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Abstract

Non-small cell lung cancer (NSCLC) represents for approximately 85% of all lung cancers, which is the most common cancer
worldwide. Tumor-associated macrophages (TAM) are crucial for tumor progression, which was widely believed to be mediated
by long non-coding RNAs (LncRNAs). We aimed to explore the effect of one LncRNA, GNAS-ASI1, in TAM-associated
NSCLC progression. Relative mRNA levels were determined by qRT-PCR. Western blot and ELISA were used to detect protein
levels. Proliferation in vitro was assessed by MTT and clone formation assays. Migration and invasion of cell lines were evaluated
by transwell-based assays. Interaction between molecules was detected by luciferase report assay. GNAS-AS1 expression was
dramatically enhanced in TAM, NSCLC cell lines, and clinical tumor tissues, and negatively correlated with overall survival of
NSCLC patients. GNAS-AS1 promoted macrophage M2 polarization and NSCLC cell progression via directly inhibiting miR-
4319, which could target N-terminal EF-hand calcium binding protein 3 (NECAB3) to inhibit its expression. GNAS-AS1/miR-
4319/NECAB3 axis promotes tumor progression of NSCLC by altering macrophage polarization. This novel mechanism may
provide potential strategy for NSCLC treatment.
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Introduction

Lung cancer is the most common cancer in world and is one of
the most common causes of cancer-related deaths (Molina
et al. 2008). According to histological characteristics, lung
cancers are divided into two subtypes: small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC). NSCLC
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represents for approximately 85% of all the lung cancer cases
(Leung et al. 2016). Due to the limitation of early-stage (stages
I and II) detection, most NSCLC patients were diagnosed at
late stages (stage III/IV) (Kogita et al. 2014). Despite pro-
gresses in diagnosis and treatment, the 5-year overall survival
of NSCLC patients is only 11% (Verdecchia et al. 2007).
Therefore, further understanding of the mechanism that regu-
lates NSCLC development and progression is urgently needed
to provide more effective strategies for NSCLC treatment.

Tumor micro-environment (TME) includes cytokines, fi-
broblast, and various immune cells, and is commonly accept-
ed to be essential for tumor development and progression
(Whiteside 2008). In TME, macrophages undergo polariza-
tion into M1 or M2 subtypes in response to different stimu-
lations (Martinez and Gordon 2014). Tumor-associated mac-
rophages (TAM) display M2 phenotype and promote tumor
development and progression in various cancers (Noy and
Pollard 2014). In NSCLC patients, high TAM density was
reported to be correlated with poor prognosis (Lietal. 2012).
TAM promoted tumor metastasis via elevated SOX9/C-jun/
SMAD?3 pathway (Zhang et al. 2017).
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Long non-coding RNAs (LncRNAs) are endogenous
RNAs with the length of over 200-bp nucleotides that do not
encode proteins (Quinn and Chang 2016). Accumulating ev-
idences have demonstrated the essential role of LncRNAs in
regulating numerous biological processes, such as DNA dam-
age, miRNA silence, cell apoptosis and development, inflam-
mation, and malignant transformation of tumor cells (Archer
et al. 2015; Piccoli et al. 2015). GNAS-ASI attracted our
attention due to accumulating research into its effect on oste-
oarthritis and breast cancer (Lee et al. 2016, 2017; Park et al.
2017). However, the role of GNAS-ASI in NSCLC remains
unclear.

In this study, we aimed to explore the role of GNAS-ASI in
NSCLC development. We found that the expression levels of
GNAS-ASI was dramatically enhanced in TAM, NSCLC cell
lines, and clinical tumor tissues. Consistently, GNAS-AS1
expression was observed to be negatively correlated with
overall survival and metastasis-free survival of NSCLC pa-
tients. In addition, GNAS-AS1 was found to promote macro-
phage M2 polarization and NSCLC cell progression. The ef-
fect of GNAS-AS1 was achieved via directly inhibiting miR-
4319, which could target N-terminal EF-hand calcium-
binding protein 3 (NECAB3) to repress its expression.

Methods
Clinical NSCLC samples and cell lines

A total of 50 clinical NSCLC tissues and their adjacent normal
tissues were obtained in Shanghai Pulmonary Hospital, Tongji
University. All tissues were stored in freezer after being frozen
in liquid nitrogen. Written consents from all patients were
obtained before operation. The study was approved by the
ethics committee of Shanghai Pulmonary Hospital, Tongji
University.

Human NSCLC cell lines (PC9, SPCA1, H358, A549,
H1299) and bronchial epithelial cells (16HBE) were pur-
chased from Shanghai Cell Bank of China. For cell culture,
RPMI medium with 10% fetal bovine serum (FBS) was used
for all cell lines. The cell lines were kept in humidified incu-
bator with 5% (v/v) CO,.

