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Comparison of gene co-networks reveals the molecular mechanisms
of the rice (Oryza sativa L.) response to Rhizoctonia solani AG1
IA infection
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Abstract

Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control
the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common
differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these
findings by focusing on an analysis of gene co-expression in response to R. solani AG1 1A and identified gene modules within the
networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each
module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to
reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the
modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein.
Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in
rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will
help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.
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Introduction destructive and widespread disease throughout rice pro-
duction areas worldwide (Zheng et al. 2013). As one of
the most destructive diseases in cultivated rice (Oryza
sativa L.), rice sheath blight caused by R. solani AGI
IA can result in yield losses of 5-10% and even 50% in

severe cases (Shu et al. 2015). Accompanying cultivars

Rice sheath blight, which is caused by the soil-borne basidio-
mycete fungus Rhizoctonia solani, is an economically
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that are susceptible to sheath blight are planted in most
rice-growing regions of the world, which increases yield
losses from this disease. Although rice varieties that are
relatively resistant to sheath blight have been identified
(Prasad and Eizenga 2008), no completely field resistant
rice cultivar or immune variety has been found (Zeng
et al. 2015; Taheri and Tarighi 2011). At present, manage-
ment of this disease mainly involves chemical methods.
Despite the importance of rice sheath blight, research in
resistance has been slow, partly due to the lack of a stan-
dard resistance identification methods and because the
disease is easily affected by in-field conditions on small-
scale farmland (Wang et al. 2015a, b; Yugander et al.
2014). To date, few in-depth studies have investigated
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the molecular mechanism of rice sheath resistant during or
after fungal entry into host tissues (Okubara et al. 2014,
Silva et al. 2012).

With the development of high-throughput techniques,
omics data are providing opportunities for research into the
molecular mechanisms of biological phenotypes (Kumar et al.
2015). From the perspective of systems biology, the occur-
rence and development of diseases are often a complicated
process involving synergistic action among genes; yet, ana-
lyzing synergy among multiple genes is very difficult using
traditional biological methods (Kim et al. 2009). The classic
approach for identifying differentially expressed genes is to
compare gene expression levels between experimental groups
to produce a list of candidate genes that are differentially
expressed according to a significance level (Childs et al.
2011). The development of this research approach focuses
on the behavior of a single molecule, but it has been extended
to the study of molecular interactions in dynamic network
changes (Nutan et al. 2017). A co-expression network is a
type of gene regulatory network, in which each node repre-
sents a gene and each edge two correlated genes based on their
expression levels (Wang et al. 2014a, b). This network can
reflect a set of gene expression correlations from a more sys-
tematic perspective, revealing how genes regulate each other
and ultimately influence a phenotype (Garg et al. 2017).
Studies have proven that correlation networks are useful for
describing pairwise correlations between gene transcripts, and
they are being increasingly employed in bioinformatics appli-
cations to explore the system-level functionality of genes
(Zhang et al. 2018). Weighted gene co-expression network
analysis (WGCNA), an approach that designates modules
based on topological overlap, utilizes systems biology to ex-
plore associations between genes and aims to understand net-
works instead of individual genes (Langfelder and Horvath
2008). Furthermore, WGCNA has been shown to identify
patterns that have been previously undetected in gene-to-
gene comparison methods (Bao et al. 2017) and has become
a common and useful strategy for investigating the causes of a
disease or trait, as in a study of wheat resistance responses to
powdery mildew (Zhang et al. 2016).

