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Abstract The transfer of plastid DNA sequences into plant
nuclear genomes plays an important role in the genomic
evolution of plants. The abundance of nuclear-localized plas-
tid DNA (nupDNA) correlates positivelywith nuclear genome
size, but the genetic content of nupDNA remains unknown. In
this mini review, we analyzed the number of nuclear-localized
plastid gene fragments in known plant genomic data. Our
analysis suggests that nupDNAs are abundant in plant nuclear
genomes and can include multiple complete copies of protein-
coding plastid genes. Mutated nuclear copies of plastid genes
contained synonymous and nonsynonymous substitutions.
We estimated the age of the nupDNAs based on the time when
each integration occurred, whichwas calculated by comparing
the nucleotide substitution rates of the nupDNAs and their
respective plastid genes. These data suggest that there are two
distinct age distribution patterns for nupDNAs in plants, and
Oryza sativa and Zea mays were found to contain a very high
proportion of young nupDNAs. Expressed sequence tags and
predicted promoters of nupDNAs were identified, revealing
that certain nuclear-localized plastid genes may be functional

and that some have undergone positive natural selection
pressure.
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Introduction

The plant nuclear genomes acquired numerous DNA frag-
ments from chloroplasts, which played an important role in
the genomic of plants, and as a result, the majority of genes
encoding chloroplast proteins reside in plant nuclear genomes
(Baldauf and Palmer 1990; Gantt et al. 1991; Martin and
Herrmann 1998; Rujan and Martin 2001; Martin et al.
2002). Although the transfer of most of these DNA fragments
occurred at an early stage in organelle evolution, functional
gene transfer events continue to occur in flowering plants
(Martin et al. 1998; Adams et al. 1999, 2002; Millen et al.
2001).

In many eukaryotes, DNA transfer from organelles to the
nuclear genome is ongoing (Ayliffe et al. 1998; Bensasson
et al. 2001; Woischnik and Moraes 2002; Yuan et al. 2002;
Huang et al. 2003, 2004; Stegemann et al. 2003). The transfer
rate of chloroplast DNAs to the nuclear genome of tobacco
has been measured using specific marker genes that were
functional only when integrated into the nuclear genome
(Huang et al. 2003; Stegemann et al. 2003). Gene transfer
events were found to occur more often than that detected
under experimental conditions (Martin 2003). The nuclear-
localized plastid DNAs (nupDNAs) also tended to be located
in close proximity. Once plastid DNAs become integrated into
the rice nuclear genome, they are rapidly fragmented and
shuffled, and newly integrated nupDNAs tend to be eliminat-
ed rapidly. Large nupDNA fragments preferentially localize at
the pericentromeric regions of chromosomes, where integra-
tion and elimination frequencies are markedly higher (Matsuo
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et al. 2005; Noutsos et al. 2005; Sheppard and Timmis 2009).
The greatest number of chloroplast DNA insertions occurs at
nuclear regions characterized by sharp changes in repetitive
sequence density (Guo et al. 2008). The abundance and com-
position of organellar DNA fragments have been investigated
in model plants, such as Arabidopsis thaliana and rice (Martin
et al. 2002; Shahmuradov et al. 2003). Compared with the
small Arabidopsis genome, the rice nuclear genome is essen-
tially saturated with plastid DNA sequences, and the abun-
dance of nupDNAs correlates positively, on average, with
nuclear genome size (Smith et al. 2011). The density and
pattern of nupDNA integration events have been investigated
in several species, and the mechanisms of integration and
genomic organization have been analyzed in detail (Timmis
et al. 2004; Kleine et al. 2009). The present genomic consti-
tutions of nupDNAs could be explained by the combination of
rapidly eliminated deleterious fragments and a few less dele-
terious, but more stable, fragments (Yoshida et al. 2013).
However, the abundance, age, and predicted promoters of
plastid genes in the nuclear genome of most plant species
have not been thoroughly investigated.

