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Abstract MicroRNAs (miRNAs) are known to influence
ovarian cell proliferation, apoptosis and hormone release,
but it remains unknown whether miRNAs affect ovarian func-
tions via transcription factors. We examined the effect of
miRNAs on nuclear factor-κappaB (NF-kB) (p65) expression
in human ovarian luteinized granulosa cells. We transfected
cultured primary human ovarian luteinized granulosa cells
with 80 different constructs encoding human pre-miRNAs
and then evaluated NF-kB (p65) expression (percentage of
cells containing p65) by immunocytochemistry.We found that
21 of the constructs stimulated NF-kB (p65) expression and
18 of the constructs inhibited NF-kB (p65) expression. This is
the first direct demonstration that miRNAs affect NF-kB (p65)
expression and the first genome-scale miRNA screen to iden-
tify upregulation and downregulation of NF-kB accumulation
by miRNAs in the ovary. Novel miRNAs that affect the NF-
kB signalling pathway could be useful for the control of NF-

kB-dependent reproductive processes and the treatment of
NF-kB-dependent reproductive disorders.

Keywords miRNAs . NF-kB (p65) . Ovary . Reproductive
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Introduction

The nuclear factor-κappaB (NF-kB) is a family of regulatory
proteins controlling many biological processes such as prolif-
eration, survival, apoptosis, inflammation, stress response,
angiogenesis, tissue invasion and metastasis in many normal
and cancerous cell types (Karin 2006; Sethi et al. 2008;
Wullaert et al. 2011; Lan et al. 2012; Siomek 2012). NF-kB
proteins, especially RelA (p65) and NF-kB (p50) (Aggarwal
2004; Hayden and Ghosh 2008; Pavlová et al. 2011), can be
important regulators of ovarian cell function and pathological
transformation. NF-kB is reported to inhibit apoptosis in
normal rat luteal cells (Telleria et al. 2004) and granulosa cells
(Xiao et al. 2002; Wang et al. 2002). A transfected NF-kB
(p65) complementary DNA (cDNA) construct reduced nucle-
ar apoptosis, increased mitochondrial apoptosis, stimulated
cell proliferation and altered hormone release in porcine gran-
ulosa cells (Pavlová et al. 2011). The construct also stimulated
cell proliferation and altered hormone release in rat corpus
luteum cells (Telleria et al. 2004) but not in human luteal cells
(Gonzalez-Navarrete et al. 2007). In addition, NF-kB has been
implicated as an essential factor for survival and apoptosis in
human ovarian cancer cells (Zerbini et al. 2011).

NF-kB could be regulated not only by cDNA but also by
microRNAs (miRNAs). miRNAs are a class of small, non-
coding RNAs (18–25 nucleotides) that act in post-
transcriptional gene regulation. After the precursor miRNAs
(pre-miRNAs) are transcribed, they are transported to the
cytosol and converted to miRNA-miRNA duplexes. The
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guide strand of a mature miRNA is then incorporated into an
RNA-induced silencing complex, which may promote the
cleavage or translational repression of target messenger
RNAs (mRNAs) (Gammell 2007; Baley and Li 2012;
Donadeu et al. 2012). The regulation of NF-kB signalling by
miRNAs in non-ovarian cells was reported previously (Wan
et al. 2010; Jiang et al. 2012; Olarerin-George et al. 2013).

RNA interference is involved in the control of basic ovar-
ian cellular functions (Sirotkin et al. 2010a, 2012).
Association between the expression of NF-kB and miR-224
in mouse ovarian granulosa cells (Liang et al. 2013), miR-9
(Guo et al. 2009) and miR-199a (Chen et al. 2008; Yin et al.
2010) in human ovarian cancer cells and miR-199a in human
ovarian endometrioma cells (Dai et al. 2012) has been report-
ed. Despite the potential importance of NF-kB and miRNAs
in the control of cellular reproduction, it remains unknown
whether miRNAs directly affect ovarian NF-kB.

We performed a genome-scale screen to identify miRNAs
involved in the control of NF-kB (p65) and determine the
effects of these miRNAs on NF-kB (p65) expression. We
transfected cultured primary human ovarian luteinized granu-
losa cells with 80 pre-miRNA gene constructs and examined
the effects of the respective constructs on NF-kB (p65) ex-
pression (percentage of cells containing p65).