In contrast to the abovementioned advances, there has been
little progress toward understanding the genetic networks in-
volved in sheath blight resistance in rice at a transcriptomics
scale. Several questions remain with regard to the pathogene-
sis of sheath blight, including (1) what are the systemic func-
tions of cellular components after pathogen infection and (2)
what are the differences in gene expression in resistant and
susceptible host backgrounds. To address these questions, we
used the standard TeQing rice genotype, which is moderately
resistant, and a susceptible genotype, Lemont, as host plants to
investigate R. solani AG1 IA infection. Based on our previous
study (Zhang et al. 2017), we focused on comparing gene co-
expression networks according to the transcriptional response
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of these two rice varieties to AG1 IA. The main objective of
this study was to explore the genes and major modules in-
volved in resistance against AG1 IA infection and to analyze
relevant gene co-expression networks through WGCNA. Our
research is expected to provide a rapid and efficient frame-
work for constructing a more exact gene co-expression net-
work with the aim of revealing gene expression changes after
AGI IA infection. The key components of this gene co-
expression network represent promising candidates for devis-
ing effective strategies to control this destructive disease.

Materials and methods
Strains and rice varieties

The R. solani AG1 IA standard strain, which has been de-
scribed previously (Yugander et al. 2014), was kindly provid-
ed by Prof. Er-Xun Zhou at the South China Agricultural
University. Rice cultivars TeQing and Lemont are maintained
in the Rice Research Institute of Sichuan Agricultural
University.

Comparison of transcriptional expression data

Based on our previous study, rice leaves inoculated with AG1
IA were maintained in a humidity chamber at 28 °C with a
relative humidity greater than 80%. Leaves were harvested at
12, 24, 36, 48, and 72 h after AG1 IA infection, and 12 sets
(contain control at 12 h) of RNA sequencing (RNA-Seq) data
were generated in this study. Three biological replicates were
created for each sample. For transcript profiling, leaf samples
were collected, frozen in liquid nitrogen, and stored at —
70 °C. A total of 36 rice leaf samples, harvested at five differ-
ent times after AG1 IA infection, were obtained for RNA-Seq,
which was performed using the HiSeq PE125 by Biomarker
Technologies. The detailed methods used for data processing
and qRT-PCR validation and analysis are described in our
previous article (Zhang et al. 2017). All of the transcriptome
data are included in a Short Read Archive (SRA) (accession
number SRP113646). Because these datasets were generated
using material collected at different time points and from two
rice varieties, expression levels in all samples were calculated
uniformly from raw RNA-Seq data, as previously described
(Wang et al. 2014a, b). The normalized data were used as
inputs in our network inference program.

Construction of weighted gene co-expression
network and visualization

Co-expression networks were constructed using the WGCNA
(v1.29) package in R (Langfelder and Horvath 2008); R lan-
guage and Cytoscape were used for data visualization. The
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gene co-expression network is a scale-free weighted gene net-
work. A significant feature of scale-free networks is that most
nodes have only a few connections, with a few nodes having a
large number of connections. To satisfy the precondition of
scale-free network distribution, the adjacency matrix weight
parameter 3 value needed to be determined. In this study, we
evaluated {3 values from 1 to 20, and the corresponding cor-
relation coefficient and mean value of the adjacent gene were
calculated for each. A higher correlation coefficient (maxi-
mum = 1) indicates that the network is closer to the network
size distribution. As a certain degree of gene connectivity, the
{3 value should be as small as possible when the correlation
coefficient is sufficiently large. For 3 less than 10, a larger 3
value indicates that the gene network is closer to being scale-
free. Therefore, we selected (3 = 13 for TeQing and 3 =11 for
Lemont to construct the co-expression networks (Fig. S1).
Based on the above analysis, we constructed a WGCNA to
subdivide thousands of genes into several modules.

To describe the most common model of gene expression in
each module, we conducted singular value decomposition of
the gene expression values in every module and obtained
multiple singular values and their corresponding eigenvectors.
The characteristic vector with the highest degree of variation
in gene expression in each module was defined as the charac-
teristic gene expression of the module. We extracted the fea-
tured genes of each module for the 36 rice leaf samples and
then calculated their association with the two genotypes
(TeQing and Lemont). We drew heat maps for each module
based on correlation coefficients, with a deeper color
representing a higher degree of correlation. To further explore
interactions among genes in each module, we selected those
genes with the highest connectivity to draw the gene network.
In addition, information regarding the functions of differen-
tially expressed genes was collected from unigene annota-
tions, and these genes were subjected to Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGGQG) significant enrichment analyses to identify the bio-
logical functions and metabolic pathways in which these
genes participate.

