’s correlation coefficients ranged between 0.8 and
0.994 (Fig. 1a), thereby indicating that the correlations
between the sample replicates were very high. According
to the clean data, the Q30 base percentage was ≥ 92.20%
and the GC content was distributed from 54.54 to 55.85%.
The good-quality clean reads from each sample were
mapped on t o t h e r e f e r en c e g enome s equenc e
IWGSC_RefSeq_v1.0 (https://urgi.versailles.inra.fr/
download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0)
(International Wheat Genome Sequencing Consortium
(IWGSC) 2014), where the efficiency of the comparisons
ranged from 90.17 to 91.32%. The data indicated that the

sequencing quality was sufficiently accurate (Table 1). Box
plots can be employed to examine the degree of dispersion
for the horizontal gene expression distribution in a single
sample and to intuitively compare the overall gene expres-
sion levels in different samples. The box plots obtained
based on the relative log reads per kilobase of transcript
per million mapped reads (FPKM) values for each sample
library suggested that the differences in the distributions
were low among the six libraries (Fig. 1b), and thus the
transcription profiles were similar. Volcano plots were gen-
erated to compare the DEGs in ASd and ASg with signif-
icant differences. Under the two different fertility condi-
tions, genes with an adjusted fold change ≥ 4 and false
discovery rate (FDR) < 0.01 were regarded as DEGs in this
study. In total, 3420 DEGs were detected between ASd and
ASg with 2331 upregulated genes and 1089 downregulated
genes (Fig. 1c, d).

Functional classification of DEGs

GeneOntology (GO) is an international standard classification
system that provides a dynamic and updated standard vocab-
ulary for describing the attributes of genes and their products
in organisms. GO was used to assign the 3420 DEGs to 54
functional groups in three broad categories comprising “cel-
lular components,” “molecular functions,” and “biological
processes,” where 20 GO terms were assigned to biological
processes, 17 GO terms to cellular components, and 17 GO
terms to molecular functions. In the biological process cate-
gory, “metabolic process” (21%) accounted for the most
DEGs, followed by “cellular process” (18%) and “single-or-
ganism process” (15%). Most of the DEGs were related to the
“cell part” subcategory (23%) in the cellular component cate-
gory, followed by “cell” (23%) and “organelle” (19%). In the
molecular function category, the majority of the DEGs were
significantly enriched in the “binding” (43%) and “catalytic
activity” subcategories (40%), and a relatively large number
were associated with “transporter activity” (4%) (Fig. 2a, b, c
and detailed information is provided in Supplementary
Table S2). These results indicate that the fertility conversion
mechanism may be related to many genes. GO enrichment
was done for further study, oxidation-reduction process
(GO:0055114) was the largest enrichment process
(Supplementary Fig. S1). In “cellular components,” cytoplas-
mic vesicle (GO:0016023), photosystem I (GO:0009522),
photosystem I reaction center (GO:0009538), chloroplast thy-
lakoidmembrane (GO:0009535) were in the top in “biological
process” (Supplementary Fig. S2). Heme binding
(GO:0020037), chlorophyll binding (GO:0016168), peroxi-
dase activity (GO:0004601), sequence-specific DNA binding
(GO:0003700), and serine-type endopeptidase inhibitor activ-
ity (GO:0004867) were enriched with many genes in “molec-
ular functions” (Supplementary Fig. S3).
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In total, 1494 DEGs were used to search the Eukaryotic
Orthologous Groups (KOG) database to obtain functional
predictions and classifications, and approximately 43.68%
of the DEGs were assigned to 25 major functional catego-
ries. The R group representing “general function prediction
only” comprised 260 DEGs and it was the largest group
(17.40%). Genes were identified in major groups compris-
ing “signal t ransduct ion mechanisms” (11.44%),