In this review, we evaluated the abundance and age of
nupDNAs in genomic data of 23 plant species (Arabidopsis
Genome Initiative 2000; Nishiyama et al. 2003; Shrager et al.
2003; Project IRGS 2005; Tuskan et al. 2006; Jaillon et al.
2007; Ming et al. 2008; Huang et al. 2009; Paterson et al.
2009; Schnable et al. 2009; Schmutz et al. 2010; Shulaev et al.
2010; Vogel et al. 2010; Argout et al. 2011; Banks et al. 2011;
Potato Genome Sequencing Consortium 2011; Young et al.
2011a; Prochnik et al. 2012; Tomato Genome Consortium
2012; Xu et al. 2013). The analysis shows that significant
differences in the composition of nupDNAs exist, and that
based on their age, there are two distinct distribution patterns
for nupDNAs in plants. Expressed sequence tags (ESTs)
indicated that certain nupDNAs may be functional. An anal-
ysis of predicted promoters of nupDNAs revealed that some
were shuffled and some were eliminated. This review also
reveals that the relationship between transcription output and
the efficiency of nupDNA gene promoters needs to be further
investigated.

Analytical approach

The plastid genome sequences of the following species were
obtained fromGenBank: A. thaliana (GenBank NC_000932),
Brachypodium distachyon (NC_011032), Carica papaya
(NC_010323), Chlamydomonas reinhardtii (NC_005353),
Cucumis sat ivus (NC_007144) , Citrus s inens is
(NC_008334), Eucalyptus grandis (NC_014570), Fragaria
vesca (NC_015206), Glycine max (NC_007942), Manihot
e scu l en ta (NC_010433) , Medicago t runca tu la
(NC_003119), Oryza sativa Japonica group (NC_001320),

Physcomitrella patens (NC_005087), Populus trichocarpa
(NC_009143), Panicum virgatum (NC_015990), Phaseolus
vulgaris (NC_009259), Sorghum bicolor (NC_008602),
Solanum lycopersicum (NC_007898), Selaginella
moellendorffii (NC_013086), Solanum tuberosum
(NC_008096), Theobroma cacao (NC_014676), Vitis vinifera
(NC_007957), and Zea mays (NC_001666) (Hiratsuka et al.
1989; Maier et al. 1995; Sato et al. 1999; Maul et al. 2002;
Sugiura et al. 2003; Gargano et al. 2005; Saski et al. 2005;
Bausher et al. 2006; Jansen et al. 2006; Kahlau et al. 2006;
Tuskan et al. 2006; Guo et al. 2007; Pląder et al. 2007; Saski
et al. 2007; Bortiri et al. 2008; Daniell et al. 2008; Smith 2009;
Shulaev et al. 2010; Paiva et al. 2011; Young et al. 2011a, b).

Pairwise comparisons of plastid genes and nuclear DNA
sequences were performed using a BLAST program (http://
www.phytozome.net; Goodstein et al. 2012). The number (K)
of substitutions per nucleotide site between each of nupDNAs
and chloroplast genes was calculated based on the BLAST
alignment (Matsuo et al. 2005; Yoshida et al. 2013). For every
plastid and nupDNA gene, 1 kb upstream of the translation
start site was considered as promoter sequence. Promoters
were detected using the TSSP program (http://softberry.
com). We used the BLAST, the nupDNA fragments, and
plastid DNA that were searched against the Expressed
Sequence Tags (EST) Database (http://www.ncbi.nlm.nih.
gov/) with no mismatch to identify whether ESTs are
derived from nupDNA or plastid genome.

Plastid genes are abundant in plant nuclear genomes

To evaluate the abundance of plastid genes in plant nuclear
genomes, we used the plastid genes as the query when
searching plant nuclear genome databases (http://www.
phytozome.net). BLASTN identified many complete and
partial gene sequences with high levels of sequence identity.
Matches with E values lower than 10−10 were defined as
nupDNA fragments. The sequences were related to
photosynthesis, energy metabolism, fatty acid metabolism,
transporters, cellular processes, and biosynthesis of
cofactors. This analysis was applied to nupDNA fragments
larger than 50 bp because it was difficult to confirm the origin
of smaller fragments. The analysis revealed that the number of
nupDNAs varies among plant species (Fig. 1 and Online
Resource 1).