Macrophage polarization of human PBMC

Blood from healthy donors was used for isolation of periph-
eral blood mononuclear cells (PBMCs). Macrophage polari-
zation from human PBMCs was reported previously (Huang
et al. 2017). Briefly, PBMCs were separated by Ficoll density
gradient (Axis-Shield). Then, CD14+ monocytes were sorted
using anti-CD14 kit (Miltenyi) according to the manufac-
turer’s instructions. The sorted CD14+ monocytes were cul-
tured in RPMI medium with 10% FBS for 7 days, followed by
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macrophage induction by 50 ng/ml M-CSF. MO cells were
collected after 48 h of incubation with serum-free medium;
M1 macrophages were collected after overnight stimulation
with 100 ng/ml lipopolysaccharides and 100 ng/ml IFN-vy;
M2 macrophages were collected after overnight stimulation
with 20 ng/ml IL-4.

For TAM, monocytes were first cultured for 7 days in
RPMI medium containing 10% FBS with 50% culture medi-
um from H1299 cells. The culture medium was obtained from
48 h of serum-starved culture of H1299 cells.

RNA isolation and gqRT-PCR

The RNeasy kit (Qiagen, Valencia, CA, USA) was used for
RNA isolation from cells and tissues according to the manu-
facturer’s instructions. Then, Prime-Script RT Kit (Takara,
Dalian, China) was used for cDNA synthesis. The primers
for QRT-PCR were as follows (5'-3"): GNAS-AS1, F: GAC
GCC TTT CCT ACG G, R: TGG TAA CGC ACC TTC G;
IL-10, F: TCA AGG ATG CAC ATC AAA AGG C, R: AGG
CAG CAA CTT CCT CCC T; Arg-1, F: GTG GAA ACT
TGC ATG GAC AAC, R: AAT CCT GGC ACATCG GGA
ATC; miR-4319, F: GCA CAG CTC CCT GAG CAA, R:
CAG TGC GTG TCG TGG AGT; U6, F: TGC GGG TGC
TCG CTT CGG CAG C, R: GTG CAG GGT CCG AGG T;
NECAB3, F: TCT GGC AGG ATG AGG C, R: GAG GCT
GGG AAG AAC AC; GAPDH, F: GGA GCG AGA TCC
CTC CAA AAT, R: GGC TGT TGT CAT ACT TCT CAT
GG. Relative mRNA expression levels were determined by
the 222" method.

THP-1-differentiated macrophage

The human monocytic THP-1 cells were purchased from
ATCC. For macrophage differentiation, THP-1 cells were cul-
tured in RPMI medium with 100 ng/ml PMA (Sigma, St.
Louis, MO) for 48 h (Zhou et al. 2018).

Plasmids and cell infection

GNAS-ASI overexpression plasmid (pSin-GNAS-AS1) was
constructed using the following primers (5'-3): F: CTA GAA
TTC TAG GGG GCG CCG CGT T, R: CTA GGATCC TTG
ACA GGG TGC ATC TGG. The empty vector (pSin-VEC)
was used as control. Then, the plasmids were transfected into
THP-1-differentiated macrophages, respectively, using
Lipofectamine 2000 (Invitrogen, Waltham, MA) according
to the manufacturer’s instructions.

Enzyme-linked immunosorbent assay

The concentrations of IL-10 and Arg-1 in culture medium
were detected by commercial enzyme-linked immunosorbent
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assay (ELISA) kits (eBioscience, San Diego, CA) following
the manufacturer’s protocol.

Clone formation assay

A total of 500 cells were added into 6-well plates, followed by
culturing in RPMI medium with 10% FBS for 12 days. Then,
purple crystal staining was performed to visualize colony for-
mation. Colonies containing more than 50 cells were calculat-
ed under the microscope.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide assay

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay was used to investigate cell viability.
Briefly, 5000 cells from different groups were added into
96-well plates for 24 h of culture. Then, the MTT kit
(Thermo Fisher, Waltham, MA) was used to detect cell viabil-
ity according to the manufacturer’s protocol.

Migration and invasion assays

For invasion assay, 1 x 10> cells were added into matrigel-
coated upper chamber with serum-free medium, while 10%
FBS medium was added into lower compartment. After 48 h
of culturing, the matrigel membranes were fixed and stained
with crystal violet solution. Then, the invasion number was
calculated. For migration assay, 2 x 10° cells were seeded into
6-well plates and allowed to grow to full confluency, then a
vertical scratch wound was made on the cell monolayer using
a sterile 200-pL micro pipette tip. The wound closure was
monitored and calculated after 24 h.

