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Abstract
Although many of the genetic loci associated with breast cancer risk have been reported, there is a lack of systematic
analysis of regulatory networks composed of different miRNAs and mRNAs on survival analysis in breast cancer. To
reconstruct the microRNAs-genes regulatory network in breast cancer, we employed the expression data from The
Cancer Genome Atlas (TCGA) related to five essential miRNAs including miR-21, miR-22, miR-210, miR-221, and
miR-222, and their associated functional genomics data from the GEO database. Then, we performed an integration
analysis to identify the essential target factors and interactions for the next survival analysis in breast cancer. Based on
the results of our integrated analysis, we have identified significant common regulatory signatures including differen-
tially expressed genes, enriched pathways, and transcriptional regulation such as interferon regulatory factors (IRFs) and
signal transducer and activator of transcription 1 (STAT1). Finally, a reconstructed regulatory network of five miRNAs
and 34 target factors was established and then applied to survival analysis in breast cancer. When we used expression
data for individual miRNAs, only miR-21 and miR-22 were significantly associated with a survival change. However,
we identified 45 significant miRNA-gene pairs that predict overall survival in breast cancer out of 170 one-on-one
interactions in our reconstructed network covering all of five miRNAs, and several essential factors such as PSMB9,
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HLA-C, RARRES3, UBE2L6, and NMI. In our study, we reconstructed regulatory network of five essential microRNAs
for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. These results may provide
new insights into regulatory network-based precision medicine for breast cancer.

Keywords MicroRNAs . Network . Breast cancer . Pathways . Survival analysis

Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNA
molecules that are approximately 21–25 nucleotides in length
and mainly function in regulating gene expression in a variety
of ways (Denli et al. 2004). Increasing evidence indicates that
miRNAs are associated with a wide variety of human dis-
eases, especially multiple cancers such as breast, lung, and
colon cancer (Denli et al. 2004; Aaronson 1990). Compared
to normal tissues, the miRNA expression has been revealed to
be perturbed in tumors based on expression analysis studies
(Meltzer 2005). As a consequence, miRNAs could be used as
diagnostic biomarkers of human cancers in the future. The
determination of miRNA binding characteristics with target
messenger RNAs (mRNAs) is important to defining miRNA
functions, but this task is complex and difficult due to the
distinct sequence determinants of individual miRNAs that
lead to diverse mRNA targeting. Distinct mRNA targeting
Brules^ have been frequently reported for individual
miRNAs (Wang et al. 2010). Therefore, the identification of
miRNA targets is thought to be critical to improving our un-
derstanding of the regulatory effects of miRNAs. In fact, both
miRNA-mRNA and miRNA-miRNA interactions exist. Here,
we reconstructed regulatory networks related to not only func-
tional miRNA-mRNA interactions, but also potential
miRNA-miRNA interactions involved in breast cancer.

Currently, several candidate miRNAs in human breast can-
cer biomarkers have been identified. Among them, there are
five essential miRNAs, including miR-21, miR-22, miR-210,
miR-221, and miR-222 associated with breast cancer. In at
least three profiling studies by comparing miRNA expression
level between breast cancer and normal tissues, miR-21 and
miR-210 were consistently reported to be upregulated
(Adhami et al. 2018). MiR-22 has been identified as a regula-
tor of lipid and folate metabolism in breast cancer cells by
systematic integration of molecular profiles (Koufaris et al.
2016). Based on high-throughput analysis and a human
in vitro cell culture model of basal-like breast cancer, miR-
221 and miR-222 were reported as regulators in multiple sig-
naling pathways such as the oncogenic RAS-RAF-MEK path-
way (Rao et al. 2011; Shah and Calin 2011; Stinson et al.
2011). However, most of previous studies have been based
on the effects of individual miRNAs in breast cancer, which
may not have sufficient evidence to show the prognostic roles
of each miRNA. In this study, we have focused on these five

essential miRNAs whose functional genomics data were
available to reconstruct the regulatory network for further sur-
vival analysis to reveal the prognostic significance of miRNA-
mRNA interactions in breast cancer.

