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Abstract Mice harboring a G12D activating Kras mutation
are among the most heavily studied models in the field of
pancreatic adenocarcinoma (PDAC) research. miRNAs are
differentially expressed in PDAC from patients and mouse
models of PDAC. To better understand the relationship that
Kras activation has on miRNA expression, we profiled the
expression of 629miRNAs in RNA isolated from the pancreas
of control, young, and old P48+/Cre;LSL-KRASG12D as well as
PDX-1-Cre;LSL-KRASG12D mice. One hundred of the differ-
entially expressed miRNAs had increased expression in the
advanced disease (old) P48+/Cre;LSL-KRASG12D compared to
wild-type mice. Interestingly, the expression of three
miRNAs, miR-216a, miR-216b, and miR-217, located within

a ∼30-kbp region on 11qA3.3, decreased with age (and phe-
notype severity) in these mice. miR-216/-217 expression was
also evaluated in another acinar-specific ELa-KrasG12Dmouse
model and was downregulated as well. As miR-216/-217 are
acinar enriched, reduced in human PDAC and target KRAS,
we hypothesized that they may maintain acinar differentiation
or represent tumor suppressive miRNAs. To test this hypoth-
esis, we deleted a 27.9-kbp region of 11qA3.3 containing the
miR-216/-217 host gene in the mouse’s germ line. We report
that germ line deletion of this cluster is embryonic lethal in the
mouse. We estimate that lethality occurs shortly after E9.5.
qPCR analysis of the miR-216b and miR-217 expression in
the heterozygous animals showed no difference in expression,
suggesting haplosufficiency by some type of compensatory
mechanism. We present the differential miRNA expression
in KrasG12D transgenic mice and report lethality from deletion
of the miR-216/-217 host gene in the mouse’s germ line.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth most
lethal type of cancer in the USA, and it is estimated that it will
become the second most deadly cancer in the USA by 2030
(Rahib et al. 2014, Siegel, Miller, and Jemal 2015). The last
decade or more has been spent trying to understand the mo-
lecular and signaling mechanisms that regulate the develop-
ment of PDAC so that better therapies and methods for early
detection may be developed. This work has led to extensive
growth of genetically engineered mouse models which have
provided experimental systems to better understand and
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identify the molecular mechanisms underlying PDAC devel-
opment. As the Kras G12D oncogene has been identified as
the key oncogenic mutation that has been associated with
development of PDAC in humans, the majority of genetically
engineered mouse models have been based on this particular
mutation. Since PDAC typically arises from pre-neoplastic
lesions, termed PanINs, it becomes extremely important to
use mouse models which allow us to study molecular changes
that happen during this phase. Hruban and coworkers (Vincent
et al. 2011) provided a framework by which PDAC arises
from a series of genetic mutations which involves inactivation
of tumor suppressor genes such as p16, DPC4, P53, and
BRCA along with the activation of oncogenes such as Kras.

Pioneering work by Hingorani and Tuveson used Ptf1a and
PDX-1 promoters to limit expression of Kras harboring the
activating G12D mutation to the developing pancreas,
restricting expression at E8.5–E9.5 (Hingorani et al. 2003).
Popular modifications that combine the KrasG12D mutation
with other mutant genes including p53 (Hingorani et al.
2005), Tgfβ (Ijichi et al. 2006), Smad4 (Bardeesy et al.
2006), and Brca1 (Shakya et al. 2013). Combining the double
or sometime triple mutations decreases the latency of PDAC
progression in mice. Despite its ductal appearance, PanINs
and PDAC can develop from pancreatic acinar cells when
mutant Kras is restricted using an acinar-specific promoter
(Desai et al. 2007, Grippo et al. 2003, Guerra et al. 2007,
Habbe et al. 2008); however, the same was not the case when
Kras was restricted to the epithelial cells of the pancreas
(Brembeck et al. 2003). These studies revealed an underlying
role of pancreatic acinar cells in PDAC development.

