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Abstract
Duplicated sequences are an important source of gene evolution and structural variation within mammalian genomes. Using a read
depth approach based on next-generation sequencing, we performed a genome-wide analysis of segmental duplications (SDs) and
associated copy number variations (CNVs) in the water buffalo (Bubalus bubalis). By aligning short reads of Olimpia (the reference
water buffalo) to theUMD3.1 cattle genome,we identified 1,038 segmental duplications comprising 44.6Mb (equivalent to ~1.73%of
the cattle genome) of the autosomal andX chromosomal sequence in the buffalo genome.We experimentally validated 70.3% (71/101)
of these duplications using fluorescent in situ hybridization. We also detected a total of 1,344 CNV regions across 14 additional water
buffaloes, amounting to 59.8Mb of variable sequence or the equivalent of 2.2% of the cattle genome. The CNVregions overlap 1,245
genes that are significantly enriched for specific biological functions including immune response, oxygen transport, sensory system and
signal transduction. Additionally, we performed array Comparative Genomic Hybridization (aCGH) experiments using the 14 water
buffaloes as test samples and Olimpia as the reference. Using a linear regression model, a high Pearson correlation (r = 0.781) was
observed between the log2 ratios between copy number estimates and the log2 ratios of aCGHprobes.We further designedQuantitative
PCR assays to confirm CNV regions within or near annotated genes and found 74.2% agreement with our CNV predictions. These
results confirm sub-chromosome-scale structural rearrangements present in the cattle and water buffalo. The information on genome
variation that will be of value for evolutionary and phenotypic studies, and may be useful for selective breeding of both species.
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Introduction

Water buffalo were domesticated about 5,000 years ago and
are the most important farm animal resource in developing
tropical and subtropical countries, contributing greatly to the
local economy of rural areas (Michelizzi et al. 2010). Two
types of water buffalo are recognized, the river and the swamp
buffalo. River buffalo have been selectively bred as dairy an-
imals while swamp buffalo are typically used as draft animals
(Zhang et al. 2007).

The use of molecular genetic approaches has increased the
genetic gain in animal selection programs. After the release of
the first de novo assembly of an Italian Mediterranean river
buffalo (UMD_CASPUR_WB_2.0) (Williams et al. 2017),
and with the availability of a 90K single nucleotide polymor-
phism (SNP) chip for buffalo (Iamartino et al. 2017), SNPs
have been used in a range of studies of water buffalo (Colli
et al. 2018; Whitacre et al. 2017). The current reference as-
sembly is fragmented into 366,983 scaffolds with a low scaf-
fold N50 of ~1.4Mb, which make it unsuitable for direct de-
tection of large genetic variants that may contribute to the
genetic diversity of the species (Williams et al. 2017). One
such genetic variant, the copy number variation (CNV), which
consists of duplications and deletions of DNA sequence rang-
ing from 50bp to several megabases, impacts a large percent-
age of genomic sequence and potentially has a greater func-
tional effect than SNPs (Henrichsen et al. 2009). CNVs have
been extensively reported in human (Sudmant et al. 2015),
primates (Gokcumen and Lee 2009), mouse (Henrichsen
et al. 2009), zebrafish (Brown et al. 2012), dog (Nicholas
et al. 2009), and livestock, including chicken (Yi et al.
2014), pig (Jiang et al. 2014), horse (Doan et al. 2012), sheep
(Fontanesi et al. 2011), goat (Fontanesi et al. 2010) and cattle
(Bickhart et al. 2016; Zhou et al. 2016; Liu et al. 2010).
However, there have only been two surveys of CNVs in water
buffalo, including a recent survey from our group (Li et al.
2018; Zhang et al. 2014).

