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and mineral dynamics

Nathan A. Palmer & Teresa Donze-Reiner &

David Horvath & Tiffany Heng-Moss & Brian Waters &

Christian Tobias & Gautam Sarath

Received: 16 April 2014 /Revised: 4 August 2014 /Accepted: 18 August 2014 /Published online: 31 August 2014
# Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Abstract Switchgrass flag leaves can be expected to be a
source of carbon to the plant, and its senescence is likely to
impact the remobilization of nutrients from the shoots to the
rhizomes. However, many genes have not been assigned a
function in specific stages of leaf development. Here, we
characterized gene expression in flag leaves over their devel-
opment. By merging changes in leaf chlorophyll and the
expression of genes for chlorophyll biosynthesis and degra-
dation, a four-phase molecular roadmap for switchgrass flag
leaf ontogenywas developed. Genes associated with early leaf
development were up-regulated in phase 1. Phase 2 leaves had

increased expression of genes for chlorophyll biosynthesis
and those needed for full leaf function. Phase 3 coincided with
the most active phase for leaf C and N assimilation. Phase 4
was associated with the onset of senescence, as observed by
declining leaf chlorophyll content, a significant up-regulation
in transcripts coding for enzymes involved with chlorophyll
degradation, and in a large number of senescence-associated
genes. Of considerable interest were switchgrass NAC tran-
scription factors with significantly higher expression in
senescing flag leaves. Two of these transcription factors were
closely related to a wheat NAC gene that impacts mineral
remobilization. The third switchgrass NAC factor was
orthologous to an Arabidopsis gene with a known role in leaf
senescence. Other genes coding for nitrogen and mineral
utilization, including ureide, ammonium, nitrate, and molyb-
denum transporters, shared expression profiles that were sig-
nificantly co-regulated with the expression profiles of the
three NAC transcription factors. These data provide a good
starting point to link shoot senescence to the onset of dorman-
cy in field-grown switchgrass.
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Introduction

Switchgrass (Panicum virgatum L.) is a perennial C4 species
that is likely to be grown as a source of biomass for the biofuel
sector (Vogel et al. 2011). Perenniality resides in the below-
ground rhizome and crown tissues that are the primary sources
of tiller buds. Dormant tiller buds elongate in spring to pro-
duce aboveground biomass. Each tiller consists of several
phytomers, each comprised of nodes, internodes, and leaves
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(Moore and Moser 1995), and most tillers will become repro-
ductive (Mitchell et al. 1997). The last leaf to be produced on a
flowering tiller is the flag leaf, which subtends the inflores-
cence. Leaves are the dominant source of photosynthates.
During a growing season, leaves go through several stages
of development, with dynamic physiological and metabolic
activities being reflected by underlying gene expression. An
increased understanding of the coordination of gene expres-
sion and leaf development could lead to insights into the
biology of switchgrass plants and lead to new breeding targets
for crop improvement.

Flowering and seed production are generally accompanied
by tiller senescence and associated with the onset of dormancy
in the rhizomes. It is likely that flag leaves will supply nutri-
ents to both the seeds and the rhizomes (sinks). Initiation of
senescence in flag leaves could provide signals that trigger
remobilization of nutrients from the shoots, and the initiation
of dormancy mechanisms in the rhizomes, but these signals
are unknown. Switchgrass can remobilize substantial amounts
of N and other nutrients to the crowns and rhizomes, especial-
ly towards the end of a growing season (Wayman et al. 2013;
Wilson et al. 2013; Yang et al. 2009). Improving remobiliza-
tion of N and minerals from the aboveground biomass to the
belowground tissues is important to switchgrass breeding
programs, since biomass with lower N and minerals signifi-
cantly improves sustainability of production and conversion
of biomass to fuels in thermochemical platforms (Patwardhan
et al. 2010; Sarath et al. 2014). We currently lack an under-
standing of the genes involved in regulating and carrying out
nutrient remobilization during senescence, and improved
knowledge of genes preferentially expressed in senescing
tissues during leaf senescence could lead to new insights.