Luciferase reporter assays

Plasmids containing pGL3-NECAB3-3'UTR (WT) and
pGL3-NECAB3-3'UTR (MT) were purchased from
GenePharma (Shanghai, China). A total of 3.5 x 10%/well
THP-1-differentiated macrophages or HEK193T cells were
added into 24-well plates and cultured for 24 h. Then, plas-
mids containing pGL3-NECAB3-3'UTR (WT) or pGL3-
NECAB3-3'UTR (MT) were co-transfected with miR-4319
or miR-NC, respectively, using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s protocols.
Forty-eight hours later, luciferase activity was detected by
Luciferase Reporter Assay Kit (Promega, Madison, WI) fol-
lowing the manufacturer’s protocol.

Biotin RNA pull-down assay

For biotin pull-down assay, lysates from 2 x 10" THP-1-
differentiated macrophages were incubated with 3 ug in vitro—

synthesized biotin-labeled GNAS-AS1 sense or anti-sense
oligomers. After 3-h incubation, streptavidin-conjugated
beads (Invitrogen) were used to isolate RNA-RNA complex
for further detection.

Western blot

THP-1-differentiated macrophages were lysed in
radioimmunoprecipitation buffer (Sigma, St. Louis, MO).
Then, the lysates were electrophoresed into 10% sodium do-
decyl sulfate-polyacrylamide gel electrophoresis gel and
transferred onto membranes (Millipore, Billerica, MA). The
membranes were incubated with anti-NECAB3 or anti-actin
primary antibodies (Cell Signaling Technology, Danvers,
MA) at 4 °C overnight after blocking with 5% milk at room
temperature for 1 h. Then, the members were subjected to
incubation with horseradish peroxidase (HRP)—conjugated
secondary antibody for 1 h at room temperature. Finally, sig-
nals were visualized via chemiluminescence reaction with
HRP substrate (Millipore).

Statistical analysis

All data were presented as mean + standard deviation (SD)
from 3 separate experiments. Student’s 7 test and one-way
ANOVA were used to determine the statistical significance.
Kaplan-Meier’s analysis was used for detecting the correlation
between GNAS-ASI1 expression and the overall or metastasis-
free survival of NSCLC patients. In all experiments, p < 0.05
was considered significant.

Results

GNAS-AS1 expression is increased in TAM and NSCLC
cell lines

Given the crucial role of M2 macrophages and TAM in
NSCLC development (Wang et al. 2011), we first determined
GNAS-ASI expression levels in various macrophages (MO,
M1, M2), whose identities were confirmed by cell surface
marker staining (Fig. S1). The expression levels of GNAS-
AS1 were dramatically increased in M2 macrophages and
TAM when compared with MO and M1 macrophages (Fig.
la), indicating the effect of GNAS-ASI in promoting tumor
development. To further explore the effect of GNAS-ASI in
NSCLC, we performed qRT-PCR in human bronchial epithe-
lial cells (16HBE) and NSCLC cell lines (PC9, SPCA1, H358,
A549, H1299). Higher GNAS-AS1 expressions were ob-
served in all NSCLC cell lines than bronchial epithelial cells
(Fig. 1b). In clinical NSCLC samples, the expression level of
GNAS-ASI was significantly increased in tumor tissues when
compared with adjacent normal tissues (Fig. 1c). The
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Fig. 1 The expression levels of
GNAS-ASI in different types of
macrophage and NSCLC. a The
expression levels of GNAS-AS1
in M0, M1, M2, and TAMs were
detected by qRT-PCR. b The ex-
pression levels of GNAS-ASI in
NSCLC cells (PC9, SPCAL,
H358, A549, H1299) and human
bronchial epithelial cells
(16HBE) were detected by qRT-
PCR. ¢ gqRT-PCR analysis of
GNAS-ASI expression in 50
NSCLC tissues and 50 adjacent
normal tissues (shown as 27AAC‘).
d Relative expression levels of
GNAS-ASI in groups of NSCLC
tissues classified based on the oc-
currence of lymph node metasta-
sis (metastatic, M or non-meta-
static, N-M). e and f Kaplan-
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correlation of GNAS-ASI expression with clinicopathologi-
cal features in 50 NSCLC patients is shown in Table 1. Tumor
tissues from patients with lymph node metastasis displayed
higher GNAS-ASI expression than non-metastasis (Fig. 1d).
Moreover, high GNAS-AS1 expression in NSCLC patients
negatively correlated with overall survival and metastasis-
free survival (Fig. le, f). These results demonstrated the effect
of GNAS-ASI in promoting NSCLC development.