Co-expression network construction based on hub
genes

For network biology analysis, hub genes are good representa-
tives of each module relative to other genes in the module and
have important biological significance in system analysis
(Sriroopreddy and Sudandiradoss 2018). For comparing the
difference in resistance between TeQing and Lamont, we se-
lected early and later modules with high correlations to assess
the mechanisms of disease resistance. We chose representative
hub genes with a high degree of connection in the early and
later modules to analyze differences between the two rice
varieties. For Lemont, we chose the early turquoise module

and the later brown module (Fig. 4). For TeQing, we selected
the early yellow module and the later Black module (Fig. 5).
To further investigate interaction among genes within each
module, we selected the first 50 genes with the highest con-
nectivity within the module to map the gene network.

To further compare differences in disease resistance be-
tween TeQing and Lemont, we considered the top 500 genes
with the highest connectivity across the interaction networks
of both varieties as core genes. Additionally, we searched for
disease resistance genes in Oryzabase (https://shigen.nig.ac.
jp/rice/oryzabase/) and obtained 3601 genes, among which
1505 appear in our data (Table S4; Table S5). We analyzed
these 1505 resistance genes compared with the 500 core genes
and extracted core resistance genes to map the co-expression
network. TeQing and Lemont network maps were drawn
separately.

Results

Global gene inference for gene co-expression
analyses

Based on pairwise correlations between genes in common
expression trends across all samples, 11,947 candidate regu-
latory genes were identified between TeQing and Lemont; the
average transcripts per million (TPM) were higher than 10 for
all 36 samples. We established the rice gene co-expression
network using WGCNA, and a global gene expression data
matrix was generated based on combined and normalized ex-
pression data for TeQing and Lemont. The co-expression net-
work was constructed using the 11,947 selected genes, and
clusters of highly co-expressed genes were detected and
assigned to module colors based on a previously reported
method (Medina and Lubovac-pilav 2016; Guo et al. 2016).
Because the expression data reflect different biological pro-
cesses at different time points with differential expression after
AG]1 TA infection, we aimed to construct a reduced network
structure that describes the regulation of fundamental biolog-
ical processes with an emphasis on control of rice resistance to
AGI TA. This network can be further fitted with expression
data from different time points to understand the regulation of
specific biological functions.

Co-expression network analysis by WGCNA

We performed WGCNA for each rice cultivar separately. Each
tree branch constitutes a module, and each leaf in the branch
represents one gene, as shown in the hierarchical clustering
tree (Fig. 1). For further analysis, we cut the tree from the
resulting dendrogram into isolate modules (clusters). Sets of
genes (modules) with common expression patterns were iden-
tified based on their correlations with time. WGCNA resulted
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A Cluster Dendrogram

Height

Module colors.

B Cluster Dendrogram

Module colors.

Fig. 1 WGCNA of genes in leaf tissues of TeQing (a) and Lemont (b) after AG1 IA infection. Hierarchical cluster trees show the co-expression modules

identified by WGCNA

in 32 and 26 distinct modules for TeQing and Lemont, respec-
tively, as shown by the dendrogram. The number of target
genes for each module ranged from 23 to 2294 for TeQing
(Fig. 2) and from 30 to 2990 for Lemont (Fig. 3). The matrix
representing all Module-Trait Relationships (MTRs) is

distinct. These modules contain genes that are either positively
or negatively correlated and that have expression levels that
are either high or low after AG1 IA infection. The results show
that some modules are highly correlated with AG1 IA infec-
tion. In addition, the modules were selected for further
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Fig. 2 Matrix showing Module-Trait Relationships (MTRs) for TeQing.
Each row corresponds to a module. The number of genes in each module
is indicated on the left. Each column corresponds to a time result. The
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MTRs are colored based on their correlation: red indicates a strong
positive correlation and green indicates a strong negative correlation
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Fig. 3 Matrix showing Module-Trait Relationships (MTRs) for Lemont.
Each row corresponds to a module. The number of genes in each module
is indicated on the left. Each column corresponds to a time result. The

examination at MTRs > 0.7, and genes were retained in each
module for further analysis based on their intra-module
connectivity.