Materials and methods

Isolation, transfection and culture of luteinized granulosa cells

We used an experimental design similar to that of our previous
experiments aimed at identifying the effects of miRNAs
(Sirotkin et al. 2009, 2010b) and siRNAs (Sirotkin 2010) on
the functions of human ovarian luteinized granulosa cells. We
aspirated follicular fluid with luteinized granulosa cells 1–
5 days after spontaneous ovulations from two women 36–
42 years of age in each of three experiments, with normal
ovarian cycles and morphology who were undergoing ovari-
ectomy because of non-metastatic cancer of the cervix uteri
after obtaining the informed consent in accordance with EU
and Slovak ethical and medical regulations under the super-
vision of the local ethical committee governing the Polyclinics
and Hospital of Nitra, Nitra where the patients received treat-
ment. We isolated and processed the luteinized granulosa cells
as described previously (Sirotkin et al. 2005). Immediately
after isolating the luteinized granulosa cells, we suspended
them in Dulbecco modified Eagle medium (DMEM)/
Ham’s F-12 1:1 mixture (Gibco-Invitrogen, Carlsbad, CA,
USA). We dispensed portions of the cell suspension (2×
106 cells/mL, determined by haemocytometer) in 96-well
plates (50 mL/well, Axygen Scientific, Inc.) containing
miRNAs. miRNA transfections were performed by using
cationic transfection reagent (JetSI-ENDO, France) according

to the manufacturer’s protocol. In addition, we performed the
control transfections with the same transfection reagent con-
jugated with tetramethylrhodamine (Jet-SI-Endo-FluoR,
Polyplus-Transfection). We used two pre-miRNA non-silenc-
ing random-sequence miRNAs (Ambion) with no homology
to any known genes as negative controls. Human siRNAs
targeting glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Silencer 1 GAPDH siRNA, Ambion), CDC2
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) and
CREB-1 mRNA (Santa Cruz Biotechnology, Inc.) were used
as positive controls. We have used the same positive controls
in our previous experiments (Sirotkin et al. 2009, 2010b, c).
After transfection, we diluted the cells with DMEM/Ham’s
F-12 1:1 mixture supplemented with 10 % bovine foetal
serum and 1 % antibiotic–antimycotic solution (Gibco-
Invitrogen) to a concentration of 0.5×106 cells/mL and cul-
tured them for 48 h in 200 μL culture medium/well. We then
washed the wells in ice-cold PBS, fixed them for 20 min in
4 % paraformaldehyde PBS, washed them in PBS (twice for
5 min), washed them in ethanol (70 % for 5 min, 80 % for
10min, 96% twice for 10min and 100% for 10min) and then
stored them in 100 % ethanol at −18 °C for immunocyto-
chemical analysis. We stained the cells in trypan blue and
counted them using a haemocytometer to assess cell concen-
tration and viability in selected wells.

Immunocytochemical analysis

We detected NF-kB in the luteinized granulosa cells plated on
plate wells by immunocytochemistry (Osborn and Isenberg
1994). Primary mouse monoclonal antibodies against human
NF-kB (p65) (dilution 1:100; Santa Cruz Biotechnology, Inc.)
were used. The visualization of the binding of primary anti-
body was performed with secondary goat IgG labelled with
fluorescein isothiocyanate (FITC) (dilution 1:500; Sevac,
Prague, Czech Republic). We confirmed the specificity of
the primary antibodies and the molecular weights of ligands
by Western blot (Sirotkin et al. 2006; Pavlová et al. 2011).
Cells treated with labelled secondary antibody but lacking the
primary antibody were used as negative controls. We then
covered the cells with Vectashield anti-fade medium contain-
ing 4′,6-diamidino-2-phenylindole (DAPI) fluorochrome
(H-1200, Vector Laboratories, Inc, Burlingame, CA, USA).
We determined the presence of specific immunoreactivity and
transfection reagent labelled with tetramethylrhodamine in the
cells using a fluorescent microscope (Leica Microsystems,
Wetzlar, Germany) equipped with specific wavelength filters
for FITC and DAPI channels at ×100 magnification. We
determined the total cell number in each well by
counting DAPI-stained cells. We calculated the propor-
tion of NF-kB-positive cells as the number of FITC-
stained cells divided by the total cell number, as de-
scribed previously (Pavlová et al. 2011).
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Statistics

We performed three replicates of each experiment on the
effects of each miRNA. For each miRNA, we computed the
mean of values of three experiments. We counted at least
1,000 cells per well to compute the ratio of cells containing
antigen. We identified the substances that had significant
effects on NF-kB expression using a one-way ANOVA.
When we identified significant effects, we compared the treat-
ed cells with the control cells using a Duncan’s multiple range
test. We used P<0.05 as the threshold for statistical
significance.

Results

Evaluation of the efficiency of transfection and cell viability

The microscopic analysis of the cells treated with transfection
reagent labelled with tetramethylrhodamine (Jet-SI-Endo-
FluoR) showed that more than 90 % of the cells contained
the transfection reagent after culture. The immunocytochem-
ical analysis of the cells transfected with siRNAs targeting
GAPDH, CDC2 and CREB-1 showed reductions in the ex-
pression of the marker proteins of 3.9-fold, 5.6-fold and 2.5-
fold, respectively.