Comparative Genomic Hybridization (CGH) arrays, SNP
genotyping arrays, and high throughput sequencing (HTS)
have been used for genome-wide CNV screens. However,
the major limitation of CGH (comparative genomic hybridi-
zation) and SNP arrays is that they are indirect screens, pro-
viding no information on the actual structure of the variation
detected (Pinto et al. 2011; Bickhart and Liu 2014; Li and
Olivier 2013). Additionally, the resolution of CGH or SNP
arrays is limited by the probe density of the array and certain
genetic variants such as balanced rearrangements (e.g. inver-
sions), and novel DNA sequence cannot be detected using

these approaches. The decreasing cost of DNA sequencing
has enabled CNV to be detected at a high effective resolution
and sensitivity. Numerous methods have been developed for
CNV detection using next-generation short-read sequencing,
including read pair (RP), read depth (RD), split read (SR),
sequence assembly (SA), and hybrid algorithms (combinato-
rial detection; e.g. Genome Strip) (Snyder et al. 2010; Mills
et al. 2011; Handsaker et al. 2015). Among these, RDmethods
are highly sensitive in discovering duplications and are capa-
ble of determining exact copy number (CN) values for each
genetic locus in an individual (Sudmant et al. 2010). The
mrFAST/mrsFAST and whole genome shotgun sequence de-
tection (WSSD) method (Sudmant et al. 2010; Alkan et al.
2009; Hach et al. 2010) can be used to construct personalized
CNV maps in or near segmental duplication (SD) regions, by
reporting all mapping locations for sequence reads, whereas
other RD methods only take one mapping location per read
into consideration. When a read is mapped to multiple best
tied locations, a random locus is often selected for further
downstream analyses. Due to the higher frequency of CNVs
in or near duplication regions in the genome (Cheng et al.
2005; Bickhart et al. 2012), mrFAST and mrsFAST are espe-
cially efficient in detecting CNV within or near duplication-
and repeat-rich regions. CNV detection methods that are lo-
cus-specific, including fluorescence in situ hybridization
(FISH) and quantitative polymerase chain reaction (qPCR),
can be used to detect large CNVs and often used to experi-
mentally validate the CNVs predicted by genome-wide
methods (Doan et al. 2012; Bickhart et al. 2012). Notably,
CNV detection in most livestock have been limited to only
one or two methods, and lack rigorous experimental
validation.

The recent release of a water buffalo draft reference ge-
nome has accelerated genomic studies and the application
of genetic selection in this species (Williams et al. 2017).
However, the draft assembly is highly fragmented and not
as thoroughly annotated as the cattle reference genome.
This study used a comparative alignment of the buffalo
DNA sequences with the completed reference genome of
Bos taurus, to systematically detect CNV in the water buf-
falo genome. The CNV identified were validated using a
CGH-based whole-genome approach, followed by FISH
and qPCR confirmation for selected CNVs. By assessing
the CNV distribution of water buffalo at a genome-wide
level, we provide information for studies into highly dupli-
cated regions in the water buffalo genome e.g. to uncover
duplicated genes that may be associated with agriculturally
important traits.
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Results

Genome-wide identification of segmental
duplications

We retrieved the whole genome Illumina HTS reads of the
water buffalo (Olimpia) whose sequence was recently assem-
bled and released as the draft reference genome (Williams
et al. 2017). We mapped the reads to the UMD3.1 cattle ge-
nome assembly (Zimin et al. 2009).We then detected segmen-
tal duplications (SDs) using a sliding window approach, based
on a previously published mrsFAST-WSSD method (≥ 1kb in
length, ≥ 90% sequence identity) (Alkan et al. 2009). Due to
the short lengths of chrUn contigs (i.e. unplaced contigs) and
the ambiguous mapping of the chrUn sequence reads, we
excluded events mapping to chrUn contigs in the subsequent
analyses. We discovered 1,038 SDs in the autosomes and X
chromosome of Olimpia, spanning ~44.6 Mb (~1.73%) of the
cattle genome. This is comparable with the previously predict-
ed extent of CNVs in cattle (49.2 Mb, excluding SDs in cattle
chrUn contigs) (Liu et al. 2009). The buffalo SDs ranged in
size from 1270bp to 750,223bp, with an average size of
~43 kb (standard deviation = 60.5 kb) (Table S1).