In cereal crops, flag leaves provide a large portion of the
nutrients needed for grain fill (Biswal and Kohli 2013), and
different aspects of flag leaf senescence have been studied in
several major cereal crops (for example Derkx et al. 2012;
Gregersen and Holm 2007; Kohl et al. 2012). In a large-scale
transcriptomic analysis of the genes involved in maize inter-
node and leaf senescence (Sekhon et al. 2012), a large number
of pathways were common or different between these two
tissues. Commonalities and differences in the progression of
leaf senescence programs between maize and Arabidopsis
(Sekhon et al. 2012) were uncovered by using a database of
plant senescence-associated genes (SAGs) (Liu et al. 2011b).
While these studies and others in the model dicot Arabidopsis
(Li et al. 2012; Rauf et al. 2013) have been productive in
developing a framework to understand leaf senescence, they
may not be reflective of all plant species, since differences
exist between plant species, and especially between annuals
and perennials (Davies and Gan 2012; Thomas 2013; Thomas
et al. 2000).

In this study, we evaluated molecular changes accompany-
ing leaf development and senescence through global

transcriptional profiling in field-grown switchgrass plants.
By computational analysis of expression of over 40,000 tran-
scripts over developmental time, a number of key switchgrass
genes and networks that impact leaf growth, development,
senescence, and remobilization of nutrients have been found.
This work could provide needed information about potential
mechanisms that could integrate changes in flag leaf metabo-
lism to the onset of dormancy in the rhizomes and provide
molecular targets for phenotyping plants with improved traits
(Sarath et al. 2014).

Experimental methods

Field layout, replication, and sample collection
Field plantings of cv Summer switchgrass were established

in small (1 m×1.2 m) plots using seedlings raised in a green-
house in June 2009 at the experimental farms of the University
of Nebraska, near Mead, NE. Twelve plants were planted in
each plot to mimic sward conditions at maturity. Switchgrass
fields were not irrigated and managed as described elsewhere
(Vogel and Mitchell 2008). There were 30 replicated small
plots in this field. Flag leaves were harvested from plants
during the 2012 growing season, at which time, plants were
fully established, but individual plants could still be identified
within each small plot. Plots and plants were randomly select-
ed to capture maximum diversity at each harvest date. Three
biological replicate pools of flag leaves harvested from ten
separate plants each were collected at five different harvest
dates (a total of 15 samples from ~100 individual plants)
corresponding to different developmental states of the plant:
July 3 (>90 % headed), July 27 (>80 % anthesis), August 16
(>90 % seed set), August 31 (>70 % mature seed), and
September 19 (>90 % senescence onset). Collected tissues
were immediately flash-frozen with liquid nitrogen and stored
at −80 °C. Leaf samples were later ground in a cryogenic
grinder (Palmer et al. 2012) prior to analysis.

Chlorophyll quantification

Chlorophyll was extracted in 80 % acetone in water and
quantified using the method described by Porra et al. (1989).

RNA extraction

Total RNAwas extracted from 100 mg of frozen plant tissue
using TRIzol reagent following manufacturer protocol
(Invitrogen, Carlsbad, CA, USA). RNA was cleaned up and
residual DNA was removed using the RNeasy MinElute
Cleanup Kit (Qiagen, Valencia, CA, USA).
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RNA sequencing

One microgram of total RNA was reverse-transcribed and
converted to sequencing libraries using the TruSeq RNAseq
Library kit per manufacturer’s suggestion (Illumina Inc, San
Diego, CA). Utilizing unique indexes from the library kit,
individual samples were diluted and to a concentration of
10 nM and multiplexed at five samples per lane. Single read
100-bp sequencingwas performed on the IlluminaHiSeq2000
system. Following sequencing, fastq files were used for
mapping.

Mapping and expression counting

HiSeq2000 100-bp reads (an average of 45 million reads/
sample) were mapped to the switchgrass draft genome (Pvi0,
www.phytozome.org (Goodstein et al. 2012)) using Bowtie2
(Langmead and Salzberg 2012) with “sensitive-local” set-
tings. On average, 93 % of the reads mapped to the draft
genome with 78 % of the reads mapping to annotated gene
regions. Gene counts were calculated using the primary tran-
script annotation file released with Pvi0 and the program
featureCounts (Liao et al. 2013).