GNAS-AS1 promotes M2 polarization and NSCLC cell
proliferation

To investigate the biological effect of GNAS-ASI in macro-
phages, THP-1 monocytic cell line was induced to differenti-
ate into macrophages (THP-1-differentiated macrophage).
GNAS-AS1 over-expressing THP-1-differentiated macro-
phage was established by transfection with GNAS-AS] plas-
mid (Fig. 2a). Interleukin 4 (IL-4) administration greatly ele-
vated mRNA and protein levels of M2 polarization markers
IL-10 and Arg-1. In addition, IL-10 and Arg-1 levels were
much higher in GNAS-AS1 overexpressing THP-1-
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differentiated macrophages after IL-4 stimulation (Fig.
2b, ¢), indicating that GNAS-ASI1 promoted M2 polarization.

A549 and H1299 NSCLC cells were cultured with condi-
tional media from 4 groups of THP-1-differentiated macro-
phages (control, IL-4, IL-4 + pSin-VEC, IL-4 + pSin-
GNAS-AS1), as shown in Fig. 2b, c. Similarly, IL-4-
conditional media significantly enhanced cell viability (Fig.
2d) and proliferation (Fig. 2¢). IL-4 plus GNAS-AS1 overex-
pression-conditional media further enhanced cell viability and
proliferation of A549 and H1299 (Fig. 2d, ¢). These results
indicated that GNAS-AS1 overexpression-mediated M2 po-
larization promoted malignant transformation of NSCLC
cells.

GNAS-AS1 enhances migration and invasion of NSCLC
cells

We further detected the role of GNAS-AS1 on NSCLC cell
migration and invasion. The migration of A549 and H1299
cells was determined by scratch wound healing assay. As
shown in Fig. 3a, b, in both A549 and H1299 cells, IL-4-
conditional media significantly enhanced the percentage of
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Table1 Correlation of GNAS-AS1 expression with clinicopathological
features in 50 NSCLC patients

Expression of GNAS-AS1

Variables Low (%) High (%) P value

Age 0.3961
<60 11 (42.31%) 15 (57.69%)
>60 14 (58.33%) 10 (41.67%)

Gender 0.7761
Male 12 (54.55%) 10 (45.45%)
Female 13 (46.43%) 15 (53.57%)

Smoking status 0.3961
No 10 (41.67%) 14 (58.33%)
Yes 15 (57.69%) 11 (42.31%)

Tumor size (cm) 0.0421
<5 14 (70.00%) 6 (30.00%)
>5 11 (36.67%) 19 (63.33%)

TNM staging 0.0031
1 15 (78.95%) 4 (21.05%)
-1V 10 (32.26%) 21 (67.74%)

Lymph node status 0.2516
Metastasis 12 (41.38%) 17 (58.62%)

No metastasis 13 (61.90%) 8 (38.10%)

wound closure, which was further enhanced by IL-4 plus
GNAS-ASI overexpression-conditional media. Cell invasion
was further determined by transwell system. IL-4-conditional
media enhanced A549 cell migration and H1299 cell invasion,
which were further enhanced by IL-4 plus GNAS-AS1 over-
expression-conditional media (Fig. 3¢, d). To rule out the pos-
sibility that conditional media from NSCLC cell lines overex-
pressing GNAS-ASI1 also promoted macrophage M2 polari-
zation, we detected mRNA and protein levels of IL-10 and
Arg-1, and found conditional media from NSCLC cell lines
overexpressing GNAS-AS1 had no significant effects on mac-
rophage M2 polarization (Fig. S2). These results indicated that
GNAS-AS]1 overexpression-mediated M2 polarization pro-
moted NSCLC migration and invasion. Of note, these ob-
served enhancing effect of GNAS-AS1 overexpression on
NSCLC migration and invasion was independent of
epithelial-mesenchymal transition (EMT), as EMT markers,
such as N-cadherin, Twist, and Slug, were unaffected (Fig.
S3a and S3b).

GNAS-AS1 knockdown inhibits NSCLC cell progression

We further knocked down GNAS-AS1 expression to confirm
the biological role of GNAS-AS1 in NSCLC cells. We first
demonstrated the successful down-regulation of GNAS-AS1
detected by qRT-PCR (Fig. 4a). GNAS-AS1 downregulation
(sh-GNAS-AS1-1, sh-GNAS-AS1-2) significantly inhibited

cell proliferation (Fig. 4b), clone formation (Fig. 4c), and mi-
gration (Fig. 4d) of both A549 and H1299 cells. Moreover,
transwell assay showed that GNAS-AS1 downregulation dra-
matically suppressed the migrasive and invasive abilities of
A549 and H1299 cells (Fig. 4e, f). These results indicated that
GNAS-ASI knockdown inhibited NSCLC cell progression.