FISH validation of the predicted segmental
duplication

To confirm the SDs detected, we experimentally validated a
subset of the largest (≥ 20 kb) duplicated regions by FISH. A
total of 121 cattle BAC clones corresponding to the WSSD
duplicated regions were used as probes which were hybridized
against the buccal epithelial cells of Olimpia (Table S2).
Twenty probes failed to generate hybridization signals. We
observedmultiple signals for 70.3% (71/101) of the remaining
probes. As expected, the majority of duplicated sequences
were intra-chromosomal (52/71), while inter-chromosomal
duplications showed signals on multiple non-homologous
chromosomes, accounting for less than 27% of the regions
tested. These data suggested that tandem intra-chromosomal
duplications predominate in the water buffalo genome, which
is similar to other mammalian species (Nicholas et al. 2009;
Liu et al. 2009). FISH results confirmed that the following
genes are duplicated: peptidase inhibitor 3 (PI3), olfactory
receptor (OR) genes and pregnancy-associated glycoprotein
(PAG) gene families (Fig. 1).

CNV discovery and dataset statistics

To study CNVs that might be polymorphic or fixed, we aligned
short reads from 14 additional water buffaloes to the UMD3.1
cattle genome using the mrsFASTshort read aligner, and called
CNVs using the WSSD read depth approach. Based on se-
quence RD against the reference genome, we detected CNVs

for the 14 individuals in the autosomes and the X chromosome.
The number of duplications ranged from 839 (ITWB2) to 900
(ITWB7), and the number of deletions varied from 0 (ITWB8)
to 273 (ITWB6). While our method had sufficient power to
detect duplications, variation in RD across the autosomes, mea-
sured in standard deviations (STDEVs), limited our discovery
to extreme deletion events (Bickhart et al. 2012). The CNVs
from all individuals (including Olimpia) were merged if over-
laps were 1bp or greater. In total, we detected 1,344 unique
CNV regions (CNVRs) (1,041 gains, 279 losses and 24 both),
amounting to 59.8 Mbp or 2.2% of the total bases in the cattle
genome. A full list of CNVRs are listed in Table S3. A repre-
sentative overview of the CNV landscape mapped onto cattle
chromosome 5 is shown in Fig. 2 and other individual chromo-
some plots in Figs. S1-S6.

Genes overlapping with copy number variation

Using BioMart, in the Ensembl database (Ensembl Genes 79),
we obtained the IDs for the genes that were located within, or
overlapped, with the detected CNVRs. We identified a total of
1,245 genes and 47.4% of the CNVRs encompass 1 or more
genes (Table S3). Using the MrsFAST WSSD algorithm, we
assigned a CN estimate to each gene. Gene regions outside the
predicted CNVRs were found to have a median CN estimate of
2.05, suggesting that CNV detection and CN assignment were
concordant. Genes within CNVRs were found to be highly
variable in CN among individuals (minimum value: 0; maxi-
mum: 299; median: 5.43; average: 7.54) (Table S4). To test the
hypothesis that particular gene classes were over-represented in
duplicated regions, we assigned PANTHER terms to all genes
that overlapped duplications (Mi et al. 2017). We observed
statistically significant enrichments in genes that participate in
immune response, oxygen transport, sensory system and sig-
nalling transduction, which is consistent with similar analyses
of duplications in other organisms (false discovery rate [FDR]
< 0.05, Table S5). Of the top 25 most copy number variable
genes, most had functions related to the immune response, such
as interferons, melanoma antigen family and PAG gene family
(Table 1). One CNV impacted gene family is PI3, which en-
codes the trappin/elafin anti-microbial/immune system modu-
lator protein (Belaaouaj et al. 1998; Fujishima et al. 2008), had
a high CN value (average CN: 6.5) in the water buffalo (Fig. 3a,
Table S4). Another highly CNV impacted gene, UL16 binding
protein 3 (ULBP3) (average CN: 8.3), encodes one of several
related ligands of the KLRK1/NKG2D receptor, which is in-
volved in the regulation of both innate and adaptive immune
responses (Vivier et al. 2002) (Fig. 3b, Table S4).