Materials and methods

miRNA and gene expression data collection

RNA sequence expression data of breast invasive carcinoma
miRNA were downloaded from GDC Data Portal (https://
portal.gdc.cancer.gov/) in Dec. 2016, and the corresponding
clinical data were downloaded from the cBioPortal database
(http://www.cbioportal.org/). We downloaded and analyzed
the BTCGA-BRCA^ project. In total, we downloaded
TCGA level 3 data that included 1096 primary breast cancer
patients and 104 controls. All samples were tested by Illumina
HiSeq 2000 RNA Sequencing Version 2 Analysis, and the
reads per million mapped (RPMM) values were used for sta-
tistical analysis. To investigate the functions of these
miRNAs, we searched for and downloaded several miRNAs
treated breast cancer cell line expression data sets from the
NCBI-GEO database (https://www.ncbi.nlm.nih.gov/geo/)
(Barrett et al. 2013; Edgar et al. 2002). After rigorous screen-
ing, we ultimately chose 4 datasets for re-analysis (Table 1).
These datasets were GSE52674 (including 2 miR-21 knock-
down samples and 2 controls), GSE25162 (including 2 miR-
210 overexpression samples and 2 controls), GSE17508 (in-
cluding 3 miR-22 knockout samples and 3 controls), and
GSE19777 (including 3 miR-221 knockdown samples, 3
miR-222 knockdown samples, and 3 controls) (Rao et al.
2011). All four of these datasets used human breast cancer
MCF-7 cell lines and were tested with an Affymetrix
Human Genome U133 Plus 2.0 Array.

Data preprocessing

R statistical software v3.3.3 (https://www.r-project.org/) was
used to perform data preprocessing. The raw RPMM data of
breast miRNA were log2 transformed, and miRNAs with a
mean or median expression value of 0 were removed. After
this step, we obtained expression data for 529 miRNAs in
human primary breast cancers and controls. For these 4
miRNA-treated cell line datasets, we used the Robust
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Multichip Average (RMA) algorithm in the oligo package to
normalize the raw expression data and generate a normalized
gene expression matrix (Carvalho and Irizarry 2010). Gene
annotation, integration, and renormalization of these 4
datasets were performed using our custom written Python
code. The distributions of RMA-processed and globally
renormalized gene expression values for these 4 studies are
showed in Fig. S1. After the global renormalization, the dis-
tribution of gene expression values across all studies displayed
a consistent range. Since we only collected 5 miRNA-treated

cell line data sets, we therefore mainly focused on the func-
tions of these 5 miRNAs (miR-21, miR-210, miR-22, miR-
221, and miR-222). We divided these 4 datasets into 5 groups
according to miRNA treatment.

miRNAs correlation and differentially expressed gene
analysis

We used a heatmap to display the expression profiles of these
5 miRNAs in breast cancer patients and controls, and the

Table 1 Summary of selected gene expression profiles related to the five miRNAs

Data sets Platform Cell
lines

miRNAs Treatment No. of
samples

Design

GSE17508 GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array

MCF-7 miR-22 Knockout 6 GSM436499 MCF7-NC-rep1
GSM436500 MCF7-NC-rep2
GSM436501 MCF7-NC-rep3
GSM436502 MCF7-miR-rep1
GSM436503 MCF7-miR-rep2
GSM436504 MCF7-miR-rep3

GSE19777 GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array

MCF-7 miR-221/222 Knockdown 9 GSM493918 FR-control-1
GSM493919 FR-control-2
GSM493920 FR-control-3
GSM493921 FR-si221-1
GSM493922 FR-si221-2
GSM493923 FR-si221-3
GSM493924 FR-si222-1
GSM493925 FR-si222-2
GSM493926 FR-si222-3

GSE25162 GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array

MCF-7 miR-210 Overexpression 4 GSM618185
MCF7 cells overexpressing

miR-210-rep1
GSM618186
MCF7 cells overexpressing

miR-210-rep2
GSM618187
MCF7 cells overexpressing a

scramble
sequence-rep1GSM618188

MCF7 cells overexpressing a
scramble sequence-rep2

GSE52674 GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array

MCF-7 miR-21 Knockdown 6 GSM1273924
MCF-7 anti-control treated biological

replicate 1
GSM1273925
MCF-7 anti-control treated biological

replicate 2
GSM1273926
MCF-7 anti-21 treated biological

replicate 1
GSM1273927
MCF-7 anti-21 treated biological

replicate 2
GSM1273928
MCF-7 untreated biological replicate

1
GSM1273929
MCF-7 untreated biological replicate

2
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unsupervised clustering method Bward.D2^ was chosen.
Univariate linear regression was used to explore the correla-
tions among these 5 miRNAs, and an absolute value of the
regression coefficient ≥ 0.5 and a P value ≤ 0.05 were consid-
ered as significant corrected. We constructed the interaction
networks of these 5 miRNAs based on the regression coeffi-
cients and P values. The differentially expressed genes be-
tween the breast cancer cell line samples and controls in these
5 groups were identified using an empirical Bayes algorithm
(function BeBayes^) in the limma package (Ritchie et al.
2015). Upregulated and downregulated genes were consid-
ered to be those with an absolute value of logarithmic trans-
formed fold-change (log2(FC)) ≥ log2(1.5) and a P value ≤
0.05.