Modules associated with differences between TeQing
and Lemont after AG1 IA infection

As we found in our preliminary study (unpublished data), 24-h
post-AG1 IA infection was an important time. Thus, we added
two data processing analyses of early (before 24 h) and later
(after 24 h) time points during infection (Figs. 2 and 3). The
identification of rice genotype-specific modules after AG1 A
infection was of particular interest. We identified modules sig-
nificantly associated with time for both TeQing and Lemont.
For TeQing, the Black module was highly correlated with re-
sistance throughout the experimental period (= 0.85, p = 8e-
06), especially in the later stage (»=0.93, p =2e-08). The red
module (»r=0.77, p=2e-04) at 12 h, the brown (r=0.85, p=
7e-06) and cyan modules (»=0.88, p =2e-06) at 24 h and the
light green module at 36 h showed high correlation with AG1
IA infection (Fig. 2). In addition, for Lemont, turquoise (r=
0.86, p=>5¢-06) at 12 h, yellow (»r=0.93, p =2¢-08) and ma-
genta (r=0.82, p =3e-05) at 24 h and tan (r=0.78, p = 1e-04)
at 36 h were highly correlated with AG1 IA infection. In the
later stage (after 24 h), the midnight blue (»=0.8, p = 6e-05),
pink (r=0.77, p =2e-04) and brown (r = 0.89, p = 7e-07) mod-
ules showed high correlation, with the brown module (»=0.79,

MTRs are colored based on their correlation: red indicates a strong
positive correlation and green indicates a strong negative correlation

p =9e-05) having a high correlation over the entire experimen-
tal period (Fig. 3).

To identify features of each module that indicate their bio-
logical roles in response to AG1 IA infection, functional an-
notations of the disease-related modules were performed
based on their gene compositions (p < 0.05). For TeQing, ac-
cording to gene functional annotations, the brown module was
significantly enriched in genes involved in phenylalanine, ty-
rosine and tryptophan biosynthesis, biosynthesis of amino
acids, carbon metabolism, plant-pathogen interaction, and
alpha-linolenic acid metabolism (Table S1). Moreover, other
resistance-related secondary metabolic pathways, such as fla-
vone and flavonol biosynthesis/flavonoid biosynthesis, phe-
nylalanine metabolism/phenylpropanoid biosynthesis, and
sphingolipid metabolism, also exhibited significant enrich-
ment. The genes in the cyan and yellow modules are mainly
involved in photosynthesis. In addition, plant hormone signal
transduction and terpenoid backbone biosynthesis were sig-
nificantly enriched in the yellow module. For turquoise, which
was the largest module, gene enrichment in photosynthesis
and other metabolic pathways was also found.

For Lemont, the turquoise module displayed significant
enrichment in photosynthesis, photosynthesis-antenna pro-
teins and porphyrin and chlorophyll metabolism (Table S2).
We also found photosynthesis and nutrient material metabo-
lism to be significantly enriched based on GO terms. For yel-
low and magenta, the most highly enriched genes at 24 h were
found to be related to secondary metabolites in plant
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resistance; for example, phenylalanine, tyrosine and trypto-
phan biosynthesis, phenylalanine metabolism/
phenylpropanoid biosynthesis, riboflavin metabolism, flavo-
noid biosynthesis and stilbenoid, diarylheptanoid and gingerol
biosynthesis. The products of these pathways have been
shown to possess antioxidant and antimicrobial properties.
In the brown module, diterpenoid biosynthesis, alpha-
linolenic acid metabolism, oxidative phosphorylation and va-
line, leucine and isoleucine degradation were significantly
enriched. Ascorbate and aldarate metabolism and peroxida-
tion were also enriched. Based on the variation in enrichment
among the above modules, especially comparing resistance-
related modules between early and later stages, the resistance
process appears to mainly involve the metabolism of some
resistance-related substances, along with a burst of reactive
oxygen species (ROS) at the early stages of infection. Over
a prolonged duration of infection and with the spread of the
disease, relevant defense response modules appear to interact
to participate in resistance responses.