GNAS-AS1 directly inhibits miR-4319 expression

We next investigated the mechanism underlying GNAS-AS1
function in NSCLC. LncRNAs exert their biological roles via
competitively binding endogenous RNAs (Quinn and Chang
2016). Accordingly, microRNA (miR)-4319 was predicted to
be the potential binding microRNA of GNAS-ASI through
miRcode (http://www.mircode.org/mircode/). The binding
sites between miR-4319 and GNAS-ASI1 were predicted by
RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/
rnahybrid). Mutations in the binding sites were carried out
for luciferase reporter assay (Fig. 5a). Luciferase activity
was significantly decreased in THP-1-differentiated macro-
phages and HEK293T cells co-transfected with miR-4319
and luciferase reporters containing GNAS-AS1 wt, when
compared with negative control (miR-NC). However, no sig-
nificant difference of luciferase activity in both cells was ob-
served between miR-4319 and miR-NC, when co-transfected
with luciferase reporters containing GNAS-AS1 mt (Fig.
5b, ¢), indicating that miR-4319 directly targeted GNAS-AS1.

GNAS-AS1 downregulation in THP-1-differentiated mac-
rophages by shRNAs dramatically promoted miR-4319 ex-
pression levels (Fig. 5d). Consistently, GNAS-AS1 overex-
pression significantly inhibited miR-4319 expression level
(Fig. 5e). In a pull-down assay, GNAS-ASI anti-sense
probe-enriched complex from THP-1-differentiated macro-
phages showed elevated expression levels of GNAS-AS1
and miR-4319, compared with sense probe (Fig. 5f), indicat-
ing GNAS-ASI indeed targeted miR-4319. Moreover, miR-
4319 expression level was significantly elevated in complex
enriched with biotin-labeled GNAS-AS1 compared with anti-
sense RNA (Fig. 5g). These results demonstrated that GNAS-
ASI directly inhibited miR-4319 expression.

NECABS3 is the direct target of miR-4319

We further explored the biological target of miR-4319.
NECAB3 was predicted to be the potential target of miR-
4319 using Targetscan (http://www.targetscan.org/vert_71/).
The binding sites between 3'UTR of NECAB3 and miR-
4319 (both wild type and mutant) were illustrated in Fig. 6a.
Luciferase activity in THP-1-differentiated macrophages and
HEK293T cells co-transfected with miR-4319 and NECAB3
3"UTR (WT) was dramatically inhibited, when compared with
miR-NC. However, no difference in luciferase activity was
observed when the cells were transfected with NECAB3 3’
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Fig. 2 GNAS-ASI promoted M2 a b
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UTR (MT) (Fig. 6b, c), indicating that NECAB3 was the
direct target of miR-4319. Pull-down assay in THP-1-
differentiated macrophages showed that NECAB3 mRNA
level was much higher in biotinylated miR-4319 (bio-miR-
4319)-mediated complex than biotinylated control random
RNA (bio-miR-NC) (Fig. 6d), suggesting the biological com-
bination between miR-4319 and NECAB3.

NECAB3 expression level was attenuated in miR-4319-
transfected THP-1-differentiated macrophages (Fig. 6¢),
which was elevated upon treatment with miR-4319 inhibitor
(Fig. 6f). Consistently, NECAB3 protein level in THP-1-
differentiated macrophages showed similar trend after differ-
ent treatment (Fig. 6g), further demonstrating that NECAB3
was the target of miR-4319. GNAS-AS1 downregulation
inhibited NECAB3 mRNA expression (Fig. 6h). Meanwhile,
GNAS-ASTI upregulation enhanced NECAB3 mRNA expres-
sion in THP-1-differentiated macrophages (Fig. 6i). This sim-
ilar trend in NECAB3 protein level was observed after
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different treatment (Fig. 6j). These results indicated that
GNAS-ASI and NECAB3 could competitively bind with
miR-4319.

GNAS-AS1/miR-4319/NECAB3 axis regulates M2
polarization and NSCLC cell progression

Given the competitive combination of GNAS-AS1 and
NECAB3 with miR-4319, we next determined its biological
effect in M2 polarization and NSCLC cell progression.
NECAB3 mRNA and protein levels were inhibited after
GNAS-ASI1 downregulation, which could be recovered after
miR-4319 inhibitor administration (Fig. 7a, b). In IL-4-
induced M2 macrophages, GNAS-AS1 downregulation
inhibited the mRNA and protein levels of IL-10 and Arg-1,
which was rescued by miR-4319 inhibitor administration (Fig.
7c, d).
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with the conditioned media of
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A549 cells were treated with different conditional media as
shown in Fig. 7c, d. Conditional media from GNAS-AS1
downregulated THP-1-differentiated macrophages suppressed
cell viability, clone formation, migration, and invasion of
A549 cells, whereas further miR-4319 inhibitor administra-
tion exhibited opposite effects (Fig. 7e—h). These results dem-
onstrated that GNAS-AS1 promoted NECAB3 via inhibiting
miR-4319, and GNAS-AS1/miR-4319/NECAB3 axis regu-
lated M2 polarization and NSCLC cell progression.