Pathway annotation by gene set enrichment analysis

To understand the functions of these 5 miRNAs, we used the
javaGSEA desktop application v2.2.4 to perform gene set
enrichment analysis (GSEA) of KEGG pathways in these 5
groups of miRNA treatments (Subramanian et al. 2005). Gene
sets containing less than 15 genes or more than 500 genes
were excluded. The t-statistic mean of the genes was comput-
ed in each KEGG pathway using a permutation test with 1000
replications. Pathways with a normalized enrichment score
(NES) > 0 were considered to be upregulated and pathways
with a NES < 0 were considered to be downregulated.
Statistical significance was identified as a P value ≤ 0.05.

miRNA and target gene regulatory network
reconstruction

We used a Venn diagram to show the differently expressed
genes in these 5 miRNA-treated groups. Shared deregulated
genes in more than 3 groups were chosen to reconstruct the
miRNA-mRNA regulatory network. We used Cytoscape
v3.4.0 to display the results.

miRNA and miRNA-target gene interaction survival
analysis

We used a Cox proportional hazards model to analyze the
effect of miRNAs on overall patient survival. Each miRNA
was divided into two groups according to the tertile expression
levels. Samples with miRNA expression below the first tertile
were classified in the low expression group, and those with
miRNA expression above the second tertile were classified in
the high expression group. To clarify the results, we did not
include the samples with miRNAs expression between the
first and second tertile in the analysis. The references for the
associations between single miRNAs and overall survival
were used in the low expression group. According to our
groupings, highly expressed miRNAs with a hazard ratio

(HR) > 1 were considered to be risk factors. Conversely, high-
ly expressed miRNAs with a HR < 1 were considered to be
correlated with better survival. For examination of the influ-
ences of miRNA-target gene interactions on overall survival,
we divided these miRNA-target genes into two groups accord-
ing to their tertile expression levels and then combined them
with the above miRNA groups. Patients with both miRNAs
and miRNA-target gene expression levels below the first
tertile were defined as references. In addition, the other three
groups were compared to the reference group. Statistical sig-
nificance was considered to be a P value ≤ 0.05.

Results and discussion

The correlation and interaction of five miRNAs
revealed by TCGA data

Based on the gene expression matrices of our selected
miRNAs (miR-21, miR-210, miR-22, miR-221, and
miR-222) in 1200 samples including 1096 cases and 104
controls from the TCGA database, five miRNAs could be
clustered into three groups (Fig. 1a). The miRNA-based
clustering can also group patients according to subtypes
(i.e., ER, PR, HER2 status). In short, miR-21 and miR-
210 were clustered together as group 1, miR-221 and
miR-222 were clustered together as group 2, and miR-
22 was clustered by itself as group 3. To evaluate the
transcriptional activity of miRNAs in breast cancer, the
expression values of 1096 cases were compared with
104 controls for each miRNA. As a result, both
miRNA21 and miRNA210 in group 1 were upregulated
in primary breast cancer patients. In contrast, the other 3
miRNAs, including miR-22, miR-221, and miR-222, were
downregulated in these patients. However, the expression
values of miR-21 and miR-22 were higher than those of
other miRNAs (Fig. 1b). To further explore the interac-
tions of these five miRNAs, their pair-wise linear correla-
tion coefficients were analyzed (Fig. 1c). A strong posi-
tive correlation was found between miR-221 and miR-222
(r = 0.83, P < 0.001). In fact, miR-221 and miR-222 have
been frequently reported to regulate cell growth and cell
cycle progression in various types of human malignancy
(Li et al. 2016; Yoshimoto et al. 2011; Zhang et al. 2010).
In addition, miR-22 was positively correlated with both
miR-221 and miR-222 with correlation coefficients of
0.62 and 0.57, respectively. Although it was previously
reported that miRNAs that directly target estrogen recep-
tor (ER) α including miR-22 and miR-221/222 would
have distinct roles in not only regulating ERα but also
regulating other target genes in human breast cancer
(Yoshimoto et al. 2011). Based on the correlation values,
it can be suggested that there would be other miRNA-
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miRNA interactions exist, including miR-21/miR-22 (r =
0.39), miR-21/miR-221 (r = 0.37), miR-21/miR-210 (r =
0.22), and miR-210/miR-222 (r = 0.22). Potential interac-
tions and correlations are summarized in Fig. 1d.