Differential expression analysis

Prior to differential expression testing, genes that did not have
an average expression level of 50 counts in at least one time
point were removed from the dataset. This was an arbitrary
cutoff, approximately equivalent to 1 read per million, and
used to minimize the potential for overestimating differences
between harvest dates arising from genes with low expression.
Differential expression analysis was done using DESeq2
(Anders and Huber 2010) in R (Team 2011). Pairwise com-
parisons of all five timepoints (ten total comparisons) were
carried out to generate a list of differentially expressed genes
(DEGs) for the entire dataset using an FDR cutoff of 0.05.

Gene set creation

Metabolic pathways for the switchgrass draft genome were
built based on existing pathways found in the Kyote
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al. 2012; Kanehisa et al. 2014). Sorghum proteins annotated
at each node in pathways of interest were used to find the best
switchgrass matches using blastp (Altschul et al. 1990). Genes
involved in histone (de)methylation and (de)acetylation were
identified following the approach used by Cigliano et al.
(2013) using already identified chromatin modification genes
annotated in ChromDB (www.chromdb.org). Nutrient
transporters in the switchgrass draft genome were identified
as previously described (Palmer et al. 2014).

Transcription factors were identified based on PFAM an-
notations included with the draft genome release and the rules
for classification of Transcription Factor Families as detailed
in the Plant Transcription Factor Database v3.0
(plntfdb.bio.uni-potsdam.de/v3.0) (Perez-Rodriguez et al.
2010).

Previously identified SAGs from Arabidopsis (Li et al.
2012; Liu et al. 2011b) and rice (Liu et al. 2008) were used
to identify putative SAGs in switchgrass. Orthologs were
identified in the switchgrass draft genome by matching the
closest Arabidopsis and rice genes included with the genome
annotation with the above SAG lists. The switchgrass
orthologs were then filtered for genes differentially expressed
with peak expression in the fourth or fifth collection time point
to yield a set of putative switchgrass SAGs.

Pathway studios analysis

Log2-transformed expression data was used in the program
Pathway Studio 9.0 (Nikitin et al. 2003) to identify overrep-
resented ontologies. To facilitate this analysis, switchgrass
sequences were mapped to the most similar Arabidopsis gene
using BlastX, and the resulting gene function associations
were used for gene set and subnetwork analysis using default
settings.

Statistical analysis

Principal component analysis (PCA) was done using the
“prcomp” function in R (Team 2011). Heatmaps were created
by hierarchical clustering in JMP® Version 9.0 (SAS Institute
Inc, Cary, NC, 1989–2007) usingWard’s method on standard-
ized gene expression values.

Results

Changes in gene expression define developmental stages
On average, approximately 45.6 M reads were obtained for

each sample, of which almost 93 % could be mapped to the
switchgrass genome version 0.0 available at www.phytozome.
org (Goodstein et al. 2012) and over 78 % were mapped to
specific genes (Table S1). An analysis of all unique transcripts
with average normalized read counts >50 in at least one
harvest date is shown (Fig. 1a). Of these genes, 27,214 were
common to all datasets, and only a small fraction (<0.04 %)
were uniquely associated with a specific harvest date.
Numbers of shared genes were fewer between more distant
harvest dates (Fig. 1a), suggesting that underlying changes in
leaf physiology were responsible for the changing expression
profiles.
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We next asked whether transcriptomes at each harvest date
could be used as molecular signatures of the stage of devel-
opment. At each harvest date, the transcriptomes were effec-
tively separated by PCA (Fig. 1b), suggesting that these
differences arose from underlying developmental status and
to some extent from environmental conditions associated with
the time of harvest (supplementary Fig. S1). The first compo-
nent accounted for 27.9 % of the variation and separated the
transcriptomes from the anthesis (7/27), early seed fill (8/16),
and physiological maturity (9/19) harvest dates. PC2
accounted for 19.2 % of the variation and separated the
transcriptomes present in flag leaves harvested at the heading

(7/3) and late seed fill stage (8/31) of plant development.
Within each harvest date, the greatest variation between the
biological replicates was observed in the transcriptomes for
the earliest (7/3) and last (9/19) harvest, plausibly attributable
to variation in plant development within switchgrass popula-
tions (Bartley et al. 2013).