Discussion

NSCLC constitutes the majority of lung cancers, which is also
the most common type of cancer in the world (Siegel et al.
2018). Strategies for NSCLC treatment are limited due to high
recurrence and metastasis rates (Temel et al. 2010). Therefore,

Migration Invasion

NSCLC has been the acute challenge to public health world-
wide. TAM was widely believed to be important in promoting
NSCLC development (Mei et al. 2016). Moreover, accumu-
lating studies demonstrated the novel role of LncRNAs in
various biological progresses including tumor development
(Gutschner and Diederichs 2012; Mercer et al. 2009).
Accordingly, we explored the effect of LncRNA-mediated
TAM in NSCLC. Macrophage polarization in dynamic TME
is crucial for immune response and further tumor development
(Mantovani et al. 2002; Sica and Bronte 2007). Macrophage
activation has been proposed based on dichotomy: M1
(classic) and M2 (alternative) (Martinez and Gordon 2014).
M1 macrophages induce inflammatory responses, while M2
macrophages antagonizes inflammatory responses (Martinez
and Gordon 2014). M2 macrophages, such as TAM, promote
several types of tumor development (Mantovani et al. 2002;
Sica et al. 2006; Solinas et al. 2009). As TAM represents for
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Fig.4 Knockdown of GNAS-ASI inhibited NSCLC cells progression. a
The relative expression levels of GNAS-AS1 in A549 and H1299 cells
transfected with GNAS-AS1 shRNAs (sh-GNAS-ASI1-1, sh-GNAS-
AS1-2) or empty vector (sh-CTR) were detected by gqRT-PCR. b and ¢
Cell proliferation of A549 and H1299 cells transfected with GNAS-AS1
shRNAs (sh-GNAS-AS1-1, sh-GNAS-AS1-2) or empty vector (sh-CTR)
was determined by MTT and colony formation assays. d The migration of

the crucial orchestrators for immune escape, therapies
targeting TAM are attractive for anti-tumor treatment
(Noy and Pollard 2014). Macrophage colony-stimulating
factor 1 (CSF-1) is the key survival factor for TAM.
Monoclonal antibody that suppresses activation of CSF-1
receptor leads to cell death of TAM in vitro. CSF-1 recep-
tor inhibition significantly eliminated TAM and promoted
ratio of CD8+/CD4+ T cells in animal models. More im-
portantly, patients administrated with CSF-1 receptor ex-
hibited dramatically decreased CSF-1R+CD163+ TAM
(Ries et al. 2014). Reduction of TAM in tumor stromal
significantly switched TME and therefore led to dramatical
tumor suppression (Luo et al. 2006). We first successfully
induced macrophage differentiation from THP-1 cells by
IL-4 stimulation. In GNAS-ASI1-overexpressing THP-1-
differentiated macrophages, TAM markers IL-10 and
Arg-1 were markedly enhanced. Conditional media from
GNAS-AS1-overexpressing THP-1-differentiated macro-
phages (with higher TAM expression) promoted cell via-
bility, migration, and invasion of NSCLC cells A549 and
H1299, demonstrating the role of TAM in promoting
NSCLC malignant transformation.

@ Springer

A549 and H1299 cells transfected with GNAS-AS1 shRNAs (sh-GNAS-
AS1-1, sh-GNAS-AS1-2) or empty vector (sh-CTR) was determined by
scratch wound healing assay. e and f The migratory and invaded ability of
A549 and H1299 cells transfected with GNAS-AS1 shRNAs (sh-GNAS-
AS1-1, sh-GNAS-AS1-2) or empty vector (sh-CTR) was determined by
transwell assays. The data represent the mean + SD from three indepen-
dent experiments. *P < 0.05; **P < 0.01. Student’s ¢ test

The effects of LncRNAs were achieved by competitively
binding with endogenous RNAs. In pseudohypoparathyroidism
patients, GNAS-AS1 was confirmed to be the most significant
differentially methylated regions (Rochtus et al. 2016). MiR-
4319 was found to be directly suppressed by GNAS-ASI.
Indeed, no significant difference in luciferase activity was ob-
served when binding sites between GNAS-AS1 and miR-4319
were mutated. GNAS-AS1 downregulation increased miR-4319
expression levels. Furthermore, the effect of GNAS-AS1 down-
regulation in M2 macrophage polarization and NSCLC cell pro-
gression was rescued by miR-4319 inhibitor. To the best of our
knowledge, this is the first report that demonstrates direct binding
between GNAS-AS1 and miR-4319.