Hub gene selection for TeQing and Lemont
co-expression networks

As indicated by heatmaps (Fig. 4a), turquoise-module-specific
genes were over-represented in the early stage in Lemont
(Table S3). Eigen-gene expression profiles for the turquoise
module are shown in Fig. 4b, with 27 hub genes in the turquoise
module encoding expressed proteins. Four genes encode tran-
scription factors (TFs), including MYB family TFs, OsbZIP14,
and two TF-like proteins. Other genes, such as glycosyltrans-
ferases, OsGT1, and serine hydroxymethyltransferase 1
(OsSHM 1), were also found. The correlation network of the
turquoise module is shown in Fig. 4c. The membrane-
trafficking protein OsVAMP714, oxidoreductase, heavy-metal
ATPase OsHMAI1, ubiquitin-conjugating enzyme E2,
ferredoxin-thioredoxin reductase, imidazoleglycerol-
phosphate dehydratase, and spermidine synthase were identi-
fied as candidate hub genes for this module.

Brown module-specific gene heatmaps (Fig. 4d) were
over-represented in the later stage in Lemont (Table S3).
Eigen-gene expression profiles for the brown module are
shown in Fig. 4e, with 12 genes encoding expressed pro-
teins, all of which are TFs, including three MYB family
TFs, two WRKY TFs, three bZIP TFs, three NAC TFs,
and a Dof TF. The correlation network of the brown mod-
ule is shown in Fig. 4f. Genes encoding cytidine/
deoxycytidylate deaminase, allene oxide synthase
0OsAOS3, OsNAC6, endo-p3-1,3-glucanase OsGLNI,
glycine-rich cell wall structural protein precursor, plant
PDR ABC transporter-associated domain-containing pro-
tein, inositol 1,3,4-trisphosphate 5/6-kinase-like gene, and
AP2 domain-containing protein were identified as candi-
date hub genes for this module.
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For TeQing, heatmaps (Fig. 5a) showed over-
representation in the early stage of yellow-module-specific
genes (Table S3). The Eigen-gene expression profiles for the
yellow module are shown in Fig. 5b. In total, 18 genes encode
expressed proteins: six encode TFs, including a Dof TF,
MYB-like DNA-binding domain-containing protein, a
GRAS family TF, a bZIP TF, and two MYB family TFs.
Other genes, such as OsHAKS, proton gradient regulation 5,
aldehyde dehydrogenase, and zinc finger, C3HC4-type do-
main-containing protein, were also found. OsCATC,
OsCAXla, OslIAA1, DUF1230 domain-containing protein,
and adenylate kinase were identified as candidate hub genes
for this module (Fig. 5¢).

According to the heatmaps for TeQing in the later stage
(Fig. 5d), Black-module-specific genes are over-
represented (Table S3). The Eigen-gene expression pro-
files for the Black module are shown in Fig. Se, with eight
of 53 genes encoding expressed proteins. One gene en-
codes the Dof TF OsDof-6. The correlation network of
the Black module is shown in Fig. 5f. MTN26L2-
MtN26 family protein precursor, germin-like protein,
and serine carboxypeptidases were identified by
WGCNA as candidate hub genes for this module. These
results indicate a markedly higher degree of infection in
Lemont versus TeQing. Our results show that both hub
gene networks have a large number of expressed protein
genes with unknown functions; further study is warranted,
as these proteins may have important functions.