Validation with aCGH analysis

To confirm individual CNVs, we performed aCGH experi-
ments using the 14 additional water buffalo samples with
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Olimpia as the reference. We compared the RD predicted
CNV intervals with the aCGH results. To make the CN esti-
mates comparable with the aCGH results, we calculated log2
ratios between CN estimates for the 14 buffaloes and that of
Olimpia using a digital aCGH approach (Sudmant et al. 2010).
Based on the predicted CN values within filtered CNVs (>
20kb that contained < 80% common repeat content), we gen-
erated log2 ratios between CN estimates and compared them
with log2 ratios of the aCGH probes using a linear regression
model (Sudmant et al. 2010). Within the CNV regions, we
observed a high correlation (Pearson r = 0.781) between
log2 ratios of CN estimates and aCGH log2 ratios (Fig. 4).
The computational prediction and aCGH validation of
Olimpia and another three randomly selected individuals in
two CNV regions are presented in Fig. 5. These two regions
cover the PI3, PAG3 and PAG6 immune related genes. The
duplication of these three genes for Olimpia were confirmed
in FISH analysis (Fig.1, Table S2).

qPCR analysis

We designed quantitative PCR assays to test 11 predicted
CNVRs within or near annotated genes including PI3, PAG6
and other randomly chosen genes. We randomly selected 6
individuals to investigate the 11 CNV regions and designed
one primer set for each locus (Table S6). The basic

transcription factor 3 (BTF3) gene was chosen as the control
with the assumption that there were two copies of DNA seg-
ment in this region. The validation rates of the 11 loci in the 6
samples varied from 63.6% to 90.9% with an average valida-
tion rate of 74.2% (Table S7). We selected four of the CNVRs
that were validated in all 6 individuals to compare the WGS-
predicted CN values with the qPCR estimates (Fig. 6). We
observed a high correlation between qPCR-derived CN and
WGS-derived CN, supporting the reproducibility of our ge-
nome wide CNV detection methods.

Discussion

This study carried out a systematic investigation of the
genome-wide CNV landscape of water buffalo. We identified
1,344 CNVRs in 15 water buffaloes (including Olimpia, the
reference animal for the buffalo genome assembly) and vali-
dated this sequence-based CNV set using aCGH, qPCR and
FISH. Agreement in CNV assignment was found among all
four methods. Two previous studies have focused on the dis-
covery of CNVs in the water buffalo genome. One study used
the NimbleGen 3×720KCGH array, and found more than half
of CNVRs discovered in buffalo were shared with cattle
(Zhang et al. 2014). However, this CGH array approach has
several inherent drawbacks, including hybridization noise,

Fig. 1. Validation of segmental duplications by FISH analysis. a
Example of an interchromosomal duplication detected with clone
CH240-1M15, covering the PI3 gene. (b, c) Two representative

examples of tandem intrachromosomal duplications detected with
clones CH240-447E04 and CH240-35K10, covering the OR genes and
the PAG gene family

Fig. 2. CNV map of water buffalo chromosome 5. The UMD3.1
assembly is represented as black bars with assembly gaps indicated by
white boxes on the chromosomes. Tracks underneath the chromosomes

represent the SDs for Olimpia, and CNV data sets for 14 additional
buffaloes. The colors for each bar in the animal data set tracks represent
the average estimated CN for each CNVas shown in the legend
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Table 1. Top 25 genes with copy number variations genes in the individual buffalo with the locations given on the UMD 3.1 bovine reference genome