NECAB3 promotes hypoxia-inducible factor-1 activation.
Downregulation of NECAB3 in tumor cells results in sup-
pressed tumorigenicity (Nakaoka et al. 2016), indicating the
crucial role of NECAB3 in promoting cancer development.
However, the role of NECAB3 in macrophages remains un-
clear. In this study, we first showed that NECAB3 expression
was enhanced in THP-1-differentiated macrophages.
Moreover, NECAB3 was the direct target of miR-4319.
MiR-4319 inhibition elevated NECAB3 expression levels,
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Fig. 5 GNAS-ASI could negatively regulate miR-4319 by a direct inter-
action. a The prediction for miR-4319 binding sites on GNAS-ASI tran-
script and schematic of luciferase reporter vector constructs GNAS-AS1
wild-type (GNAS-AS1 wt) and the miR-4319 binding site mutated
(GNAS-AS1 mt) one. b and ¢ The luciferase activities in THP-1-
differentiated macrophages and HEK293T cells co-transfected with
miR-4319 or miR-NC mimic and luciferase reporters containing
GNAS-AS1 wt or GNAS-AS1 mt. Data are presented as the relative ratio
of hRluc luciferase activity to hluc+ luciferase activity. d The relative
expression levels of GNAS-AS1 and miR-4319 in THP-1-differentiated
macrophages transfected with GNAS-AS1 shRNAs (sh-GNAS-AS1-1,
sh-GNAS-AS1-2) or empty vector (sh-CTR) were detected by qRT-

and promoted NSCLC cell malignant transformation which
was suppressed by GNAS-AS1 downregulation.

In summary, we report that GNAS-AS1 expression
levels are markedly increased in TAM, NSCLC cell
lines, and NSCLC patient tumor tissues. NSCLC pa-
tients with higher GNAS-AS1 expression levels showed
poor overall survival and metastasis-free survival.

THP-1 differentiated M®

PCR. e The relative expression levels of GNAS-AS1 and miR-4319 in
THP-1-differentiated macrophages transfected with GNAS-ASI plasmid
(pSin-GNAS-ASI) or empty vector (pSin-VEC) were detected by qRT-
PCR. f Lysates from THP-1-differentiated macrophages were incubated
with in vitro—synthesized biotin-labeled sense or antisense DNA probes
against GNAS-ASI for biotin pull-down assay, followed by the real-time
RT-PCR analysis to examine GNAS-AS1 and miR-4319 levels. g Lysates
from THP-1-differentiated macrophages were incubated with in vitro—
synthesized biotin-labeled GNAS-AS1 and antisense RNA for biotin
pull-down assay, followed by the real-time RT-PCR analysis to examine
miR-4319 level. The data represent the mean + SD from three indepen-
dent experiments. *P < 0.05; **P < 0.01; ***P < 0.001

GNAS-AS1 promotes macrophage M2 polarization and
NSCLC cell progression via directly inhibiting miR-
4319. Furthermore, NECAB3 is the direct target of
miR-4319 in GNAS-AS1-promoted M2 polarization
and NSCLC cell progression. This research provides a
potential mechanical basis for more effective NSCLC
treatment.
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Fig. 6 MiR-4319 targeted NECAB3 to regulate its expression. a The
sequences of miR-4319 binding site within NECAB3 3'UTR, including
wild-type NECAB3 3'UTR (WT)) and mutant NECAB3 3'UTR (MT)).

and ¢ Luciferase reporter assay was performed in THP-1-differentiated
macrophages and HEK293T cells co-transfected with miR-4319 or miR-
NC mimics and plasmid containing NECAB3 3'UTR (WT) or NECAB3

UTR (MT). d Detection of NECAB3 mRNAs in biotinylated miRNA/
target mRNA complex by qRT-PCR. The relative level of NECAB3
mRNA in the complex pull-down by using biotinylated miR-4319 (bio-
miR-4319) was compared with that of the complex pull-down by using
the biotinylated control random RNA (bio-miR-NC). e-g The relative
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expression levels of NECAB3 in THP-1-differentiated macrophages
transfected with indicated microRNA mimics and microRNA inhibitors
or their respective negative controls were detected by qRT-PCR and
Western blot. h—j The relative expression levels of NECAB3 in THP-1-
differentiated macrophages transfected GNAS-AS1 shRNAs (sh-GNAS-
AS1-1, sh-GNAS-AS1-2) or empty vector (sh-CTR) and GNAS-ASI
plasmid (pSin-GNAS-AS1) or empty vector (pSin-VEC) were detected
by qRT-PCR and Western blot. Data are representative of three or more
independent experiments. Data are the mean = SD. *P < (.05, **P < 0.01,
ns = not significant