“posttranslational modification, protein turnover, chaper-
ones” (10.63%), “carbohydrate transport and metabolism”
(9.22%), “secondary metabolites biosynthesis, transport,
and catabolism” (8.14%), and “energy production and con-
version” (5.47%) (Fig. 2d and detailed information is
provided in Supplementary Table S3). These results dem-
onstrated that the fertility conversion mechanism may be
associated with many regulatory processes.
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Table 1 Summary information regarding the transcriptome sequencing data

Condition (day/night temperatures) Sample Clean reads GC content % ≥ Q30 Mapped reads Total reads

17 °C/15 °C ASd-1 34,201,288 55.03% 92.20% 62,360,890 (91.17%) 68,402,576

ASd-2 36,014,919 54.54% 92.42% 65,667,585 (91.17%) 72,029,838

ASd-3 32,725,185 54.79% 92.38% 59,768,956 (91.32%) 65,450,370

22 °C/20 °C ASg-1 30,804,176 55.85% 92.49% 55,550,513 (90.17%) 61,608,352

ASg-2 40,263,816 55.13% 92.53% 73,181,159 (90.88%) 80,527,632

ASg-3 33,781,527 55.70% 92.28% 61,375,787 (90.84%) 67,563,054
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Identification of transcription factors

Transcription factors have essential roles in plant growth
and development, morphogenesis, and metabolic regula-
tion. We annotated 93 DEGs as transcription factors from
19 families. The largest family was MYB with 24 genes,
followed by bHLH, AP2/ERF, NAC, and C2H2 with
twelve, twelve, seven, and seven genes, respectively
(Fig. 3 and detai led information is provided in
Supplementary Table S4). The identified transcription fac-
tors suggested potential molecular mechanisms related to
fertility conversion, and the results also indicated that the
transcriptional regulatory network associated with fertility
transformation is highly complex.

Key pathways and network associated with fertility

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database was employed to systematically analyze the met-
abolic pathways and functions for gene products and sec-
ondary metabolites as well as the biological functions of
different genes in a coordinated manner. Thus, we

conducted comparisons by using the KEGG database in
order to obtain insights into the important biochemical
pathways related to the DEGs (Fig. 4). The KEGG
Orthology IDs for 651 DEGs were mapped to five
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categories comprising cellular processes, environmental
information processing, genetic information processing,
metabolism, and organismal systems, and 104 pathways
(Supplementary Table S5). The highly enriched KEGG
pathways were mainly related to metabolism, i.e., photo-
synthesis (63 genes, 9.68%) and photosynthesis-antenna
proteins (63 genes, 9.68%), followed by carbon metabo-
lism (59 genes, 9.06%), phenylpropanoid biosynthesis (50
genes, 7.68%), starch and sucrose metabolism (45 genes,
6.91%), carbon fixation in photosynthetic organisms (43
genes, 6.61%), glutathione metabolism (36 genes, 5.53%),
glyoxylate and dicarboxylate metabolism (35 genes,
5.38%), phenylalanine metabolism (31 genes, 4.76%),
and biosynthesis of amino acids (seven genes, 4.83%).
Thus, many pathways may be involved in the regulation
and control of changes in fertility.

?>Based on the results, we analyzed three pathways asso-
ciated with fertility in greater detail, which comprised the
phenylpropanoid, long-chain fatty acid, and JA biosynthetic
pathways. The synthesis of feruloyl-CoA proceeds via a series
of reactions. In the first step, phenylalanine produces cinnamic
acid under the action of the rate-limiting enzyme PAL. We

found that PAL was downregulated, and p-coumaric acid,
caffeic acid, and ferulic acid were synthesized. Moreover,
4CL and shikimate O-hydroxycinnamoyltransferase (HCT)
were downregulated in the next reactions. Pyruvate produces
acetyl-CoAvia a series of reactions and the dihydrolipoamide
dehydrogenase enzyme exhibited a decreasing trend in this
process. In the reaction from acetyl-CoA to long-chain fatty
acids, the enzymes 3-ketoacyl-CoA synthase (KCS) and
17beta-estradiol 17-dehydrogenase (KAR) were downregulat-
ed (Fig. 5a and detailed information is provided in
Supplementary Table S6).