The analysis revealed the core disease resistance gene
network operating in rice sheath blight resistance, and the
results showed a common core of resistance genes in multi-
ple networks. Disease resistance core genes were divided
into two major blocks according to the degree of connection
between co-expressed genes, and the aggregation of co-
expression of core resistance genes reflected two major gene
expression patterns. In TeQing, the core disease resistance
genes were mainly distributed into three modules: dark red,
turquoise, and green. A network of representative genes was
drawn, and the results are provided in Fig. 6. Genes associ-
ated with a high degree of connection included glutathione
S-transferase, ascorbate peroxidase, VQ motif-containing
protein, jasmonate ZIM-domain proteins (OsJAZ12,
OsJAZI11, and OsJAZS), and some TFs (WRKY, MYB,
and NAC). For Lemont, the core disease resistance genes
were mainly distributed in two modules: turquoise and blue
(Fig. 7). These modules include OsPAL3, phosphofructoki-
nase, jasmonate ZIM-domain proteins (OsJAZ6, OsJAZI11,
OsJAZ10, OsJAZ12, and OsJAZS), VQ motif-containing
protein, shikimate kinase, ubiquitin-conjugating enzyme,
and some TFs (WRKY, MYB, and NAC). Overall, the two
genotypes share some common aspects for sheath blight
resistance. However, differences in the specific regulatory
gene networks involved were noted.
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TeQing. a, d Heatmaps showing the genes that were significantly over-
represented in the yellow and black modules, respectively. b, e Eigen-
gene expression profiles for the yellow and black modules at different

important for plant defense against necrotrophic fungi at dif-
ferent time points after infection, such as oxide-reduction,
stress response, and other biosynthetic processes. Therefore,
this work facilitates identification of the hub gene sets and
major modules associated with disease resistance.

Several modules were selected for further analysis and dis-
cussion, as explained above. To examine the relevance of the
distribution of these genes and their biological roles in the two
genotypes, the biological significance of the genes was eval-
uated on the basis of their composition using GO and KEGG
analyses. The functions of genes that have known biological
functions can be predicted based on their module, and this
analysis identified a broad range of biological processes that
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times. The y-axis indicates the value of the module Eigen-gene and the x-
axis indicates the time of sample collection. ¢, f The correlation networks
corresponding to the yellow and black modules, respectively. Candidate
hub genes are shown as filled circles

were affected by AG1 IA infection. Both primary and second-
ary genes were significantly affected by the pathogen during
the processes associated with resistance metabolism. In the
early (12 h) stage in both TeQing and Lemont, we found
photosynthesis to be the common element of the metabolic
pathways involved in resistance. This pathway was also more
enriched in TeQing than in Lamont at the early stage. In ad-
dition, photosynthesis was shown to be crucial in the early
stages of the overall resistance process. Some studies have
noted a reduction in photosynthesis after pathogen infection
and that normal photosynthesis is disrupted by photosynthetic
organ damage (Pérez-Clemente et al. 2015). At the same time,
photosynthesis provides the material for other resistance-
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Fig. 6 Core disease resistance gene network for TeQing derived from comparing the core genes with known resistance genes

related metabolites (Major et al. 2010). Comparing the avail-
able metabolic materials of the two varieties, 24 h was found
to be an important time point for pathogen invasion. Indeed, a
number of gene functions involving resistance-related metab-
olites showed significant enrichment during this period, such
as Flavone and flavonol biosynthesis/flavonoid biosynthesis
and Phenylalanine metabolism/phenylpropanoid biosynthesis.
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Previous studies have found that phenylalanine metabolism is
closely related to plant disease resistance and is therefore an
important index used to measure plant disease resistance (Fu
et al. 2015). The branches downstream of phenylalanine me-
tabolism mainly include the lignin synthesis and flavonoid
synthesis pathways, which produce phenylpropanoid deriva-
tives such as coumarin, flavonol, and lignin. These