microRNA (miRNAs) are small noncoding RNAs that rec-
ognize and bind to the 3′ UTR of mRNAs resulting in trans-
lational repression. Numerous profiling studies over the past
decade have shown that the expression miRNAs are altered in
cancer, including pancreatic (Bloomston et al. 2007, Lee et al.
2007, Szafranska et al. 2007, Volinia et al. 2006). miRNAs
reported as deregulated in human PDAC include
overexpressed miRNAs (miR-21, miR-155, miR-181a/b,
and miR-221/-222) and those with reduced expression in the
tumor (miR-217, miR-216a/b, miR-375, and miR-148a) re-
cently reviewed in Visani et al. (2015). It was further noted
that overexpression of certain miRNAs (i.e., miR-155 or miR-
21) (Costinean et al. 2006, Medina, Nolde, and Slack 2010) or
knockout of other miRNAs such as miR-122 in the liver can
contribute to the development of cancer in mice (Hsu et al.
2012, Tsai et al. 2012). However, to the best of our knowl-
edge, we are unaware of any published work on miRNA
knockout or knockin mouse models that show PDAC
development.

The initial objective of this study was to evaluate the
miRNA expression in the KrasG12D transgenic mouse model
of PDAC. We report that a large number of miRNAs are
deregulated in LSL-Cre KrasG12D transgenic mice, where the

majority of them are increased in expression and that only a
few miRNAs are reduced in expression. The three miRNAs
with reduced expression in the KrasG12D pancreas, (i.e., miR-
216a, miR-216b, and miR-217) are contained within a geno-
mic cluster on 11qA3.3. Although, these three miRNAs have
been reported in the literature to be downregulated in PDAC
patients (Deng et al. 2014, Schultz et al. 2012, Szafranska
et al. 2007, Szafranska et al. 2008, Vychytilova-Faltejskova
et al. 2015), their role in the pancreas remains completely
unknown. To investigate a potential tumor suppressive role
for these miRNAs, we developed a germ line knockout of
the miR-216/-217 host gene. We conclude that deletion of
the 27.9-kbp region that hosts the miR-216/-217 gene is em-
bryonic lethal in mice.

Materials and methods

KrasG12D transgenic mice

Transgenic mice harboring an activating Kras mutation were
used. Total RNA from PDX-1-Cre;LSL-KRASG12D, P48+/
Cre;LSL-KRASG12D, PDX-1-Cre/wt (control), LSL-
KRASG12D/wt (control), and P48Cre/wt (control) mice was
isolated using miRNeasy (Qiagen) according to the manufac-
turer’s protocol and the RIN was determined using the Agilent
Bioanalyzer. The mean age of the mice was 209 days (PDX-1-
Cre;LSL-KRASG12D) and 34 days (young) and 239 (old) days
for P48+/Cre;LSL-KRASG12D. In the P48+/Cre;LSL-KRASG12D

model, young mice are representative of early disease where
only some PanINs have developed, where old mice are ad-
vanced in tumor progression. The mean age of all the control
mice was 52 days. Detailed information on the mice may be
found (Jiang et al. 2016). The mean age of the acinar-specific
ELa-KrasG12D mouse was 240 days compared to that of wild-
type mice which was 220 days.

RNA isolation and qPCR

For the transgenic mice and controls, RNAwas supplied to us
from the Tuveson lab. All RNA samples had a RNA Integrity
Number (RIN) of 5 or greater (Jiang et al. 2016). Pancreatic
RNA was isolated from the ElasCre and miR-216/-217+/−

mice as described (Azevedo-Pouly, Elgamal, and Schmittgen
2014). All RNA samples had a RIN of 8 or greater.

qPCR

Total RNA was treated with DNase I and cDNA was made
using the Life Technologies assays to 629 mature miRNAs as
described (Schmittgen et al. 2008) or by priming with random
hexamers as described (Tirmenstein et al. 2000) for the anal-
ysis of the miR-216/-217 host gene expression. qPCR was
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performed on an Applied Biosystems 7900 HT real-time PCR
instrument that was equipped with a 384-well reaction plate
using standard conditions. The 18S rRNA was used as an
internal control and data were analyzed using the comparative
CT method. To validate the normalizer for the qPCR, we re-
port the CT values for the various test and control groups for
all experiments performed in the study. The expression of the
internal control gene did not significantly change between the
test and control groups, and there were no situations where a
significant change in the internal control between test and
control groups exists (FC < 1.5, P > 0.05). AmiRNAwas con-
sidered not expressed in a particular sample if the mean CT ≥
36 in both the old and control groups, and they were consid-
ered differentially expressed if the fold change between the
comparative groups was greater than 1.5-fold and P < 0.05
(Student’s t test). Primer sequences are available upon request.