Ensembl ID Symbol Location Size (bp) CNVoverlap percentage (%) Average CN

ENSBTAG00000045940 MGC148328 chrX:25444909-25445676 768 100 220.8

ENSBTAG00000034626 FBXO16 chr8:10095870-10133299 37,430 100 27.3

ENSBTAG00000035319 MAD2L1 chr6:6013172-6020467 7,296 100 14.2

ENSBTAG00000045554 IFNW1 chr8:22762551-22763138 588 100 14.2

ENSBTAG00000014534 EEF1A1 chr9:13233554-13236949 3,396 100 12.5

ENSBTAG00000046398 PAG19 chr29:39261026-39270024 8,999 100 12.4

ENSBTAG00000008291 PROCR chr13:65052810-65106553 53,744 86.63 12.3

ENSBTAG00000035745 MAGEB4 chrX:118671361-118675384 4,024 100 12.0

ENSBTAG00000036277 PAG4 chr29:38793756-38802922 9,167 100 12.0

ENSBTAG00000046366 CLDN34 chrX:143692535-143693164 630 100 12.0

ENSBTAG00000006304 PAG6 chr29:40068356-40077715 9,360 100 11.9

ENSBTAG00000047892 MGC157408 chr29:39457513-39466695 9,183 100 11.6

ENSBTAG00000034064 MGC133764 chrX:118633280-118636998 3,719 100 11.3

ENSBTAG00000046638 IFNAH chr8:23073254-23073823 570 100 11.2

ENSBTAG00000048133 PAG15 chr29:38659682-38668543 8,862 100 11.1

ENSBTAG00000037784 MGC157405 chr29:39731524-39740647 9,124 100 11.1

ENSBTAG00000022348 PAG3 chr29:39998682-40007570 8,889 100 10.8

ENSBTAG00000045674 IFNB1 chr8:23231884-23232444 561 100 10.6

ENSBTAG00000036172 PAG20 chr29:39004039-39013165 9127 100 10.5

ENSBTAG00000047141 PAG7 chr29:38518914-38624602 105,689 100 10.1

ENSBTAG00000037908 PAG1 chr29:39180301-39189626 9,326 100 9.8

ENSBTAG00000026102 PAG9 chr29:39863946-39872971 9,026 100 9.8

ENSBTAG00000038497 CT47B1 chrX:4355493-4387239 31,747 100 9.6

ENSBTAG00000040340 PAG21 chr29:39049999-39059075 9,077 100 9.6

ENSBTAG00000033993 PRP14 chr23:34693485-34706026 12,542 100 9.4

Fig. 3. Genes with copy
number variations in individual
water buffaloes. a Copy number
values for each animal were
plotted within the PI3 locus
(chr13:74180018-74298194)
using the color scheme depicted
in the legend. Heatmap boxes
represent 1-kbp sliding,
nonoverlapping windows in the
region. b Copy number values
within the ULBP3 locus
(chr17:39860701-39894230).
The duplications of these two loci
were confirmed using qPCR
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low resolution, and that novel and rare variations are not de-
tected (Snijders et al. 2001). Using a comparative alignment
and selective filtering approach, our previous study on buffalo

CNVs focused on the comparative analysis of genome fea-
tures shared between buffalo and cattle (Li et al. 2018). The
study identified large deletions and smaller variations in the
gene regulatory regions which may impact on gene expression
(Li et al. 2018). Our earlier study used the R package, cn.mops
(Klambauer et al. n.d.) and JaRMS (Oldeschulte et al. 2017) to
assess CNVs. These two methods tend to discover more de-
letion events than duplication events. In contrast, the
mrsFAST-WSSD method has the tendency to detect more du-
plications, especially in the repetitive segmental duplication
regions.We compared the CNVregions identified in these two
studies, and found 49.9% (670/1344) CNVRs were also dis-
covered using the methods of cn.mops and JaRMS, covering
25.9% (11.6 Mb) of all the variable sequences.

We found that the water buffalo studied shared several high
copy number regions with cattle (Bickhart et al. 2012). For
example, position of 25 Mb on chromosome 10 is enriched
with 22 CNV regions, covering T-cell receptor alpha variable
(TRAV) gene family members (Fig. S2). The copy number of
the CNV cluster varied from 3 to 10 (average: 5.5). TRAV
genes encode variable domains of the T-cell receptor alpha
chain. T-cell receptors recognize foreign antigens and bind
to major histocompatibility complex (MHC) molecules,
which in turn are encoded by the genes located on chromo-
some 23 (Fig. S4), expressed on the surface of antigen pre-
senting cells (Nikolich-Zugich et al. 2004). The expansion of
the TRAV gene CN in buffalo could be partially due to the
requirement for a substantial immune-regulatory T-cell popu-
lation in this species to combat a wide range of pathogens

Fig. 4. Correlation between digital aCGH values (log2 ratios between
CN estimates) and whole genome aCGH (log2 ratios of hybridization
probes). Digital aCGH values were estimated using a log2 ratio of the 1-
kbp CN windows from each water buffalo individual divided by CN
estimates from Olimpia. A high correlation (r = 0.781) was found for
aCGH probe values and digital aCGH values within CNV intervals >
20 kb that had fewer than 80%of their lengths occupied by common repeats