Funct Integr Genomics (2020) 20:17-28

27

a

[ sh-CTR+NC-inhibitor
Il sh-GNAS-AS1-1+NC-inhibitor
I sh-GNAS-AS1-1+miR-4319-inhibitor

*k -
| e |

Relative expression
of NECAB3

THP-1 differentiated M®

c d

[ IL-4+sh-CTR+NC-inhibitor
Il IL-4+sh-GNAS-AS1-1+NC-inhibitor
I IL-4+sh-GNAS-AS1-1+miR-4319-inhibitor

o
@
S

O IL-4+sh-CTR+NC-inhibitor
Il IL-4+sh-GNAS-AS1-1+NC-inhibitor
I IL-4+sh-GNAS-AS1-1+miR-4319-inhibitor

$
O
he >
N A S
WO R A
& 5 IS
AN S8 S
c}"o'\&o vpc}‘o va?
5 Q
¥ o -8
NECAB3| —— -‘

ACTIN| — —— -‘

THP-1 differentiated M®

e

[ IL-4+sh-CTR+NC-inhibitor
Il IL-4+sh-GNAS-AS1-1+NC-inhibitor
I IL-4+sh-GNAS-AS1-1+miR-4319-inhibitor

= 15
< v an - £ L Z e
€ 10 100 P €40
- : 3
22 2 8
w X < o
% 0.5 Q 50 E 0.5
14 ° B
0.0 o & o0
IL-10 Arg-1 IL-10 Arg-1 A549
| IL-4+sh-CTR+NC-inhibitor [ IL-4+sh-CTR+NC-inhibitor [ IL-4+sh-CTR+NC-inhibitor
Il IL-4+sh-GNAS-AS1-1+NC-inhibitor B IL-4+sh-GNAS-AS1-1+NC-inhibitor I IL-4+sh-GNAS-AS1-1+NC-inhibitor
I IL-4+sh-GNAS-AS1-1+miR-4319-inhibitor I IL-4+sh-GNAS-AS1-1+miR-4319-inhibitor [l IL-4+sh-GNAS-AS1-1+miR-4319-inhibitor
15 0 *x *x 2,5
| E— @
5 g * * '§ 5 _g P e
[TRE-] o= o 9
o E 10 = X 40 T 1.0
g 2 -1 53
< S o Se
O > = 8 o =
5 505 S22 5 205
s 2 80 kR
w8 s w g
o >
0.0 o E 00
A549 A549 Migration Invasion
A549

Fig. 7 GNAS-AS1/miR-4319/NECAB3 axis regulated M2 polarization
and NSCLC cell progression. a and b Expression levels of NECAB3 was
determined by qRT-PCR and Western blot in THP-1-differentiated mac-
rophages co-transfected with empty vector and inhibitor negative control
(pSin-VEC + NC-inhibitor) or GNAS-ASI1 plasmid and inhibitor nega-
tive control (pSin-GNAS-AS1+NC-inhibitor) or GNAS-AS1 plasmid
and miR-4319 inhibitor (pSin-GNAS-AS1+miR-4319-inhibitor). c—h
THP-1-differentiated macrophages were divided into three groups: ex-
posed to IL-4 (20 ng/ml, 24 h) and co-transfection with empty vector
and inhibitor negative control (IL-4+pSin-VEC+NC-inhibitor), exposed
to IL-4 and co-transfection with GNAS-ASI plasmid and inhibitor neg-
ative control (IL-4+pSin-GNAS-AS1+NC-inhibitor), exposed to 1L-4
and co-transfection with GNAS-AS1 plasmid and miR-4319 inhibitor

Conclusion

GNAS-AS1/miR-4319/NECAB3 axis promotes tumor pro-
gression of non-small cell lung cancer (NSCLC) by altering
macrophage polarization. This research provides a potential
mechanical basis for more effective NSCLC treatment.
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(IL-4+4pSin-GNAS-AS1+miR-4319-inhibitor). ¢ The mRNA levels of
IL-10 and Arg-1 (the marker of M2 polarization) were detected by qRT-
PCR in these THP-1 macrophages. d The protein levels of IL-10 and Arg-
1 (the marker of M2 polarization) in the cultured media of these THP-1
macrophages were detected by ELISA. e and f Cell proliferation of A549
cells treated with the conditioned media of these THP-1 macrophages was
determined by MTT and colony formation assays. g The migration of
A549 cells treated with the conditioned media of these THP-1 macro-
phages was determined by scratch wound healing assay. h The migratory
and invaded ability of A549 cells treated with the conditioned media of
these THP-1 macrophages was determined by transwell assays. The data
represent the mean + SD from three independent experiments. *P < 0.05;
##P < 0.01; ***P < 0.001
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