- e
oc.eeres
o e
o T .
. ;
S .8
N ;
: -
2 o e
o
o
o o
) 10C, 570
oo o
o e
.M u:c_.um
o :
o
o woc. (o
oo e Py .
y = &
mc.ae- ‘°°~‘°"‘ Loc, %
=
e oo ot
o @ oo e
o o e oo
S
ey
o :
e
o e oo

Fig. 7 Core disease resistance gene network for Lemont derived from comparing the core genes with known resistance genes
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phenylpropanoid metabolites act as plant antitoxins, cell wall
structural elements, and signal transduction molecules and
play important roles in plant disease resistance (Ganapathy
et al. 2016; Lozoya-Saldana et al. 2007; Jubault et al. 2013).
In addition, the metabolism of alpha-linolenic acid, which is
associated with the processing of jasmonic acid (JA), showed
a significant accumulation in TeQing at 24 h. This finding
suggests that primary metabolism is involved in the resistance
process at the beginning of AG1 TA infection and that JA
plays an important role at 24 h and thereafter. With the further
spread of the pathogen in the leaf, the related disease resis-
tance processes appear to form a complex, three-dimensional
resistance network. Overall, the gene expression analyses re-
vealed notable alterations in the transcriptional levels of genes
related to plant metabolism, suggesting some roles of primary
host metabolism in relation to defense mechanisms.

We employed WGCNA to construct gene networks
representing early and later infection stages with a high degree
of connection in TeQing and Lemont. Comparing the hub genes
of the two varieties, the resistance gene network of TeQing was
more populous than that of Lemont in the early stage, whereas
Lemont was significantly enriched at 24 h, with higher connec-
tivity among its related genes. In TeQing, OsIAA1 and SLR1
had a high degree of connectivity in the network. Previous
studies have shown that auxin plays an important role in the
hormone-signaling network involved in the regulation of de-
fense responses against some necrotrophic pathogens (Naseem
et al. 2015). In addition, changes in auxin can be due to the
indirect effects of the JA and ethylene (ET) pathways, because
these hormones affect the signaling, transport, and biosynthesis
of auxin (Saini et al. 2013) or are a direct effect of a pathogen on
the auxin pathway (Mah et al. 2012). However, further confir-
mation of the critical role of the level of auxin for affecting the
balance of other hormones and in fine-tuning defense responses
specific to AG1 TA remains to be discovered. Studies have
found that SLR1 can regulate plant resistance by integrating
and enhancing salicylic acid and JA signals (Vleesschauwer
et al. 2016). ROS control has many different processes and
has an important function in plant disease resistance (Mittler
et al. 2004). Active oxygen-related genes such as OsCATC
and chloroplast glutathione peroxidase were found in the hub
gene network, and by encoding important enzymes scavenging
ROS in plants, these genes play a role in the elimination of ROS
to maintain normal ROS levels in plants (Lin et al. 2012; Chang
etal. 2009). In Lemont, some of the genes associated with stress
resistance showed higher connectivity during the early stage of
infection, such as OsVAMP714; previous research has shown
that OsVAMP714 plays an important role in rice blast resis-
tance as well as in vegetative growth (Sugano et al. 2016). In
the later stage, allene oxide synthase was associated with JA
synthesis at a high degree of connectivity, demonstrating that
JA has a crucial function in sheath blight resistance. Other
disease-related genes and expressed proteins were identified
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in the network, and their roles in sheath blight resistance must
be further verified.