Fig. 5. Computational predictions and aCGH validations of
segmental duplication copy number differences. Depth-of-coverage
tracks for Olimpia, ITWB12, ITWB13 and ITWB14 are shown below a
UCSC track for each investigated gene region. Regions colored in red on
the plot indicate excessive read depth (> mean + 1.5 × STDEV), whereas
orange regions indicate intermediate read depth (> mean + 1 × STDEV).
Normal read depth values are colored green (within mean ± 1 × STDEV).
Digital aCGH tracks show the log2 ratio of the copy number of each listed
animal compared to Olimpia, with high value listed in green (> 0.3); low

values: red (< -0.3) and nominal values: orange (0.3 ≥ x ≥ -0.3). Whole-
genome CGH array experiments, using Olimpia reference sample in all
cases, are listed below the digital aCGH experiments. Color schemes for
the aCGH plots are the same as for the digital aCGH. The CNVRs are
shown below the UCSC plot. a CNVs intersecting the PI3 locus
(chr13:74180018-74298194). A duplication of this region was predicted
for all animals and was confirmed by whole-genome aCGH. b CNVs
intersecting the PAG3 and PAG6 locus (Bovine chr29:39994004-
40119007)
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(Connelley et al. 2014). Another example of CN-divergent
gene families is the PAG gene family members on chromo-
some 29 (Fig. S5). In the water buffalo genome, we found
nine CNVRs, ranging from 38.3 Mb to 42.5 Mb on chromo-
some 29, of which the copy number varied from 5 to 26
(average: 11.4). PAG genes are abundantly expressed in the
placenta of species within the Cetartiodactyla order where
they play a role in the sequestration of fetal antigens at the
placenta-uterine interface (Wallace et al. 2015). We found a
large cluster of CNVs covering the PAG genes in all of the
sequenced buffalo individuals, indicating the pervasiveness of
the duplication events. Similarly, the PAG genes have been
shown to be duplicated in eight diverse cattle breeds (Bickhart
et al. 2016). As we proposed before (Bickhart et al. 2016), it is
possible that duplications of the genes identified in this and
other studies are indicative of subfunctionalization,
neofunctionalization, or overdominance effects on structurally
polymorphic PAG gene alleles. The other examples of shared
CNVRs are the ~47 – 52 Mb region of chromosome 15 asso-
ciated with OR genes, ~25 – 30Mb region of chromosome 23
associated with cattle MHC (BoLA) family members and ~5 –
6 Mb region of chromosome 27 associated with β-Defensin
(DEFB) family members.

We detected gene with largest CN differences between the
water buffaloes studied here and 75 cattle individuals from
eight breeds/subspecies (Bickhart et al. 2016) (i.e. with differ-
ences of the average CN values > 4). They included several
cell cycle-related genes (MIS18BP1, MAD2L1 and CNTLN),
several genes related to immune function (DEFB1, DEFB5,
DEFB7 and NRIH4), the skin disease related genes (melano-
mas, like PRAME and TNFRSF10), as well as neuron system
(FZD3) (Fig. 7a). One mitotic associated gene, mitotic arrest
deficient 2 like 1 (MAD2L1), showed higher CN values in
cattle (average CN: 35.1) than in water buffalo (average CN:

14.2) (Fig. 7b). TheMAD2L1 encoded protein is identified as
a vital mediator of the chromosomal control pathway (Kato
et al. 2011). It has been reported that the copy number loss of
mitotic arrest deficient genes may be related to human fetal
loss (Nath et al. 2012). A previous study identified frizzled
class receptor 3 (FZD3) as one of the most stratified genes for
taurine and indicine animals (Bickhart et al. 2016).
Interestingly, the CN values of this gene in water buffaloes
(average CN: 15.5) were two times more than that in cattle
(average CN: 4.5), suggesting they could have been under
different selection pressures in the two species (Fig. 7c).
FZD3 contributes to axonal growth in the central nervous
system (Wang et al. 2002). The difference in CN values be-
tween cattle and water buffaloes may be partially driven by the
differences occurring during domestication or from natural
selection. We also discovered other functionally important
genes stratified in CN values in these two species although
the CN differences were less than 4. For example, the PI3
gene has more copies (average CN: 6.5) in water buffalo than
in cattle (average CN: 3), and their CN distributions seldom
overlapped (Fig. 7d). The PI3 gene is implicated in resistance
to fungal and bacterial pathogens, so copy number variability
in water buffalo may indicate structurally polymorphic alleles
in this species that confer different resistance to these patho-
gens. These shared CNV clusters and CN differential genes in
two species warrant further investigation to understandwheth-
er the CN affects phenotypes, particularly those related to
economically important traits.