Mouse miR-216a, miR-216b, and miR-217 targeting
vector design and cloning

A targeting vector including two homology arms of 4.8 kbp
upstream and 5.0 kbp downstream of the 27.9-kbp region
containing the miR-216/-217 cluster was synthesized by
Vega Biolab (Philadelphia, PA). Bacterial colonies positive
for this construct were selected by kanamycin resistance and
DNA plasmid was purified according to standard
phenol:chloroform extraction. Figure 3 shows the targeting
strategy: successful homologous recombination leads to re-
placement of 27,863 bp (28,735,939–28,763,801; GRCm38
mm10, UCSC database) containing the miR-216/-217 cluster
with a ∼2.0-kb neomycin cassette resulting in a germ line
knock-out (KO).

Generation of chimeras and miR-216/-217 KO F1
breeding

The Genetically Engineered Mouse Modeling Core of the
Ohio State University introduced the targeting vector into
S1B6 mouse embryonic stem (mES) cells according to stan-
dard procedure (Piovan et al. 2014). Briefly, early passage
exponentially growing mES cells were electroporated in the
presence of 25 μg of linearized miR-216/-217 KO targeting
vector. After a recovery period of 24 h, cells were transferred
to culture medium containing 200 μg/ml G148 and ganciclo-
vir (2 × 10-6 M) to select for specifically targeted clones. Two
positively recombined clones were then microinjected into
C57Bl/6 blastocyst-stage embryos to generate chimeric mice.
High percentage chimeras (>90 %) in turn were breed to
C57Bl/6 wild-type female mice. Heterozygous F1 offspring
were initially genotyped using the same Southern blot probes
used for mES cell selection.

miR-216/-217 KO mouse colony maintenance

All mouse work was performed prior approval by the
Institutional Animal Care and Use Committee (I-ACUC)
and according to guidelines established by the University
Laboratory Animal Resources (ULAR) of The Ohio State
University (OSU). Breeding was done with two females and
one male per cage. Breeders were started between 6–8 weeks
of age and retired at 8 months of age. Weaning was performed
at 21 days and tail snips were collected for genotyping.

miR-216/-217 KO genotyping PCR

Genotyping PCRwas optimized in the F1 generation and used
to confirm genotype in F1s and subsequent litters. Primers
were designed for the miR-216b locus in the genome to yield
a 286-bp wild-type band and for the Neo cassette to yield a
351-bp mutant band. Internal primer to amplify a 200-bp frag-
ment of the Fabpi gene was also used to control the quality of
each PCR reaction. Tail snips were digested with 300 μl
Direct PCR Lysis Reagent (Viagen Biotech, Los Angeles,
CA) according to the instructions of the manufacturer. PCR
was performed with Crimson Taq (NEB, Ipswich, MA),
0.7 μM primer pairs, and 1 μl of lysate in 15 μl reactions.
Cycling conditions were as follows: 94 °C incubation for 30 s,
30 cycles of 94 °C-20 s/60 °C-30 s/68 °C-40 s, followed by
10 min at 68 °C. Bands were detected with a 2 % agarose gel
stained with ethidium bromide. PCR genotyping of experi-
mental mice was confirmed by Southern blotting. Sequence
of primers are available upon request.