Chlorophyll levels in switchgrass flag leaves were low at
the first harvest, increased to a maximum near the early seed-
set stage, and declined thereafter, with the lowest chlorophyll
levels at the last harvest date (Fig. 2a). In general, transcript
abundance for the six gene families coding for proteins in-
volved in chlorophyll biosynthesis was highest in flag leaves
harvested at anthesis (7/27) and least abundant in senescing
leaves harvested in September (9/19). In contrast, three gene
families coding for switchgrass protein orthologs involved in
chlorophyll catabolism were strongly up-regulated at the last
harvest date (Fig. 2b). The loss of chlorophylls in flag leaves
harvested at this date combined with the gene expression data
indicated that senescence had been initiated in these plants
sometime after seed filling had started.

Combining the information shown in Fig. 2a, b, we devel-
oped a roadmap of switchgrass flag leaf development to assist
in interpreting the large transcriptomic datasets. Essentially,
phase 1 (light green bar, Fig. 2c) was associated with leaf
expansion. Phase 2 (dark green bar, Fig. 2c) was associated
with a substantial up-regulation of the genes associated with
chlorophyll biosynthesis (blue line, Fig. 2c), likely coinciding
with the maturation of the flag leaves from sinks to sources.
Phase 3 (yellow bar, Fig. 2c) was associated with a decline in
transcript abundances for the genes associated with chloro-
phyll biosynthesis and a small increase in the transcripts of
genes associated with chlorophyll degradation. Phase 4
(brown bar, Fig. 2c) was associated with a large increase in
transcripts coding for proteins involved in chlorophyll degra-
dation, consistent with the onset of leaf senescence.

C and N assimilation genes are substantially up-regulated
in phase 2

Expression of genes coding for proteins associated with the C4

pathway and CO2 and N assimilation were analyzed to deter-
mine if they followed the phases outlined in Fig. 2c. Mapped
reads for individual genes within a gene family annotated as
coding for the same protein were tabulated, and counts for all
the genes within a given gene family were totaled and used to
generate color heat maps (Fig. 3). These data are separate from
the DEG analyses discussed later in the text.

Genes linked to C4 photosynthesis were all highly
expressed at phase 2 (Fig. 3a), except for phosphoenolpyruvate
carboxylase kinase genes (PEPCk) which codes for a kinase
that modulates phosphoenolpyruvate carboxylase (PEPC) ac-
tivities through phosphorylation (Chollet et al. 1996).
However, all of these genes were down-regulated in leaves at
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successive harvests. This pattern of C4-related gene expression
in switchgrass flag leaves suggests that phase 3 is one where
leaves are fully mature and functioning efficiently as sources
for fixed C. Genes involved in the C assimilatory pathway
(Fig. 3b) and in N metabolism (Fig. 3c) appeared to be regu-
lated similarly to genes associated with CO2 assimilation,
consistent with the developmental patterns suggested above.
An exception was NADH-DEPENDENT GLUTAMATE
DEHYDROGENASE (GDHb, Fig. 3c) for which transcript
abundance was highest in senescing flag leaves.

Genes associated with ascorbate and glutathione metabolism
are differentially regulated

Expression of genes involved with ascorbate biosynthesis
(Linster and Clarke 2008) was generally greatest during

phases 2 and 3 (Fig. 3d) and appears to be linked with the
period of growth and function as a carbon source. There was,
however, an increase in the abundance of transcripts coding
ascorbate peroxidases (AscPrx) at later harvests. In contrast,
transcripts coding for monodehydroascorbate reductase
(mDHAR) had a bimodal expression profile coincident with
phase 2 and phase 4 stages. Transcripts for genes coding for
dehydroascorbate reductase (DHAR) were relatively constant
over the first four harvests, before declining in senescing
leaves.