Previous work determined that plants with relatively large
genomes contain more nupDNAs than those with smaller
genomes (Shahmuradov et al. 2003; Smith et al. 2011), and
we obtained similar results in our present analysis. F. vesca,
G. max, O. sativa, P. vulgaris, S. bicolor, and Z. mays were
found to contain more nupDNAs than A. thaliana,
C. reinhardtii, P. patens, and S. moellendorffii (Fig. 1). For
example, G. max contains 1718 nupDNAs related to
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photosynthesis, metabolism, fatty acid metabolism, trans-
porters, cellular processes, and the biosynthesis of cofactors,
of which, 485 are involved in photosynthesis. On the other
hand, A. thaliana contains only 85 nupDNAs, of which, 30 are
related to photosynthesis (Online Resource 1). Compared with
the genomes of lower plants, such as C. reinhardtii and
P. patens, the nuclear genomes of higher plants, such as
A. thaliana, F. vesca, and G. max (with the exception of
S. moellendorffii), have more plastid DNA sequences
(Fig. 1). The lower level of nupDNAs may be a characteristic

of lower plant genomes, and sequencing additional lower
plant genomes could reveal if this is a typical difference
between lower and higher plants.

Interestingly, the ratio of complete coding DNA sequences
(CDSs) to total nupDNAs was not constant among plant
species. For O. sativa, 51.29 % of the identified nupDNA
genes related to photosynthesis contained intact CDSs (Fig. 1a
and Online Resource 1). In contrast, in G. max, most of the
identified nupDNA genes were partial sequences, or truncated
CDSs, and only 8.45 % contained intact CDSs despite having
a larger number of nupDNAs thanO. sativa. For O. sativa, 15
of the 21 genes related to photosynthesis had at least one
nuclear intact CDS copy without mutations and 10 of the 25
genes related to energy metabolism had at least one nuclear
intact CDS copy without mutations (Online Resource 1). By
contrast, the only nuclear copy of plastid atpI in A. thaliana
contained several single nucleotide deletions, which produced
mutations. Similar results were found for C. sinensis using the
plastid gene petG and in T. cacao using plastid ndhG.

The numbers of intact nuclear copies of different plastid
genes varied among plants. For example, B. distachyon psbI,
encoding photosystem II protein I, had one intact CDS
copy (Online Resource 2), but psbF, encoding photosys-
tem II protein VI, had eight intact CDS copies (four
were nonmutated intact CDSs). Interestingly, atpF, petB,
petD, ndhB, and ndhB had no intact CDS copies ac-
cording to our data. By contrast, G. max plastid-derived
nuclear sequences covered almost the entire plastid ge-
nome. Online Resource 1 revealed that these nupDNA
fragments became integrated into the nuclear genome at
different frequencies. A. thaliana had 12 nupDNAs cor-
responding to rbcL but had only two nupDNAs corre-
sponding to psbC, clearly indicating that these chloro-
plast genes differed in their propensity to undergo inte-
gration into the nuclear genome.

Characteristics of intact nuclear copies of plastid genes

To study the features of intact plastid genes in plant nuclear
genomes, we classified them as nonmutated or mutated
(Fig. 2, Online Resource 1, and Online Resource 2). In
A. thaliana, G. max, O. sativa, P. vulgaris, S. bicolor, and
Z. mays, we subclassified mutated intact genes into those
containing nonsynonymous or synonymous substitutions.
The analysis clearly showed that the ratio of nonmutated intact
genes to total intact genes varied among plant species. For
O. sativa, 42.86 % of genes had nonmutated intact CDSs
(Fig. 2a and Online Resource 1), whereas for G. max,
24.39 % of genes had nonmutated intact CDSs.