Southern blotting

Southern blotting was performed according to a previously
published protocol (Piovan et al. 2014) to confirm homolo-
gous recombination in mES cells, F1, and selected mice of
subsequent generation. DNAwas extracted from mES in 96-
well plates or tail snips by phenol:chloroform extraction and
digested with BglII or Hind III for Southern blotting analysis
of 5′ or 3′ recombination, respectively. 5′ and 3′ Southern
probes were amplified by PCR from genomic regions not
included in the vector homology arms corresponding to
28,730,511–28,731,035 (5′) and 28,769,000–28,769,799 (3′)
(GRCm38 mm10, UCSC database) of mouse chromosome
11, respectively.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) from the Broad Institute
was used to evaluate the relationship between the miRNA and
acinar gene expression. Gene expression data (GSE33322) on
6–8-month-old Pdx1-cre;KrasLSLG12D mice was accessed
and converted into a GCT file using the Microsoft Excel.
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GSEAwas performed by comparing three sample data sets for
normal pancreas (high miR-216/-217 expression) to three data
sets for PDAC (low miR-216/-217 expression). A list of 30
acinar genes as reported by Morris et al. were used for the
enrichment analysis (Morris et al. 2014).

Results

miRNAs are differentially expressed in transgenic mouse
models of PDAC

The expression of 629 miRNAs was profiled in RNA isolated
from the pancreas of young and old P48+/Cre;LSL-KRASG12D

mice, PDX-1-Cre;LSL-KRASG12D mice, and controls. Of the
629 miRNAs profiled, 229 were expressed as defined in the
BMaterials and methods^ section. The differential expression
of the miRNAs was compared in the old P48+/Cre;LSL-
KRASG12D mice versus the control mice. Of the 229
expressed miRNAs, 103 were differentially expressed, with
100 having increased expression and three miRNAs with re-
duced expression (Fig. 1) and STable 1. In a comparison of
young P48+/Cre;LSL-KRASG12D mice versus control mice, on-
ly five miRNAs were differentially expressed (all increased
expression, STable 1). Also in the PDX-1-Cre;LSL-
KRASG12D vs control, 21 were differentially expressed with
19 increased and 2 miRNAs decreased (STable 1).

Interestingly, only three miRNAs had reduced expression
in the old P48+/Cre;LSL-KRASG12D mice versus the control
mice comparison; miR-216a, miR-216b, and miR-217 (Fig. 1,
STable 1). miR-216a, miR-216b, and miR-217 are contained
within a 17.6-kbp segment on chromosome 11qA3.3. The
expression of miR-216a, miR-216b, and miR-217 sequential-
ly decreased from control to young and old P48+/Cre;LSL-
KRASG12D mice (Fig. 2a–c). The expression of these three
miRNAs in the PDX-1-Cre;LSL-KRASG12D mice was in be-
tween that of the young and old P48+/Cre;LSL-KRASG12D

mice (Fig. 2a–c). The findings of intermediate miR-216/-217
expression in the old P48+/Cre;LSL-KRASG12D mice are not
surprising due to the mosaic expression of Kras in these mice.
A recent review of the differential miRNA expression in hu-
man PDAC tissues compiled an 18 miRNA signature of
PDAC from the differentially expressed miRNAs (13 in-
creased and 5 decreased) reported in at least three studies
(Visani et al. 2015). Our data from miRNA expression profil-
ing in the KRASG12D transgenic mouse model of PDAC re-
port that 8 of the 18miRNAs in the human signature were also
differentially expressed in the mouse model of PDAC (5 in-
creased and 3 decreased). These include miR-100, miR-181a,
miR-181b, miR-222, and miR-223 (increased) and miR-216a,
miR-216b, and miR-217 (decreased).

The Pdx and Ptf1a promoters drive the differentiation of
early pancreas progenitors from the endoderm during

development. These progenitors give rise to both exocrine
and endocrine populations of the pancreas (Kawaguchi et al.
2002). As miR-216a, miR-216b, and miR-217 were reported
to be highly enriched in rat acini (Bravo-Egana et al. 2008)
and the current belief is that pancreatic ductal adenocarcinoma
arises from pancreatic acinar cells (Guerra et al. 2007), we
wished to determine the pancreatic expression of the three
reduced miRNAs in a third transgenic mouse, the Ela-
KrasG12D mouse (Grippo et al. 2003). The mutant Kras in
these mice are driven by the acinar-specific elastase promoter
(Grippo et al. 2003). We found that the expression of the three
miRNAs reduced with age in the Ela-KrasG12Dmice (Fig. 2d).
To establish a relationship between expression of miR-216/-
217 and acinar genes, GSEAwas performed using a publically
available data set of on pancreatic gene expression in Pdx1-
cre;KrasLSLG12D mice. A set of 30 acinar-specific genes were
positively enriched in the normal pancreas with high miR-
216/-217 expression compared to the PDAC with low miR-
216/-217 expression (Fig. 3). We conclude that miR-216a,
miR-216b, and miR-217 are downregulated in the Pdx-1,
Ptf1a, and Ela-KrasG12D transgenic models of PDAC and that
lower levels of the miRNAs correlates with lower expression
of acinar-specific genes.