Glutathione is another important redox intermediate in cells
and serves multiple roles during plant development (Gill and
Tuteja 2010). Transcripts for genes coding for glutathione bio-
synthesis were up-regulated at the phases 2 and 4 (Fig. 3d).
Genes coding for enzymes related to glutathione catabolism
were most abundantly expressed during phase 4 (Fig. 3d).
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Gene set enrichment analysis identifies possible regulatory
factors controlling leaf development

Gene set enrichment analysis was performed sequentially for
all pairwise comparisons (supplemental Table S2).
Physiological processes involved in flavonoid biosynthesis
(Kaempferol glucoside biosynthesis and Quercetin glucoside
biosynthesis), cytokinin biosynthesis, and sequence-specific
DNA binding transcription factor activity were preferentially
expressed in the early developmental stages, while oxidative
stress-associated ontologies (heme binding, oxygen binding,
and monooxygenase activity) were preferentially expressed at
later developmental stages. Several ontologies associated with
the earlier time points (heme binding, oxygen binding, and
monooxygenase activity) showed a reversal of expression
patterns when the late August time point was compared to
the final harvest supporting data shown in Figs. 2 and 3.

Subnetwork analysis generally indicated an increase in
jasmonic acid signaling during senescence. There was also
some indication that targets of auxin transport had a higher
expression prior to senescence. Genes for proteins that regu-
late phosphate import were preferentially expressed during
senescence, suggesting that remobilization of phosphate was
occurring (see Supplementary file 2).

Among the more interesting associations observed in the
subnetwork analysis was a strong differential expression of
targets for miRNA156 (down-regulated during senescence)
and miRNA164 (up-regulated during senescence as early as
late August) (see Supplementary file 2).

Clustering of differentially expressed genes support
developmental timeline of flag leaves

A two-way hierarchical clustering of all DEGs from the entire
transcriptome dataset with an FDR <0.05 is shown in Fig. 4.
The three biological replicates at each harvest date were quite
similar in gene expression profiles and clustered together,
consistent with the overall PCA analyses. The samples from
the second sampling date form an outlier in both the PCA and
differential hierarchal clustering analysis. It is noteworthy that
this sampling date occurred shortly after the only significant
rainfall of the season (Fig. S1). Indeed, many of the DEGs in
this sample were indicative of a relaxed drought stress re-
sponse, including higher expression of genes with ontologies
associated with photosynthesis and carbon metabolism, along
with lower expression of ABA-associated genes (Table S2)

Seven major clusters of significantly up-regulated genes
were found across all harvest dates. Of these, one cluster of
~1,619 genes (cluster 4) had a distinct bimodal expression
profile. These genes were specifically up-regulated in flag
leaves at anthesis (7/27) and at physiological maturity
(9/19). However, it is impossible to determine if these differ-
ences were related specifically to the developmental state of
these plants or to the precipitation event just prior to harvest
(Fig. S1). Many of the genes associated with clusters 1 and 3
code for proteins involved with growth and biosynthetic pro-
cesses and have been described earlier (phases 1 and 2; Figs. 2
and 3). Cluster 2 genes (phase 3) were significantly up-
regulated at the third harvest time and appear to have been
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in response to environmental conditions. There was no major
precipitation event between the second and third harvest dates
(Fig. S1), and this cluster contained several heat shock protein
orthologs, suggesting that leaves were stressed. The remaining
clusters were associated with senescence (clusters 4, 5, 6, 7,
phase 4).

We next undertook a deeper analysis of DEGs that could be
ascribed to specific functions. Expression heatmaps of genes
coding for glutathione-S-transferases, transcription factors,
transporters, and proteases that belong to large multigenic
families are shown in supplementary Figs. S2–S5.

Expression profiles of several other classes of genes including
the SAGs are discussed below.