The immunocytochemical analysis of human luteinized
granulosa cells from the control group and the miRNA-
transfected groups showed that the cells were viable (more
than 95% of the cells remained unstained after the trypan blue
exclusion test) and had morphology characteristics of healthy
cells. Moreover, the immunocytochemical analysis detected
NF-kB (p65) in a substantial number of the cells (Fig. 1).

Identification and quantification of the effects of miRNAs
on NF-kB (p65) expression

We found that 18 of the 80 miRNA constructs significantly
decreased the proportion of cultured human luteinized

granulosa cells containing NF-kB (p65). The miRNAs that
decreased the expression of NF-kB were the following: let-
7 g, mir-1, mir-17-3p, mir-18, mir-27a, mir-29a, mir-32, mir-
134, mir-139, mir-141, mir-142, mir-149, mir-150, mir-152,
mir-186, mir-187, mir-188 and mir-191. The most potent
downregulators of NF-kB were mir-1, mir-27a and mir-150.

We found that 21 of the 80 miRNA constructs significantly
increased the proportion of cultured human luteinized granu-
losa cells containing NF-kB (p65). The miRNAs that in-
creased NF-kB expression were the following: let-7b, let-7c,
let-7d, mir-10a, mir-19a, mir-23b, mir-25, mir-31, mir-34a,
mir-99a, mir-101, mir-107, mir-108, mir-129, mir-133a, mir-
145, mir-153, mir-155, mir-181a, mir-182 and mir-183. The
most potent upregulators of NF-kB were mir-10a, mir-34a
and mir-133a (Fig. 2).

Discussion

Our microscopic and immunocytochemical analyses effec-
tively showed cell viability and the presence of transcription
factor NF-kB (p65) in the primary cultures of ovarian lutein-
ized granulosa cells. Furthermore, as in our previous experi-
ments, the analyses demonstrated the ability of the labelled
transfection reagent to enter the cells and transfer the marker
siRNAs, which efficiently reduced the expression of the mark-
er protein GAPDH (Sirotkin et al. 2009, 2010b, c).

Our experiments demonstrated that the presence of a num-
ber of different miRNAs can impact on NF-kB expression in
ovarian cells. Previously, the only known associations be-
tween miRNAs and NF-kB in ovarian cells were those in-
volving miR-224 in healthy mouse ovarian granulosa cells
(Liang et al. 2013), miR-9 (Guo et al. 2009) and miR-199a
(Chen et al. 2008; Yin et al. 2010) in human ovarian carcino-
ma cells and miR-199a in human ovarian endometrioma cells
(Dai et al. 2012). Our preliminary observations are the first
direct demonstration that miRNAs can both upregulate and
downregulate NF-kB (p65) expression in ovarian cells.

Fig. 1 Presence of DAPI (nuclear marker, left) and FITC (marker of NF-
kB (p65), right) in cultured human ovarian granulosa cells. Antigens were
detected after 48-h culture by using immunocytochemistry and visualized

by DAPI and FITC and fluorescent microscopy as indicated in “Materials
and methods”. Magnification ×400
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miRNAs can be used as tools to regulate ovarian NF-kB
and NF-kB-dependent processes including proliferation, apo-
ptosis and secretion. The ability of NF-kB overexpression to
affect these functions has been demonstrated previously
(Pavlová et al. 2011). Our observations will now enable us
to identify some of the processes regulated by the miRNA-
NF-kB axis. For example, most of the miRNAs that increased
NF-kB expression in the present experiments (except for mir-
108) inhibited cell proliferation in previous experiments
(Sirotkin et al. 2010b). Therefore, we hypothesize that these
miRNAs could suppress the proliferation of human ovarian
cells by interacting with NF-kB. Some of the miRNAs (for
example, mir-182) that increased NF-kB expression in the
present experiments inhibited nuclear apoptosis in previous
experiments (Sirotkin et al. 2010b). Therefore, we hypothe-
size that the miRNA-NF-kB axis is involved in the control of
this nuclear apoptosis. Some of the miRNAs (mir-1, mir-27a
and mir-134) that inhibited NF-kB expression in the present

experiments were previously shown to inhibit both prolifera-
tion (Sirotkin et al. 2010b) and progesterone release (Sirotkin
et al. 2009) in human ovarian cells. Progesterone is a physi-
ological stimulator of ovarian cell proliferation and luteiniza-
tion (Spitz et al. 2000; Sirotkin 2014). Therefore, we hypoth-
esize that miRNAs that interact with NF-kB to inhibit prolif-
eration and progesterone release could regulate ovarian folli-
cle development and luteinization and thus could be potential
contraceptive agents. The mechanisms of effects of miRNAs,
examined in our experiment on NF-kB expression, activation
and translocation into nucleus in ovarian cells remain to be
elucidated in further studies.
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