Germline knockout of miR-216a, miR-216b, and miR-217

The reduced expression of miR-216a, miR-216b, and miR-
217 with increasing age of the mice was of interest to us for
several reasons. Firstly, these three miRNAs are reduced

Fig. 1 Volcano plot, miRNA expression in KC (p48) mice. The
expression of 629 miRNAs was profiled in control and old P48+/
Cre;LSL-KRASG12D mice. Of the expressed miRNAs shown, 100 had
increased expression and 3 had reduced expression in the old P48+/
Cre;LSL-KRASG12D mice compared to the control
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during PanIN progression, (Yu et al. 2012; Xue et al. 2013),
pancreatitis, and PDAC in both patients (Deng et al. 2014,
Schultz et al. 2012, Szafranska et al. 2007, Szafranska et al.
2008, Vychytilova-Faltejskova et al. 2015, Xue et al. 2013, Yu
et al. 2012) and transgenic mice (Ali et al. 2012, Rachagani
et al. 2015). Secondly, miR-216b targets KRAS in

nasopharyngeal carcinoma (Deng et al. 2011), miR-217 tar-
gets KRAS in PDAC cells, and miR-217 oligo reduces prolif-
eration of PDAC cell lines (Zhao et al. 2010). Thus, it is
possible that these three miRNAs function as tumor suppres-
sors in pancreatic acini and their repression contributes to both
increased KRAS expression as well as tumorigenesis.

To test this hypothesis in vivo, we deleted a 27.9-kbp re-
gion on chromosome 11 of the mouse genome containing the
miR-216a, miR-216b, and miR-217 host genes in the germ
line of mice (Fig. 4a). At the time the mouse was generated,
the targeting was engineered for the complete germ line abla-
tion of the cluster deemed the fastest approach possible in just
one targeting event due to the large size of locus (∼28 kbp).
Following transduction with the targeting vector and in vitro
selection, a successful recombination was demonstrated by
Southern blot analysis of G418/gancyclovir-resistant mES
clones (Fig. 3b). In addition to a ∼19.9-kbp wild-type frag-
ment, mES DNA digested with Bgl II and surveyed with a
locus-specific probe designed outside the 5′ region of homol-
ogy to the targeting vector showed a mutant 6.8 kbp that
results from the additional Bgl II site introduced by the neo-
mycin cassette (Fig. 4b).

We performed a serial breeding of time of heterozy-
gous F1 and heterozygous F2 animals for an extended
period. Since the genotyping of over 200 pups did not
yield any homozygous mice, we suspected embryonic le-
thality and set out to perform embryo analysis to establish
the occurrence of lethality during development. First, we
collected wild-type embryo RNA to determine miR-216a,
miR-216b, and miR-217 expression during development.
Figure 5 shows that expression of the miRNAs in whole
wild-type embryo peaks between 11.5 and 13.5 days post
coitus (d.p.c.). Based on this observation, we collected
embryos at 7.5, 9.5, 11.5, 13.5, and 18.5 d.p.c. from mul-
tiple heterozygous mating cages. We were able to collect a
viable homozygous embryo at 9.5 d.p.c. However, collec-
tion at later embryonic days did not show any viable

Fig. 3 Gene set enrichment analysis in normal pancreas and PDAC. The
gene set enrichment of expression data from 6–8-month-old KrasG12D or
control mice obtained from data set GSE33322 were studied. A set of 30
acinar-specific genes were used for the enrichment

Fig. 2 miR-216a, miR-216b, and miR-217 expression in control and
transgenic mice. The miR-216a (a), miR-216b (b), and miR-217
(c) expression is shown in young and old P48+/Cre;LSL-
KRASG12D, old PDX-1-Cre;LSL-KRASG12D, and control mice. d
Pancreatic expression of miR-216a, miR-216b, and miR-217 in Elas
KrasG12Dmice. Mean ± S.E.M. *P < 0.05, **P < 0.01 compared to control
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homozygous animal, suggesting that complete loss of the
miR-216/-217 cluster causes embryonic lethality around
9.5 days of gestation or shortly thereafter (Fig. 6).