Survival analysis of individual miRNAs

Survival analysis of individual miRNAs showed that the over-
expression of both miR-21 (HR = 1.51, P = 0.031) and miR-
22 (HR = 1.84, P = 0.004) could significantly decrease overall
survival frequency in breast cancer patients, but no significant
associations could be found for other miRNAs, namely, in-
cluding miR-210, miR-221, or miR-222 (Fig. 2). Due to the
poor overall survival associated with high levels of miR-21
and miR-22, both of these miRNAs have been recognized as
prognostic indicators of breast cancer progression (Chen et al.
2015; Das and Lin, 2017; Jinling et al. 2016; Pandey et al.
2015; Wang et al. 2015). Furthermore, we have also per-
formed survival analysis of each miRNA using the profiles
of patient subtypes including ER, PR, and HER2 positive or
negative (Fig. S2). As a result, miR-22 was significantly

correlated with survival in subtypes of ER positive and PR
positive or negative, miR-222 was significantly correlated
with survival in subtype of ER positive and PR positive. In
fact, the relationship between miRNAs alone and breast can-
cer prognosis has been widely reported, but the specific regu-
latory mechanism is still unknown. The use of miRNA infor-
mation alone may be inefficient for survival prediction. In the
view of systems biology, miRNA does not work alone. Both
miRNA-mRNA and miRNA-miRNA interactions exist and
function in diverse biological processes, especially in cancer
regulation. It is necessary to integrate functional genomics
data to reconstruct the network of miRNAs and target genes
and apply it to additional studies on survival prediction.

Gene expression profiling analysis of the five miRNAs

To further investigate the roles of the selected miRNAs in
breast tumor development, we have employed fourmicroarray
datasets related to the above fivemiRNAs and performed gene
expression profiling analysis (Fig. 3a and Fig. S1). Based on
our analysis of differentially expressed genes (DEGs), we

Figure 1 miRNAs correlations and interactions revealed by TCGA data.
a Heatmap and clusters of expression of the five miRNAs (miR-21, miR-
22, miR-210, miR-221, and miR-222) in 1200 samples including 1096
cases (red) and 104 controls (blue) from the TCGA database. It also
showed the samples clustering according to subtypes (i.e., ER, PR,

HER2 status). b Expression patterns of the five miRNAs between patients
(red for miR-21, yellow for miR-210, green for miR-22, light-blue for
miR-221, and dark-blue for miR-222) and control samples (gray). c The
miRNA-miRNA correlation of the selected five miRNAs. dHypothetical
interactions of the selected five miRNAs revealed by TCGA data

Funct Integr Genomics (2019) 19:645–658 649



have significantly identified the respective significant DEGs
in response to the regulation of eachmiRNA. As a result, there

were 184 DEGs, including 151 upregulated genes and 33
downregulated genes, under miR-22 knockout; there were

Fig. 2 Survival analysis of the five miRNAs. a The association of miR-
21 with overall survival. b The association of miR-210 with overall sur-
vival. c The association of miR-22 with overall survival. d The associa-
tion of miR-221 with overall survival. e The association of miR-222 with

overall survival. The blue curves represent overall survival under low
miRNA expression, the red curves represent overall survival under high
miRNA expression

Fig. 3 Overview of gene expression profiles analysis of the five
miRNAs. a Heatmap of differentially expressed genes associated with
the regulation of the five miRNAs, including miR-21 knockdown (red),
miR-210 overexpression (yellow), miR-22 knockout (green), miR-221

knockdown (light blue), and miR-222 knockdown (dark blue). The con-
trol samples are shown in gray. b Summary of the overlapping differen-
tially expressed genes associated with the regulation of these five
miRNAs

650 Funct Integr Genomics (2019) 19:645–658



68 DEGs, including only 2 upregulated genes and 66 down-
regulated genes, under miR-221 knockdown; there were 6
DEGs, including only one upregulated genes and 5 downreg-
ulated genes, under miR-222 knockdown; there were 1286
DEGs, including 984 upregulated genes and 302 downregu-
lated genes, under miR-210 overexpression; and there were
448 DEGs, including 112 upregulated genes and 336 down-
regulated genes, under miR-21 knockdown. The details on all
dysregulated genes for each miRNA are shown in Table S1.