Transcriptional regulation plays an important role in mod-
ulating gene expression and transmitting stress signals in
plants (Chen and Zhu 2004). Because they control many
downstream genes, TFs are potential tools for manipulating
stress tolerance, and both gene-for-gene resistance and basal
disease resistance are mediated by a series of TFs, including
MYB, NAC, WRKY, and basic region/leucine zipper (bZIP)
family members (Kim et al. 2015; Pandey and Somssich
2009; Singh et al. 2002). Based on these results, a consider-
able number of TFs among hub genes are involved in
resistance-related processes, such as Dof TFs, which are in-
volved in many plant metabolic processes (Shaw et al. 2009).
In Arabidopsis, Dofs are involved in phenylalanine and flavo-
noid synthesis pathways. For example, AtDOF4;2 was iden-
tified as being potentially involved in the regulation of
phenylpropanoid metabolism in Arabidopsis (Skirycz et al.
2007). WRKY TFs are crucial regulatory components of plant
responses to pathogen infection (Gallou et al. 2012). Previous
studies have reported that JA plays an important role in
WRKY30-mediated defense responses to R. solani and
Magnaporthe grisea, and WRKY30 improves sheath blight
resistance in rice by regulating expression of relevant resis-
tance genes (Peng et al. 2012). MYB TFs are considered to be
involved in primary and secondary metabolism (such as
phenylpropanoid metabolism), hormone signal transduction,
and responses to biotic and abiotic stresses (Liu et al. 2015;
Zhao et al. 2013). TFs within the network and their cross-
linked pathways are mostly involved in signal transduction,
oxide-reduction processes, and defense responses.
Understanding the mechanisms of TFs involved in resistance
processes will not only be helpful for elucidating the plant TF-
mediated signal transduction network controlling sheath
blight resistance but will also provide a theoretical basis for
the discovery and application of new resistance-related genes.

Core resistance genes are important markers in the process
of plant disease resistance. We identified an interesting phe-
nomenon in this study: several VQ proteins had high connec-
tivity to core resistance gene networks in TeQing and Lemont.
VQ proteins are plant-specific proteins and comprise a
multigene family in a wide variety of plant species (Jing and
Lin 2015). Expression of VQ genes is induced or suppressed by
salicylic acid (SA), JA, or pathogen treatment, suggesting that
these genes may have a key role in the plant response to disease
(Li et al. 2014). Xie et al. (2010) found that overexpression of
SIB1 (a VQ motif-containing protein) causes plants to activate
defense-related genes following pathogen infection or SA and
JA treatments, leading to enhanced resistance to P. syringae
infection. Moreover, Wang et al. (2015a, b) found VQ12 and
VQ29 to be highly responsive to B. cinerea infection, and
VQI12 and VQ29 might be partially involved in the JA-
signaling pathway, as demonstrated via expression analysis of
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defense-signaling mutants. In the present study, jasmonate
ZIM-domain proteins (JAZs) were found in the core gene net-
work. JA is an important signaling molecule in resistance to
necrotrophic pathogens (Ranjan et al. 2015). JAZs are repressor
proteins that participate in many signaling pathways, particu-
larly as JA pathway inhibitors, and play a key role in regulating
the host immune process (Major et al. 2017). JAZs respond to
JA stimulation to release MYC2, which then initiates the tran-
scription of JA-responsive genes (Sasaki-sekimoto et al. 2013).
Furthermore, JAZs play an important regulatory role as hub
proteins in the process of plant-hormone-mediated signal trans-
duction (Wasternack and Hause 2013).

Conclusions

In summary, this study compared various networks to shed new
light on genes regulated through two types of rice responses to
AGT IA at the transcriptome scale, providing a reliable basis for
further investigation into the important mechanisms and critical
genes that are likely crucial for rice responses to AG1 IA. This
initial gene co-expression analysis based on WGCNA provides
a regulatory framework that links every gene at the tran-
scriptome level. Time point association analysis showed that
several of the identified top target genes might be critical for
disease resistance. Although the distinctions between the mod-
ules are clear, we found that some genes are commonly asso-
ciated with more than one module, which reflects the complex-
ity of the regulatory networks. Overall, analysis of these mod-
ules offers valuable information on the gene regulatory path-
way that controls pivotal biological processes in disease re-
sponses. Furthermore, future research involving the functional
characterization of these regulators and target genes through
experimental approaches will allow a better understanding of
rice-R. solani interactions at the systems biology level. The
gene co-expression networks will be very useful for researchers
seeking to visualize the sub-networks specific to certain bio-
logical processes or searching for potential gene-gene interac-
tions for individual genes or groups of genes.
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