Genes involved in epigenetic regulation were differentially
expressed between sampling dates

Reversible histone modification is a critical component of the
epigenetic control of cellular process, and plant genomes
contain an extensive set of genes that code for these enzymes.
Well-characterized histone marks include acetylation and
methylation among many others (Berr et al. 2011). Several
genes coding for proteins classified as histone acetyltransfer-
ases (HAT, HAC, and HAG—Fig. 5a) (Cigliano et al. 2013)
were found to be differentially expressed; however, their
relative transcript abundances were variable and in general
low. In contrast, the genes categorized as coding for histone
deacetylases (HDA, SRT; Fig. 5a) were generally abundant
during phase 2 and during leaf senescence (phase 4). One
paralog, HDA8 (Pavirv00041899), was abundantly expressed
in senescent leaves (Fig. 5a).

Many arginine-methyl transferases (PRMT) and SET-
domain group lysine methyltransferase genes were found to
be differentially expressed (Fig. 5b). Interestingly, four his-
tone demethylases belonging to the Jumonji family of
demethylases (Lu et al. 2011) (JMJ—Fig. 5b), with high
transcript abundance, were expressed at early or late periods
of flag leaf development. Several genes paralogous to the ones
shown in Fig. 5 had high abundance across all harvest dates
(Table S3), suggesting that these genes were needed to main-
tain proper cellular functions. The relative contributions of
individual genes to transcriptional events at specific loci are
not known.

Transport processes are enhanced during senescence

A large number of mineral transporters were differentially
expressed during switchgrass flag leaf development (Fig. 6;
S4). In general, two distinct profiles of expression were ob-
served: genes that were most abundant during the period of
leaf expansion and transition to a source (phase 2), and genes
that were most abundant during senescence (phase 4). Since
both expansion and senescence stages of leaf development are
likely to require transporters to mobilize minerals into (phase
2) or out of the leaf (phase 4), such a profile of transporter gene
expression was anticipated.

Transcripts for a Si transporter were most abundant during
active leaf metabolism and decreased when leaves transitioned
into senescence (LSi1, Fig. 6a), in a manner similar to that
observed for a switchgrass crown and rhizome dataset (Palmer
et al. 2014). Putative genes coding for ammonia (AMT) and
nitrate (NRT) transporters with highest overall total transcript
abundance were up-regulated during phase 2 in flag leaves
(AMT1, NRT1, NRT2, and NRT3; Fig. 6a). However AMT3
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andAMT4, andNRT4,NRT5,NRT6,NRT10, andNRT12were
up-regulated during phase 4. Transcripts for NRT1, NRT2,
NRT3, and NRT13 were high during phase 2, whereas, tran-
scripts for NRT12 were most abundant in senescing leaves
(Fig. 6a).

Transcripts for nine genes encoding switchgrass potassium
transporters (Palmer et al. 2014; labeled KUP; Fig. 6a) were
present in the DEGs. Of these, three were most abundantly
expressed during phase 2 of flag leaf development. Reads for
the other six genes were most elevated in senescing leaves.
Similar patterns were observed for the sulfur transporters
(SULTR, Fig. 6a).

Four genes classified as sucrose transporters (SUT, Fig. 6a)
were part of the DEGs and were highly expressed during
phase 2 of switchgrass flag leaf development. Expression
profiles of the SUTs were consistent with the substantial up-
regulation observed for a number of other biosynthetic genes
regulating photosynthesis, and carbon and nitrogen assimila-
tion observed during phase 2 as has been described earlier (see
Figs. 2, 3, and 4). Three MOT genes (molybendum trans-
porters) (Palmer et al. 2014) were most abundantly expressed
during phase 4 (Fig. 6b).

We also analyzed the putative phosphate transporters (PHO
and PHT) and zinc/divalent metal transporters (ZIPs) (Liu
et al. 2011a; Sinclair and Kramer 2012) (Fig. 6b). Four
PHOs were most abundant during phase 1, and the gene
PHO3, which was most abundant, was highly expressed at
phase 2 of flag leaf development. Inorganic phosphate require-
ments are expected to be high during leaf maturation and
subsequent transition into a source leaf. Most of the PHT
genes with high expression (red/orange boxes; Fig. 6b) were
most abundant during phase 2 or phase 3 of flag leaf devel-
opment where leaf biosynthetic activities appear to peak.
Several other genes with lower expression (yellow; Fig. 6b)
were significantly more abundant in senescing leaves, sug-
gesting a role in phosphate remobilization (also see GSEA
data, Table S2). Eight ZIP genes were found to be differently
expressed during switchgrass flag leaf development (Fig. 6b)