Haplosufficiency in F2 miR-216/-217 KO mice

Due to the triple miRNA knockout mouse being embryonic
lethal, we shifted out efforts to phenotyping the miR-216/-217
heterozygous (het) mice. We first measured miR-216b and
miR-217 levels in the pancreas of miR-216/-217 het (n = 18)
and wild-type mice (n = 11). Surprisingly, there was no signif-
icant reduction of miR-216b or miR-217 in the miR-216/-217
het mice. If anything, we observed a slight increase in mature
miR-216b and miR-217 expression in the heterozygous mice
(Fig. 7a). To see if any differences exist between the expression
of the miR-216/-217 host gene in wt and het mice, we analyzed
two different segments, the 3′ miR-216/-217 host gene tran-
script (HGT), and the 5′HGT, by qPCR. The pattern of expres-
sion for the host gene miR-217/-217 was similar to the mature
miRNA (Fig. 7b). The change in the mouse body weight was
compared between the wild-type control mice and miR-216/-
217 het mice but found no significant difference (data not

shown) nor were there any significant changes on the plasma
biochemistry between the het and wild-type mice with the ex-
ception of a slight increase in total bilirubin (Fig. 7c). Finally,
microscopic evaluation of pancreatic sections of the miR-216/-
217 het mice showed no remarkable changes compared to the
wild-type controls (data not shown).

Discussion

We profiled the expression of over 600 mature miRNAs
in KRASG12D transgenic mouse models of PDAC. A large
percentage of miRNAs had increased expression in the
transgenic mice compared to controls. We also profiled
the transcribed ultraconserved region RNA (T-UCR) ex-
pression in the identical RNA samples from this study
along with the RNA isolated from patient’s PDAC speci-
mens (Jiang et al. 2016). The T-UCRs had primarily in-
creased expression in both the mouse and human
pancreases. We used qPCR profiling of clinical specimens
of PDAC to show a similar trend as reported here
(predominate miRNA upregulation with reduction in

Fig. 5 miR-216a, miR-216b,
and miR-217 expression levels in
the mouse embryo. Wild-type
embryos were collected for RNA
and analyzed for miR-216/-217
expression by qPCR

Fig. 4 Targeting strategy to generate miR-216/-217 knockout mice. a.
Wild-type miR-216/-217 locus (top) and miR-216/-217 targeting vector
(below). Targeting homologies are illustrated as gray boxes. Designed
probes and restriction enzymes are also included. b. Representative
Southern blot of three G418-resistant clones following Bgl II digestion

of extracted DNA and survey with a 5′ locus-specific probe. In addition to
a 19.9-kbp wild-type band, correctly recombined clones (middle lane)
showed a mutant 6.8-kbp fragment (arrow) due to the presence of a Bgl
II site in the neomycin cassette replacing the miRNA cluster
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miR-216/-217, unpublished data). It is interesting that two
classes of noncoding RNAs (miRNAs and T-UCRs)
have predominately increased expression in both mouse
models and clinical specimens of PDAC.

The expression of three miRNAs transcribed from the
miR-216/-217 miRNA family was reduced in the P48+/
Cre;LSL-KRASG12D, PDX-1-Cre;LSL-KRASG12D, and
ELa-KrasG12D mice. Our data confirm the recent findings
of Rachagani et al. (2015) who reported a reduction in the
expression of miR-216a, miR-216b, and miR-217 in the
pancreas P48+/Cre;LSL-KRASG12D mice (Rachagani et al.
2015). The results of our study parallels those miRNA
profiling studies in human PDAC showing an increased
expression of several miRNAs yet reduction in the acinar
miRNAs (Visani et al. 2015). Similar patterns of miRNA
expression in both transgenic mice and human PDAC fur-
ther supports the use of these models for experimental
pancreatic cancer research.