In comparison, the overlapping genes among correlated
miRNAs have been identified. We focused on commonly dys-
regulated genes associated with at least 3 miRNAs and ultimate-
ly obtained 34 target genes that overlapped in more than two
miRNAs, which are described in Table 2 (Fig. 3b). There were 4
overlapping genes among miR-22, miR-21, and miR-210, in-
cluding OAS3, DDX60, IRF9, and IFI6, which were upregulat-
ed by the regulation of both miR-22 and miR-21 but downreg-
ulated by the regulation of miR-210. Four other overlapping
genes, including IRF7, CMPK2, HLA-C, and NMI, were iden-
tified among miR-22, miR-21, and miR-221, and the first three
genes (IRF7, CMPK2, HLA-C) were upregulated by the regu-
lation of both miR-22 and miR-21 but downregulated by the
regulation of miR-221, whereas NMI was upregulated by the
regulation of miR-22 but downregulated by the regulation of
bothmiR-21 andmiR-221. Only one gene, AKR1C3, was com-
monly identified among miR-21, miR-221, and miR-222, and it
was upregulated by the regulation of miR-21 but downregulated
by the regulation of both miR-221 and miR-222. A total of 17
overlapping genes were identified among miR-22, miR-210,
and miR-221. Most of these genes were upregulated by the
regulation of miR-22 but downregulated by the regulation of
both miR-210 and miR-221, including GBP3, TAP1, HCP5,
BST2, RARRES3, SAMHD1, UBE2L6, IFITM1, OASL,
LGALS3BP, TRIM22, OAS2, IFI44L, IFI44, RSAD2, and
DDX60L. Only one of these genes, PSMB10, was upregulated
by the regulation of both miR-22 and miR-210 but downregu-
lated by the regulation of miR-221. There were 8 overlapping
genes among 4 miRNAs (miR-22, miR-21, miR-210, and miR-
221). They were IFI27, ISG15, OAS1, PSMB9, IFIT1, IFIT2,
IFIT3, and HLA-B, all of which were upregulated by the regu-
lation of both miR-22 and miR-21 but downregulated by the
regulation of both miR-210 and miR-221.

Functional enrichment analysis of the five miRNAs

Based on the GSEA of gene expression profiles in these 5
groups of miRNA treatments, there were 86 enriched KEGG
pathways involved in at least one miRNA-treated group
(Fig. 4a). Among them, 3 pathways, including the RIG – I-
like receptor signaling pathway, Toll-like receptor signaling
pathway, and Cytokine − cytokine receptor interaction, were
enriched by the regulation of all five miRNAs, which were
associated with immune system and signaling molecule

interactions. Three immune diseases-related pathways, in-
cluding allograft rejection, graft-versus-host disease, and au-
toimmune thyroid disease, and the immune system-related
pathway of antigen processing and presentation, and the fold-
ing, sorting and degradation-related pathway of the protea-
some were enriched in the regulatory network of four
miRNAs. Functional enrichment analysis indicated that dys-
regulated KEGG pathways in response to diverse miRNAs
regulation were mainly related to immune functions. The im-
mune response has been reported to be prominent demon-
strating an important modulatory role of miRNAs in the bi-
ology of breast tumors devoid of somatic copy-number aber-
rations (CNA-devoid) (Dvinge et al. 2013). It has been sug-
gested that some miRNAs could regulate the function of sev-
eral types of immune cells as a novel regulator of autoim-
mune diseases (Arora et al. 2017; Garo and Murugaiyan
2016; Junker et al. 2015; Wang et al. 2017, 2016).
Furthermore, we have identified 88 immune response medi-
ators whose gene expression values significantly changed
across diverse stages (from stage I to stage IV) of breast
cancer. The gene expression patterns of these mediators are
shown in Fig. 4b. As a whole, most of these genes showed
little difference in their expression from stage I to stage III,
but their expression differed significantly in stage IV. In the
last stage, more genes were significantly upregulated, such as
CXCL13 and PIGR, and fewer genes were significantly
downregulated, such as CRIP1 and FGFR3, compared to
the other stages.

Transcriptional regulation relationship
among the five miRNAs

To determine the specific regulatory functions of each
miRNA, gene co-expression data and profiles of transcrip-
tion factor binding sites (TFBSs) were integrated to pre-
dict the significantly associated transcription factors (TFs)
of individual miRNAs. As a result, there were 21 TFs for
miR-21, 18 TFs for miR-22, 84 TFs for miR-210, 2 TFs
for miR-221, and one TF for miR-222, respectively
(Table S3). These TFs are mainly involved in several
transcription factor families, such as the basic helix-
loop-helix (bHLH) family, the interferon regulatory fac-
tors (IRFs) family, the basic leucine (Leu) zipper (bZIP)
family, and the zinc finger zf-C2H2 family. Among them,
the activation of the interferon-stimulated genes, such as
IRF-1 and IRF-5, has been previously linked to tumor
immune rejection (Koelzer et al. 2017). In our study, co-
expression analysis of transcriptional regulation revealed
that diverse expression patterns and novel potential regu-
latory genes were induced by the deregulation of IRF1 in
response to the altered expression of miRNAs (Fig. 5).
IRF1 was significantly downregulated by miR-21 and
miR-221 knockdown; it is the activator of target genes
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Table 2 Overlapping genes among more than two miRNAs