The analysis also demonstrated that the nupDNAs in-
cluded copies of plastid genes with synonymous substitu-
tions in the intact CDSs. O. sativa had 19 synonymous

Fig. 1 Distribution of plant nuclear-localized plastid DNA (nupDNA)
and the presence or absence of complete or partial nuclear homologs
(Online Resource 1). The black, gray, and white boxes indicate the
nupDNA of intact coding DNA sequences (CDSs), truncated CDSs,
and CDSs, respectively, with only partial nuclear homologs. a Genes
related to photosynthesis; b genes related to energy metabolism; c genes
related to fatty acid metabolism, transporters, cellular processes, and the
biosynthesis of cofactors
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substitutions in intact CDSs, and Z. mays had 10 such
synonymous substitutions. However, A. thaliana and
P. vulgaris had no synonymous substitutions in any intact

CDS in their nupDNAs (Online Resource 1). This finding
suggested that at least some of these genes have under-
gone strong positive natural selection.

Fig. 2 Distribution of intact plant
coding DNA sequences (CDSs)
in nuclear-localized plastid DNA
(nupDNA) and the presence or
absence of mutations (Online
Resource 1 and 2). The black and
white boxes indicate nupDNAs
containing intact CDSs, either
with mutations or without,
respectively. a Genes related to
photosynthesis; b genes related to
energy metabolism; c genes relat-
ed to fatty acid metabolism,
transporters, cellular processes,
and biosynthesis of cofactors
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Estimation of age distribution reveals variation in transfer
frequency among different plants

To estimate when individual nupDNA fragments became
integrated into the nuclear genome, we compared the nucleo-
tide substitutions in nupDNAs with those present in the chlo-
roplast genome. To estimate the rate of substitution, we esti-
mated the age (million years, Myr) of nupDNA fragments
(Matsuo et al. 2005; Yoshida et al. 2013). We excluded data
from species having a low level of nupDNA, such as
C. reinhardtii, P. patens, and S. moellendorffii. The age distri-
bution profiles of the nupDNA fragments in plants suggested

that nupDNAs were repeatedly integrated into the nuclear
genome. Furthermore, the proportion of nupDNAs of specific
ages (Myr) varied among plant species (Fig. 3 and Online
Resource 1).

There were two distinct age distribution patterns of
nupDNAs in the plant species we analyzed (Fig. 3). In
one pattern, a large number of nupDNAs were
translocated, either within the past 1 Myr or from 1 to
10 Myr ago, and the amount of nupDNA decreased as
the age increased. This was illustrated by O. sativa
(Matsuo et al. 2005) and Z. mays. In the other pattern,
a very low proportion of young nupDNAs existed and

Fig. 3 Age distribution of plant
nuclear-localized plastid DNA
(nupDNA) by millions of years
(Myr) (see Online Resource 1).
aGenes related to photosynthesis;
b genes related to energy
metabolism
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decreased slowly with time. This result was similar to
that of Yoshida et al. (2013). This was found in

A. thaliana, F. vesca, G. max, P. vulgaris, and
S. bicolor.

Fig. 4 Comparison of predicted
promoters between plastid genes
and their nuclear-localized
homologs. The black, gray, and
white boxes indicate high
similarity, partial similarity, and
dissimilarity, respectively. a
Genes related to photosynthesis;
b genes related to energy
metabolism; c genes related to
fatty acid metabolism,
transporters, cellular processes,
and biosynthesis of cofactors
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Analysis of predicted promoters of nuclear copies
of plastid genes

To study the expression of the nupDNA genes, we
analyzed EST sequences corresponding to the nuclear
copies of plastid genes. This was performed using only
nupDNA fragments with mutated intact genes because it
was difficult to confirm the origin of ESTs of
nonmutated intact genes as they may have been derived
from either nuclear or plastid genes. The analysis sug-
gested that some nuclear-localized plastid genes are
transcribed and functional (Online Resource 1 and
Online Resource 2). To understand the promoters of
nuclear-localized plastid genes, we searched the predict-
ed promoter sequences in the plant nuclear genome
database (http://www.phytozome.net) and plastid
genome database (http://www.ncbi.nlm.nih.gov/). For
every plastid gene and nuclear-localized plastid gene,
the region up to 1 kb upstream of the translation start
site was considered as the predicted promoter region,
unless it was determined to be smaller.