In another pathway, jasmonates are first synthesized by the
release of α-linolenic acid from the chloroplast membranes
and a series of enzymatic reactions employ them as substrates.
In our study, 13(S)-hydroperoxy-octadecatrienoic acid was
formed under the action of the enzyme LOX, which had a
low abundance. The product from the previous step was trans-
formed into 12,13(S)-epoxyoctadecatrienoic acid by AOS,
which was also downregulated according to our analysis.
Next, 12,13(S)-epoxyoctadecatrienoic acid was converted in-
to 12-oxo-phytodienoic acid in the plastid under the control of
AOC. JAwas finally synthesized in the peroxisome via three
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Fig. 4 Kyoto Encyclopedia of Genes and Genomes (KEGG) classifica-
tions of differentially expressed genes. The horizontal axis represents the
gene number and the proportion of the total number of annotated genes,

and the vertical axis shows the annotations of the different KEGG
pathways
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cycles of β-oxidation by OPR, and OPR was also downregu-
lated in this process. In summary, the experimental results
indicated that several enzymes, including LOX, AOX, and

OPR, had low abundances during the synthesis of JA, thereby
leading to decreased JA production, anther indehiscence, and
male sterility (Fig. 5b and detailed information is provided in
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Supplementary Table S6). The important enzymes identified
in this pathway in our study are shown in a heatmap in Fig. 5c.

Quantitative real-time PCR validation of candidate
genes

To confirm the reliability of the transcriptome sequencing da-
ta, quantitative real-time PCR (qRT-PCR) was applied to
quantify five DEGs from the key pathways based on their
transcript levels, i.e., LOX2S (TraesCS7A01G246200), AOS
(TraesCS4B01G237600), KCS (TraesCS1B01G387800),
PA L ( T r a e s C S 1 B 0 1 G 1 2 2 8 0 0 ) , a n d O P R
(TraesCS7A01G174700). The qRT-PCR results indicated that
the results obtained for all of the candidate genes that we
selected randomly showed a downward trend, which agreed
well with the transcriptome sequencing data in the expression
model (Fig. 6). Thus, the RNA-seq data were accurate, there-
by validating the associations between these metabolic path-
ways and male fertility.

Phenotypic characteristics and microspore
development

Based on the RNA-seq data analysis, we conducted further
phenotypic and cytological analyses. The phenotypic charac-
teristics of the anthers and microspores were observed during
the trinucleate stage (Zadoks 58) by scanning electron micros-
copy and transmission electronmicroscopy. The upper ends of
the anthers were tapered in ASg plants and they clearly dif-
fered from those in ASd (Fig. 7a, j). The exine of the micro-
spores was rough in ASg and the baculum and tectum were
disorganized, whereas the structure was regular in the ASd
plants (Fig. 7i, r). Anther indehiscence and abnormal pollen
exine development led to the induction of male sterility under
high-temperature conditions.

We also characterized other differences in the structural
features of the anthers and microspores in ASd and ASg.
The outer and inner epidermis of anthers were enlarged, where
the outer epidermal cells were arranged in an irregular manner
and the Ubisch bodies were sparse in the inner epidermis in
ASg (Fig. 7b, c, f, g, k, l, o, p). The microspores were smooth
and rounded in ASd, whereas they were irregular in shape in
ASg (Fig. 7d, m, h, q). Thus, ASd and ASg exhibited different
phenotypic features. Moreover, fertility was confirmed by I2–
KI staining, where the pollen from ASd exhibited deep and
uniform staining (Fig. 7e, n), whereas the pollen from ASg
was abortive and the type was stainable abortion.

In order to identify the cytological mechanism responsible
for fertility conversion, 4′,6-diamidino-2-phenylindole
(DAPI) staining was conducted to observe the development
of the microspores in ASd and ASg. The results indicated that
development was abnormal in ASg during the later uninucle-
ate stage, where the microspores were shrunken and irregular
in shapes (Fig. 8a, d). During the binucleate stage (Zadoks
58), the cytoplasm was thicker and two nuclei were apparent
in ASd, as the nutrient levels started to increase. By contrast,
the status of the nuclei became large in ASg (Fig. 8b, e).
During the trinucleate stage, two sperm nuclei and a vegeta-
tive nucleus were observed in ASd, but the sperm nucleus was
round and replaced the spindle type in ASg (Fig. 8c, f).