4 overlapping genes among miR-22, miR-21, and miR-210

Gene logFC in
miR-22

P value in
miR-22

logFC in
miR-21

P value in
miR-21

logFC in
miR-210

P value in
miR-210

OAS3 1.88 1.14E-07 0.63 1.00E-04 − 1.50 1.68E-02

DDX60 3.58 9.97E-11 1.34 4.46E-05 − 4.44 5.68E-05

IRF9 1.03 3.97E-07 1.33 1.50E-05 − 2.10 1.11E-02

IFI6 2.48 4.14E-09 1.13 8.97E-03 − 3.31 8.96E-06

4 overlapping genes among miR-22, miR-21, and miR-221

Gene logFC in
miR-22

P value in
miR-22

logFC in
miR-21

P value in
miR-21

logFC in
miR-221

P value in
miR-221

IRF7 1.38 5.09E-08 0.96 2.31E-05 − 0.66 6.36E-07

CMPK2 5.36 2.46E-09 0.72 1.42E-02 − 1.20 5.01E-08

NMI 3.41 4.68E-11 − 0.64 1.18E-04 − 0.66 5.96E-07

HLA-C 0.73 5.64E-07 0.62 1.28E-04 − 0.72 5.79E-08

1 overlapping genes among miR-21, miR-221, and miR-222

Gene logFC in
miR-21

P value in
miR-21

logFC in
miR-221

P value in
miR-221

logFC in
miR-222

P value in
miR-222

AKR1C3 2.06 3.84E-08 − 0.83 2.10E-08 − 0.85 1.06E-07

17 overlapping genes among miR-22, miR-210, and miR-221

Gene logFC in
miR-22

P value in
miR-22

logFC in
miR-210

P value in
miR-210

logFC in
miR-221

P value in
miR-221

GBP3 3.10 8.94E-08 − 1.66 7.92E-03 − 1.07 1.24E-07

TAP1 2.20 4.28E-08 − 0.78 1.28E-02 − 1.07 2.52E-08

HCP5 0.61 5.03E-06 − 0.98 2.71E-03 − 1.20 4.72E-07

BST2 2.12 2.55E-09 − 2.53 1.48E-03 − 0.70 6.39E-08

RARRES3 1.43 5.29E-05 − 1.83 3.59E-02 − 0.99 1.53E-04

SAMHD1 2.13 3.51E-10 − 1.11 2.18E-02 − 0.72 6.92E-08

UBE2L6 3.44 1.10E-09 − 1.46 6.94E-04 − 1.21 1.18E-09

PSMB10 1.47 3.13E-07 0.59 1.14E-02 − 0.59 1.14E-06

IFITM1 2.36 2.47E-11 − 3.68 3.91E-05 − 0.82 2.30E-08

OASL 3.93 4.37E-10 − 3.13 6.19E-04 − 1.13 4.95E-09

LGALS3BP 1.55 3.31E-08 − 1.61 1.23E-03 − 0.90 6.71E-08

TRIM22 2.76 6.03E-07 − 0.90 2.45E-02 − 1.50 7.20E-08

OAS2 4.15 1.65E-10 − 2.05 6.15E-03 − 1.51 2.19E-09

IFI44L 3.09 2.47E-08 − 4.84 3.93E-04 − 1.07 2.43E-08

IFI44 0.95 2.34E-06 − 3.87 1.27E-04 − 1.34 7.03E-10

RSAD2 1.81 4.39E-07 − 1.58 2.94E-02 − 1.30 5.88E-08

DDX60L 2.25 4.91E-10 − 0.89 8.23E-03 − 0.70 1.95E-06

8 overlapping genes among miR-22, miR-21, miR-210, and miR-221

Gene logFC in
miR-22

P value in
miR-22

logFC in
miR-21

P value in
miR-21

logFC in
miR-221

P value in
miR-221

logFC in
miR-210

P value in
miR-210

IFI27 3.94 1.05E-09 2.08 2.22E-06 − 1.25 1.70E-08 − 4.60 1.93E-04

ISG15 2.10 2.11E-09 1.04 5.32E-06 − 0.60 1.19E-06 − 2.69 1.07E-03

OAS1 3.37 5.01E-10 1.71 7.65E-06 − 0.59 2.19E-07 − 3.09 2.92E-02

PSMB9 3.30 2.51E-09 0.65 3.55E-04 − 1.69 1.39E-09 − 1.49 4.85E-04

IFIT1 3.86 5.10E-08 2.81 5.91E-06 − 0.79 3.83E-08 − 4.41 3.69E-03

IFIT2 3.58 7.94E-10 0.68 8.68E-04 − 1.00 6.23E-09 − 2.75 8.69E-03

IFIT3 5.41 1.76E-11 1.60 7.08E-07 − 1.25 6.66E-10 − 4.00 3.54E-04

HLA-B 0.75 2.85E-06 0.68 1.06E-04 − 1.11 1.12E-08 − 1.61 3.83E-02
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with lower expressions, such as IFIT3 and PSMB9, and
the repressor of other genes with higher expressions, such
as E2F1 and MYB. Instead, IRF1 was significantly upreg-
ulated by miR-22, and the activated genes of IRF1, such
as IFIT3 and PSMB9, were also over-expressed. The ex-
pression of IRF1 was not significantly altered by the over-
expression of miR-210 or the knockdown of miR-222,
whereas the expression of most IRF1 target genes was
not changed significantly, except for the upregulation of
IFIT3 and the downregulation of SOCS2. Recent

comparative structure function analysis and in silico
modeling have demonstrated that DNA-binding domain
(DBD) monoubiquitination may play an essential role in