Deletion of 27.9 kbp from the germ line of the mice was
embryonic lethal. This was determined by the presence of no
viable homozygotes after genotyping over 200 pups. One ho-
mozygote was identified at E9.5 but not at later time points
suggesting that the deletion caused lethality shortly after E9.5.
At E9.5, the developing pancreas undergoes the primary

Fig. 7 Analysis of haploinsufficient mice. a Mature miR-216b and
miR-217 and (b) miR-216/-217 3′ and 5′ host gene transcript (HGT)
expression in wild-type (open bars) and miR-216/-217+/− (hatched bars)
mice. c. Full blood biochemistry panel results for wild-type and
heterozygous mice. (n = 18) Mean ± S.E.M.

Fig. 6 Embryonic lethality inmiR-216/-217 homozygousmice. a. The
miR-216a, miR-216b, and miR-217 expression was measured in the
mouse embryos at various stages of development by qRT-PCR. b.
miR-216/-217 expression during development at E3.5, E9.5, 13.5, and
17.5. c (Revise based on new). Genotyping of the E9.5 litter revealed a
viable homozygous embryo
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transition. The primary transition is characterized by the very
first appearance of low levels of digestive enzymes and glu-
cagon and insulin gene expressing cells (Cleaver et al. 2010).
Although lethality occurred about the time that the pancreas
would begin secreting digestive enzymes, others have found
that failure to develop a pancreas does not result in lethality in
utero (Hale et al. 2005, Kawaguchi et al. 2002). It is more
likely, therefore, that interruption of other crucial developmen-
tal milestones is responsible for the lethality phenotype.

Several miRNA gene knockout mice have been known
to induce lethality in mice (Farmer et al. 2013, Kuhnert
et al. 2008, Liu et al. 2008, Ventura et al. 2008, Wang
et al. 2008, Zhao et al. 2007). Knockout of miR-205 was
embryonic lethal in mice (Park et al. 2012). Deletion of
the primary transcript of brain expressed miR-137 was
also embryonic lethal, the authors estimate that lethality
occurred between E4.5 and E11.5 (Crowley et al. 2015).
There was no difference in the mature miR-137 expres-
sion between the wild-type and miR-137 heterozygotes
(Crowley et al. 2015). Our data (Fig. 6a) showed no de-
crease in miR-216b and miR-217 expression in the het-
erozygotes and in fact there was a slight increase in the
expression (Fig. 7). Possibly, some type of compensatory
mechanisms such as increased transcription occur in these
heterozygotes.

miR-216a and miR-217 are located within the mouse
ENSMUST00000138164, a 64-kbp transcript on 11qA3.3.
This transcript has been annotated as a lncRNA. miR-
216b is located on a separate transcript, 5.4 kbp upstream
of GM12082 (Fig. 3). We deleted 27.9 kbp portion of
11qA3.3 which contained both miR-216b as well as a
large portion of the lncRNA GM12082 (Fig. 3).
Ongoing studies have developed individual, germline
knockouts of miR-216a, miR-216b, and miR-217
(Sutaria, Coppola, and Schmittgen, unpublished data).
We report no lethality from the knockout of each individ-
ual miRNA. Thus, the lethality observed here is a result of
either the simultaneous knockout of all three miRNAs or
loss of the miR-216/-217 host gene/lncRNA. If the latter
is true, then this would add GM12082 to small but grow-
ing list of published studies that show lethality from the
germline knockout of lncRNAs (Bassett et al. 2014).

In summary, we confirm published data in both human
and mouse PDAC (Rachagani et al. 2015, Visani et al.
2015) that miR-216a, miR-216b, and miR-217 are re-
duced during the mouse’s age when PDAC would prog-
ress. We also demonstrate that the germ line deletion of
the miR-216/-217 host gene is embryonic lethal. As miR-
216/-217 are acinar enriched, it will be of interest to de-
velop either germ line or conditional knockout mice of the
individual miRNAs to evaluate any potential tumor sup-
pressor roles for these miRNAs during PanIN or PDAC
development in transgenic mice.
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