One limitation of this study is that the UMD3.1 cattle ref-
erence genomewas used as a basis for CNV detection in water
buffaloes. We chose to align the buffalo sequence data to the
cattle reference genome because the highly fragmented water
buffalo draft reference genome, which contains a large num-
ber of smaller scaffolds that are difficult to analyse using a
window-based CNV detection method. It is possible that the
structural differences between the cattle and water buffalo
genomes detectedmay have been the result of using a different
species as reference. Alignment of the water buffalo se-
quences with the bovineUMD3.1 reference genome identified
6.6 point mutations per 1000bp. The alignment method,
mrsFAST, allows two mismatches per aligned read, which
represents a 96% identity cutoff for each 50bp sequence. As
the water buffalo diverged 12.3Myr ago from its last common
ancestor with the cattle, 15% of buffalo sequences do not have
a match with the cattle genome (Williams et al. 2017). These
sequences represent either buffalo specific DNA or sequence
absent in the UMD3.1 cattle reference genome. This missing
buffalo specific genomic sequence is likely to have resulted in
a loss of buffalo specific CNVs (i.e. false negatives). Other
regions, which are divergent from the cattle assembly, may
also influence the prediction of buffalo CNVs. However, in
most of the unique and gene-rich genomic regions, buffalo
sequence was highly comparable with sequence in the cattle

Fig. 6. The CN observed from qPCR experiments and estimated from
WGS for four genes (GUCY1B1, GZMB, PAG6 and PI3)
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genome. For CNV detection based on the CGH array, the
probes of 50-60 bp in length usually allowed one mismatch
to target the specific chromosomal region, which is more strin-
gent thanmrsFASTalignment. Discrepancies between the dig-
ital and experimental aCGH may be partly explained by the
differences in mapping/hybridization efficiency between
mrsFAST and aCGH probes. For FISH, the hybridization of
cattle BAC clones to Olimpia chromosomes is less likely to be
affected by small variation in the sequence, thus FISH can be
used to distinguish single copy signal vs. duplication signal,
accommodating sequence divergence up to 20% in probe hy-
bridization regions.

Future directions

It is important to note that performance of CNV detection
using short read sequence data relies heavily on accurate
mapping of reads. In highly repetitive regions, misalign-
ment may lead to a high rate of false positive CNV calls.
The latest long read sequencing technologies offer new
opportunities in CNV detection by providing high confi-
dence breakpoint analysis (Sedlazeck et al. 2018). In addi-
tion, more long reads can be more confidently anchored to
repetitive sequences that often mediate the formation of
SVs (Lucas Lledo and Caceres 2013).

Long read sequences and improved mapping technologies
will lead to more precise CNV detection. These methods will
facilitate further investigation of the structural organization of
copy number variable regions in water buffaloes through
population-level sequencing. With more confident detection
of CNVs using long-read technology, the long-term goal is to
explore the association of CNVs with important economic
traits and incorporate them into selection programmes.

Methods

Data retrieval and sequence alignment Illumina sequence data
from an inbred, female Italian Mediterranean buffalo (Olimpia)
were retrieved from NCBI BioProject PRJNA207334 submitted
by the International Water Buffalo Genome Consortium
(Iamartino et al. 2017). We retrieved sequence data for the 14
additional water buffaloes (ITWB1 to ITWB8 and ITWB10 to
ITWB15, paired-end reads of 100 bp, ~ 10X coverage, Table S8)
from NCBI bioproject PRJNA350833 submitted by a previous
study (Whitacre et al. 2017). As the UMD_CASPUR_WB_2.0
water buffalo draft genome assembly is highly fragmented, our
analysis was based on the Cattle UMD3.1 assembly (Zimin et al.
2009). We masked repeats of the cattle assembly using
RepeatMasker (version open-3-3-0) (using the -s option and

Fig. 7. Copy number different genes between cattle and water
buffaloes. a The boxplot of CN values in 16 genes showing the highest
CN differences (> 4) between cattle and water buffaloes (legend insets
denote group colors). Histograms showing the distribution of CNs among

the unrelated individuals in each group are plotted for MAD2L1 (b),
FZD3 (c), and PI3 (d). X-axis values indicate copy number and Y-axis
values indicate 3 sample count
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cattle RepBase libraries), TandemRepeats Finder (version 3.21),
and WindowMasker. We then aligned the buffalo reads to the
masked UMD3.1 using mrsFAST (version 2.5.0.4) (Hach et al.
2010), allowing up to two mismatches (i.e., 48/50, ~96% se-
quence identity).