IRF-1 activation (Landre et al. 2017). Besides IRF1, we
identified signal transducer and activator of transcription
1 (STAT1) as another important TF in the transcriptional
regulation among the five miRNAs. The regulatory pat-
terns of STAT1 were shown in Fig. S3. Our findings may
provide insights into a new level of transcriptional regu-
lation of IRF-1 and STAT1 in breast cancer.

Fig. 4 Functional enrichment associated with regulation of the five
miRNAs. Summary of the enriched pathways significantly associated
with regulation of the five miRNAs (red column for miR-21, yellow
column for miR-210, green column for miR-22, light-blue column for
miR-221, and dark-blue column for miR-222). The size of the circles

represents the significance level, and the color of the squares represents
the normalized enrichment scores (NES) of each pathway. Heatmap
showing the expression patterns of immune-related genes that are signif-
icantly differentially expressed in diverse stages of breast cancer. The
color bar represents the value of logFC compared to the control sample
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Application of the reconstructed miRNAs regulatory
network for survival analysis

Based on the above TFs and target genes information, a
miRNA-TF-gene regulatory network was reconstructed
(Fig. 6). We combined the expression signatures of
miRNAs with their target genes according to the recon-
structed miRNA regulatory network in our study and ap-
plied the results to survival prediction. Out of 170 one-on-
one interactions of 5 miRNAs with 34 genes, we identified
45 significant miRNA-gene interactions for predicting sur-
vival in breast cancer (Table 3 and Fig. S4). Due to the lack
of relevant data, we did not perform multi-factor correc-
tion. The six most significant effects of miRNA-target gene
interactions on overall survival, including miR-21/

proteasome subunit beta 9 (PSMB9), miR-21/human leu-
kocyte antigen C (HLA-C), miR-210/retinoic acid receptor
responder 3 (RARRES3), miR-22/HLA-C, miR-221/ubiq-
uitin conjugating enzyme E2 L6 (UBE2L6), and miR-222/
N-myc interactor (NMI), are shown in Fig. 7.

In particular, patients with miR-21 expression > 18.06 and
PSMB9 expression < 10.32 showed significantly poor survival
(HR= 1.36, 95% CI 1.10–1.70, P= 0.005) compared to the ref-
erence group. However, patients withmiR-21 expression < 17.55
and PSMB9 expression > 9.26 or miR-21 expression > 18.06
and PSMB9 expression > 10.32 all showed no significant differ-
ence in overall survival (Fig. 7a). The association between high
expression levels of one of the immunoproteasome (IP) genes,
PSMB9, with longer survival depends on regulation by cell-
intrinsic and -extrinsic factors in human cancers (Rouette et al.

Fig. 5 IRF transcriptional regulations among the five miRNAs. Diverse
expression patterns and novel potential regulatory genes induced by the
deregulation of IRF1 in response to the altered expression of the 5

miRNAs are revealed by co-expression analysis of transcriptional regu-
lation, including miR-21 knockdown, miR-210 overexpression, miR-22
knockout, miR-221 knockdown, and miR-222 knockdown
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2016). The oncogenic miR-21 signaling pathway may play im-
portant roles in cancer initiation and progression as an environ-
mental driver induced by intrinsic and extrinsic stimuli (Melnik
2015). In this sense, the correlation betweenmiR-21 and PSMB9
may primarily affect the survival of breast tumor patients.