JA contents of ASd and ASg

Pathway analysis indicated that the abundance of JAwas low-
er in ASg than ASd and the phenotypic observations indicated
that no dehiscent anthers were formed by ASg. The biosyn-
thesis of JA is of vital importance for anther development. In
order to measure JA content, we applied enzyme-linked im-
munosorbent assay (ELISA) experiments. The results showed
that the mean JA contents in ASd for three biological repeat
was 17.66 μ/g, and ASg was 9.21 μ/g, according to Duncan’s

Fig. 6 Quantitative real-time
PCR validation of the RNA-Seq
results for the candidate
differentially expressed genes.
Log2 (FC) represents the fold
change in ASg relative to that in
ASd
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Fig. 7 Comparison of scanning electron micrograph observations, I2–KI
staining, and pollen exine in ASd (a–i) and ASg (j–r) in the trinucleate
stage. Anthers (a, j), outer epidermal cells (b, f, k, o), inner epidermal cells

(c, g, l, p), trinucleate cells (d, h, m, q), I2–KI staining (e, n), and pollen
exine (i, r). Scale bars = 1 μm (h, q), 2 μm (g, i, p, r), 10 μm (d, f, m, o),
50 μm (e, n), 100 μm (b, c, k, l), 500 μm (a, j)

Fig. 8 Staining of microspores with 4′,6-diamidino-2-phenylindole (DAPI) in ASd (a–c) and ASg (d–f) plants: later uninucleate stage (a, d), binucleate
stage (b, e), and trinucleate stage (c, f). Scale bars = 50 μm
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new multiple range test revealed that JA contents were signif-
icantly lower in ASg than ASd (P < 0.01) (Fig. 9), and thus the
lower JA contents led to the anthers failing to crack open and
male sterility.

Discussion

Pollen is necessary for fertility in flowering plants where it is
produced by the male reproductive organs comprising anthers
(Wang et al. 2017). The cytoderm is a basic component of
plant cells and the pollen wall affects pollen development,
and thus the fertilization process. During microspore develop-
ment, the pollen wall ensures that the complete internal struc-
ture of the microspore is maintained. Thus, the leakage of
microspore components from a defective pollen wall will lead
to the abortion of microspores (Shi et al. 2007). Therefore, a
defective pollen coat structure or lack of appropriate compo-
nents such as lipids and phenolics in the pollen wall will pre-
vent normal pollen development and eventually lead to male
sterility (Preuss et al. 1993; Mayfield and Preuss 2000). The
complete pollen wall structure comprises the outer and inner
walls to protect the pollen grains. The exine layer is divided
into the outer sexine and inner nexine (Wang et al. 2018). The
proteins in this layer are derived from the tapetum in the spo-
rophyte and they are genotype-specific. The exine layer is
often yellow and sticky, where it mainly comprises sporopol-
lenin, flavonoids, and oils (Piffanelli et al. 1998; Blackmore
et al. 2007). The baculum and tectum are formed via the de-
position of sporopollenin. Sporopollenin is the most important
component of exine and it mainly comprises a mixture of
highly resistant biopolymers, including long-chain fatty acids
and phenolic compounds, which are produced via
phenylpropanoid and long-chain fatty acid biosynthesis path-
ways (Yang et al. 2014). PAL, 4CL, and C4H are the rate-
limiting enzymes in the phenylpropanoid metabolic pathway.