CNV calling using Read depth method We then processed
aligned reads within sliding windows using theWSSD pipeline
as previously described (Bickhart et al. 2012). Reads were
counted and the GC bias was corrected using Locally
Weighted Scatter-plot Smoother (LOESS). We called the
CNVs based on the read depth in three different sizes and types
of windows. The procedure and criteria for the CNV calling
were similar to that of the previous study (Alkan et al. 2009).
We estimated the CN within 1-kb non-overlapping windows
across all placed chromosomes. The non-overlapping estimates
of CN served as a good approximation of CN within non-
masked, non-gapped regions of the genome.

Validation of water buffalo CNVs using aCGH Agilent whole
genome high-density CGH arrays containing ~974,016 oligo-
nucleotide probes were designed and fabricated on a single
slide to provide an evenly distributed coverage on UMD3.1
with an average interval of ~3.1 kb between probes. We per-
formed standard genomic DNA labelling (Cy3 for samples
and Cy5 for references), hybridizations, array scanning, spa-
tial correction, and data normalization as previously described
(Liu et al. 2010; Bickhart et al. 2012).

qPCR validation We designed primers using a custom script
that incorporated Primer3 and Exonerate to identify unique
binding sites for primer design (Bickhart et al. 2012;
Untergasser et al. 2012). Only the following Primer3 setting
were changed from default values: the amplicon length was
set to 150–250 bp, and the GC clamp value was set to 2.
Primer information is shown in Table S6. We conducted
qPCR experiments using SYBR green chemistry in triplicates,
each with a reaction volume of 25 μl, as previously described
(Hou et al. 2011). PCRs were run on a BioRad MyIQ or iQ5
thermocycler. We chose an intron-exon junction of BTF3 as a
reference location for all qPCR experiments with the assump-
tion that there were two copies of the DNA segment in this
region. We performed analysis of resultant crossing cycle
thresholds (CT) using the relative comparative CT method
and normalized against the control gene. Finally, a value of
3 or above was considered as gain and a value of 1 or below
was considered as loss.

FISH validation We selected one hundred twenty-one cattle
BAC clones from the bovine BAC library (CHORI-240 at
http://bacpacresources.org/bovine240.htm) for experimental
validation by FISH (Liu et al. 2010; Bickhart et al. 2012).
These clones contain large (≥ 20 kb) regions where copy

number variations were predicted in Olimpia. We performed
FISH experiments as previously described (Liu et al. 2009;
Snijders et al. 2001). We prepare both interphase and meta-
phase nuclei using the buccal epithelial cells of Olimpia. We
examined Metaphase nuclei to identify the chromosomal ori-
gins of FISH signals. Interphase nuclei analysis allowed us to
evaluate the occurrence of tandem duplications.

Gene content We assessed gene content of cattle CNVRs
using the BioMart Database (http://www.ensembl.org/
biomart/martview/). Ensembl genes overlapping with
CNVRs, completely or partially, were considered as copy
number variable and selected for further analysis. To gain an
insight into the functional enrichment of the genes with copy
number variations, we tested the hypothesis that the
PANTHER molecular function, biological process, and
pathway terms were under- or overrepresented in CNVRs af-
ter false discovery rate (FDR) correction using the PANTHER
classification system (Mi et al. 2017).

Comparison of the gene CN between cattle and water buffa-
loes We collected the CN values of all annotated genes in 75
cattle individuals (Bickhart et al. 2016), and compared them
with the gene CN in the water buffalo. We focused on the
common genes, shared but CN differential genes, as well as
buffalo-specific CN variable genes. Sixteen genes with the
highest average CN differences (> 4) in the two species are
highlighted in the Fig. 7a.
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