Patients withmiR-21 expression > 18.06 andHLA-C expres-
sion < 15.41 showed significantly poor survival (HR = 1.32,
95%CI 1.03–1.68, P = 0.026), but patients withmiR-21 expres-
sion < 17.55 and HLA-C expression > 14.62 or miR-21 expres-
sion > 18.06 and HLA-C expression > 15.41 all showed no sig-
nificant difference in overall survival (Fig. 7b). Patients with
miR-22 expression > 16.14 and HLA-C expression < 15.41
(HR= 1.33, 95% CI 1.04–1.70, P = 0.023), as well as patients
with miR-22 expression > 16.14 and HLA-C expression >
15.41 (HR = 1.21, 95% CI 1.03–1.41, P = 0.022), showed sig-
nificantly poor survival, but patients with miR-22 expression <
15.70 and HLA-C expression > 14.62 showed no significant
difference in overall survival (Fig. 7d). Recently, HLA-C has

been identified to be associated with favorable clinical outcomes
in basal-like breast tumors by transcriptomic studies on immu-
nologic signatures (Martinez-Canales et al. 2017). Although
there was no direct evidence regarding the relation between
miR-21 and HLA-C, the binding of another microRNA, miR-
148a, may regulate the expression of human HLA-C allotypes,
which suggests its indispensable roles in controlling miRNA
regulation in cancers (O'Huigin et al. 2011).

Pat ients wi th miR-210 express ion < 7.64 and
RARRES3 expression > 11.13 showed significantly high
survival (HR = 0.61, 95% CI 0.38–1.00, P = 0.050), but
patients with miR-210 expression > 9.39 and RARRES3
expression < 12.29 or miR-210 expression > 9.39 and
RARRES3 expression > 12.29 all showed no significant
difference in overall survival (Fig. 7c). In a recent study,
the metastasis suppressor RARRES3 was identified as an
endogenous inhibitor of immunoproteasome expression in
breast cancer cells, the expression of which is controlled

Table 3 Significant miRNA-
gene interactions for predicting
survival in breast cancer

miRNAs Significant interactions

miR-21 CMPK2, DDX60L, GBP3, HCP5, HLA-B, HLA-C, IFI-27, IFI-44, IFIT2, IFIT3, IFITM1, ISG15,
OASL, PSMB9, PSMB10, RARRES3, RSAD2, TAP1

miR-22 DDX60,GBP3, HCP5, HLA-C, IFIT2, IRF7, IRF9, LGALS3BP, NMI, OASL, PSMB9, PSMB10,
SAMHD1, TAP1

miR-210 RARRES3, TRIM22, UBE2L6

miR-221 BST2, GBP3, RARRES3, UBE2L6

miR-222 GBP3, NMI, OASL, PSMB9, RARRES3, TRIM22

Fig. 6 The reconstructed regulatory network of the five miRNAs. The reconstructed regulatory network of the five miRNAs and 34 target genes
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by the interferon regulatory factor IRF1 (Anderson et al.
2017). Moreover, RARRES3 plays a pivotal role in mod-
ulating Wnt protein acylation and signaling activities in
human breast cancer cells (Hsu et al. 2015).

Patients with miR-221 expression < 6.00 and UBE2L6 ex-
pression > 11.61 showed significantly high survival (HR =
0.54, 95% CI 0.33–0.89, P = 0.015), but patients with miR-
221 expression > 6.76 and UBE2L6 expression < 12.38 or
miR-221 expression > 6.76 and UBE2L6 expression > 12.38
all showed no significant difference in overall survival (Fig.
7e). The expression of UBE2L6 has been confirmed to be
downregulated in human breast cells with BRCA2 knock-
down (Tripathi and Chaudhuri 2005). Patients with miR-222
expression > 5.57 and NMI expression < 10.09 showed signif-
icantly poor survival (HR = 1.26, 95% CI 1.01–1.58, P =
0.040), but patients with miR-222 expression < 4.75 and
NMI expression > 9.47 or miR-222 expression > 5.57 and
NMI expression > 10.09 all showed no significant difference
in overall survival (Fig. 7f). NMI has been reported to function
in the regulation of autophagy and chemosensitivity in breast
cancer cells has been reported, and it may be negatively reg-
ulated by miR-29 (Metge et al. 2015; Rostas 3rd et al. 2014).

Conclusions

miRNAs play crucial roles in the regulation of multiple bio-
logical functions, and they may be used as diagnostic markers
in breast cancer for patient prognosis analysis. However, due
to the inefficiency of survival prediction using miRNA alone,
the reconstruction of a miRNA regulatory network and its
application in survival analysis was necessary and sufficient
to systematically reveal the direct and indirect relationships
between miRNAs and survival. In our study, this strategy
was used to evaluate five essential miRNAs related to breast
cancer, including miR-21, miR-22, miR-210, miR-221, and
miR-222. The final results based on the integration of func-
tional genomics data showed that in addition to the identifica-
tion of two distinct miRNAs, we identified 45 significant
miRNA-gene interactions that could be used for survival anal-
ysis. Further validation experiments are certainly needed to
reveal the involved genetic mechanisms.
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