These enzymes are located at the bifurcation of the metabolic
synthesis pathway and they are the general synthetic precur-
sors of phenolic secondary metabolites (Du et al. 2005). In our
study, the downregulation of the PAL, 4CL, and HCT en-
zymes in the phenylpropanoid biosynthesis pathway may
have led to the reduced synthesis of the intermediate product
feruloyl-CoA, thereby decreasing phenolic polymer synthesis.
In the long-chain fatty acid biosynthesis pathway, the key
enzymes comprising KCS and KAR were downregulated,
which resulted in reduced lipid polymer synthesis. Phenolic
and lipid polymers are critical components of sporopollenin,
and thus their inhibited synthesis affected the pollen wall and
pollen development.We also observed the microspores during
the trinucleate stage and found that the pollen exine was dis-
organized, where the distribution of sporopollenin was abnor-
mal and this led to male sterility.

Jasmonates such as JA comprise a newly identified class of
endogenous hormones that are widespread in plants, which
have essential regulatory roles in plant growth, development,
stress responses, and secondary metabolism. JA has two main
physiological effects, as follows. First, JA is closely related to
plant growth and development, such as anther dehiscence,
fruit maturations, seed germination and growth, photosynthe-
sis, organ growth and development, plant senescence, and
death. Second, JA is associated with the defense system,
where it acts as a signaling molecule to induce the expression
of defense genes and the biosynthesis of defense chemicals by
interacting with transcription factors in response to the pres-
ence of pathogenic bacteria, insect invasion, and external me-
chanical trauma (Creelman and Mullet 1997; Ishiguro et al.
2001; Howe and Schilmiller 2002; Li et al. 2002; Qi et al.
2011). In recent years, studies of JA mutants of Arabidopsis
thaliana have also shown that JA participates in the regulation
of pollen development (Gan et al. 2004). In addition, genetic
analyses of Arabidopsis mutants have demonstrated the JA is
involved with the splitting of anthers. The anthers of the JA-
insensitive mutant coronatine insensitive1 (coi1) cannot split
and it exhibits the characteristic features of male sterility, al-
though the flowers are opened (Feys et al. 1994; Xie et al.
1998). Vegetative growth by the Arabidopsis thaliana
fad3/fad7/fad8 mutants is normal initially, but they convert
to male sterility during the flowering stage, where anther de-
hiscence does not occur and filament elongation is weak. The
pollen lacks the capacity to germinate but it can grow to the
trinucleate stage. In a previous study, a series of 18 carbon
fatty acids and their metabolites were sprayed at the flowering
stage but pollen fertility was restored only by JA, which is
indispensable for normal pollen development in Arabidopsis
thaliana (Mcconn and Browse 1996). The mutant form of the
delayed dehiscence 1 (dde1)/opr3 gene leads to the character-
istics of male sterility, with no pollen grains and failed anther
dehiscence in the trinucleate stage (Sanders et al. 2000; Stintzi
and Browse 2000). We found that the key enzymes
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Fig. 9 Comparison of JA contents in ASd and ASg. Data represent mean
± standard error of mean based on three biological replicates. Asterisks
denote significant differences between ASd and ASg (P < 0.01, **)
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comprising LOX2S, AOS, and OPR had decreased abun-
dances in ASg. The downregulation of LOX2S might have
reduced the synthesis of 13(S)-hydroperoxy-octadecatrienoic
acid and catalysis by the AOS enzyme with a low abundance
led to the decreased production of the intermediate 12,13(S)-
epoxyoctadecatrienoic acid. Finally, the low abundance of
OPR led to the decreased synthesis of JA, with effects on
anther dehiscence and filament elongation. Heat stress tem-
peratures are harmful to the growth and development of
plants, and they can cause irreversible damage (Bokszczanin
et al. 2013). JA signaling can promote heat resistance in wild-
type Arabidopsis (Sharma and Laxmi 2016). We treated ASg
at a high temperature above the optimum and ELISA showed
that the JA contents were decreased, where anther dehiscence
did not occur according to the phenotypic observations. The
results indicated that the reduced abundances of key enzymes
comprising LOX2S, AOS, and OPR decreased the production
of intermediates to hinder the synthesis of JA so the anthers
did not crack and male sterility occurred.
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