The analysis showed that many of the predicted promoter
sequences of nuclear-localized plastid genes had been shuffled
or eliminated after integration into the nuclear genome (Fig. 4,
Online Resource 1 and Online Resource 2). For example, in
O. sativa, 55.93 and 70.67 % of the predicted promoter
sequences of genes related to photosynthesis or energy me-
tabolism, respectively, had been eliminated. Interestingly, in
G. max, 70.73% of the predicted promoter sequences of genes

related to photosynthesis had been eliminated, yet only
33.33 % of those related to energy metabolism had been
eliminated. By contrast, in M. truncatula, 37.5 % of the
predicted promoter sequence of genes related to photosynthe-
sis had been eliminated, but 96.08% of those related to energy
metabolism had been eliminated.

Some genes had ESTs in both nupDNA genes and plastid
genes (Table 1, Online Resource 1 and Online Resource 2),
such as the O. sativa psbK (nupDNA gene EST: JK503631.1,
and plastid gene EST: CI746041.1) and M. truncatula psbM
(nupDNA gene EST: CO516909.1 and plastid gene EST:
EX528553.1). By contrast, some ESTs were apparent in either
the nupDNA gene or plastid gene, such as the O. sativa rbcL
(nupDNA gene EST not found; plastid gene EST:
CB672943.1) and O. sativa psbZ (nupDNA gene EST:
CI741169.1; plastid gene EST not found). More data are
shown in the Online Resources 1 and 2. Interestingly, the
predicted rbcL promoters of the nupDNA gene and the corre-
sponding plastid gene in O. sativa were very similar (Online
Resource 3). However, although the M. truncatula nupDNA
psbM and corresponding plastid gene were transcribed, the
predicted promoters differed.
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Table 1 Promoter analysis of plastid genes and homologous intact coding DNA sequences in nuclear DNA

Sequence alignment of promotera EST

Homologs of plastid genes in nuclear DNA Plastid genes

Identity≥95 % Online Resource 3 SFig 1 JK503631.1 (O. sativa,
Chr4:9174556..9174741)

CI746041.1 (O. sativa, psbK)

Online Resource 3 SFig 1 Not found (O. sativa,
Chr10:10814227..10814412)

CI746041.1 (O. sativa, psbK)

Online Resource 3 SFig 2 Not found (O. sativa,
Chr10:10861205..10862638)

CB672943.1 (O. sativa, rbcL)

Online Resource 3 SFig 2 Not found (O. sativa,
Chr12:5614140..5615573)

CB672943.1 (O. sativa, rbcL)

Online Resource 3 SFig 3 CI741169.1 (O. sativa,
Chr10:10819061..10819249)

Not found (O. sativa, psbZ)

Online Resource 3 SFig 4 CX115158.1 (O. sativa,
Chr12:5641882..5642016)

Not found (O. sativa, OrsajCp048)

Identity<50 % Online Resource 3 SFig 5 CO516909.1 (M. truncatula,
chr4:10931241..10931345)

EX528553.1 (M. truncatula, psbM)

Online Resource 3 SFig 6 Not found (G. max,
Gm01:14568616..14568804)

EH260827.1 (G. max, psbZ)

Online Resource 3 SFig 7 CF050666.1 (Z. mays,
2:200093943..200094065)

Not found (Z. mays, psbJ)

a 1 kb upstream of the translation start site was considered the promoter region
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