Senescence and growth process are differential
through seasonal development

Leaf senescence is accompanied by the increase in transcript
abundances for a host of genes that are referred to as SAGs
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�Fig. 5 Clustering of DEGs associated with histone modification. a

Switchgrass genes coding for enzymes involved in histone acetylation
and deacetylation. b Switchgrass genes coding for enzymes involved in
histone methylation and demethylation. The relative expression value
(number of mapped reads within each class across all time points) is
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The overall expression across harvest dates are shown as colored
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identity of each gene is provided in supplementary Excel file 1
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(Gepstein et al. 2003; Liu et al. 2011b). A large number of
putative switchgrass SAGs were significantly up-regulated at
the last harvest date (Fig. 7), although smaller clusters were
more abundantly expressed at earlier time points. As an ex-
ample, transcripts of switchgrass AUXIN RESPONSE
FACTOR 2 (ARF2) (Lim et al. 2010) orthologs SAGs 29,
47, and 55 (Fig. 7) were higher at the third harvest and either
declined (SAG47 and SAG55) or increased with time (SAG 29;
Fig. 7). A small cohort of genes provisionally identified as
SAGs were first up-regulated in flag leaves harvested at the
early seed development stage (8/16; Fig. 7), which coincided
with maximal leaf chlorophyll content (see Fig. 2).

Organic acids: the carbon currency from the breakdown
of lipids during senescence

Breakdown of fatty acids via the β-oxidation pathway is one
of the important processes that occurs in senescent tissues to
recapture carbon (Troncoso-Ponce et al. 2013; Yang and
Ohlrogge 2009). Genes associated with the β-oxidation and
related pathways were significantly up-regulated during phase

4 (Fig. 8). We found 230 genes annotated as lipases that were
differentially expressed, of which 88 had maximal expression
during phase 4 (Fig. S6).

In contrast to Arabidopsis, transcripts for all of the genes
needed for a functional glyoxylate cycle were strongly up-
regulated in senescing switchgrass leaves (Fig. 8, orange). The
two key glyoxylate cycle enzymes, isocitrate lyase (ICL) and
malate synthase (MS) (Chen et al. 2000a, b; Troncoso-Ponce
et al. 2013), were found in greatest abundance in senescing
(phase 4) flag leaves (Fig. 8). Conversion of fatty acids into
organic acids requires reactions in glyoxysomes, cytoplasm,
and mitochondria (Fig. 8). To a large extent, transcripts coding
for all of the key enzymes localized in the different cellular
compartments were significantly more abundant during phase
4 (Fig. 8).

Roles for switchgrass NAC transcription factors
in remobilization

DEG analysis of several different classes of transcription
factors are shown in Fig. S3 and for all the NAC genes in
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Fig. S7. NAC transcription factors are members of a large
family of related genes and proteins involved in virtually
every aspect of plant development (Puranik et al. 2012). We
found a total of 78 NACs in the DEGs (Fig. S7), of which 26
were most abundantly expressed at phase 1, 6 at phase 2, 2 at
phase 3, and 39 at phase 4.

Using the wheat NAM-B1 protein sequence (Waters et al.
2009), orthologous proteins were identified in switchgrass,
sorghum, foxtail millet, maize, Brachypodium, rice, and

Arabidopsis (Fig. 9a). The amino acid sequence near the C-
terminus within the red box (Fig. 9a) distinguishes NAM-B1
from other related NACs. Close orthologs were identified in
all the grasses but not in Arabidopsis. For switchgrass, only
two NACs contained this specific domain (Pavirv00068192
and Pavirv00065253); however, a third closely related NAC
did not have this specific sequence of amino acids
(Pavirv00018572). A dendrogram of all these protein se-
quences (Fig. 9b) suggests that the Arabidopsis NAC025
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and Os07g37920 were more related to each other, compared
to the other grass sequences analyzed.

All three switchgrass NACs described above (Fig. 9b)
had an expression profile that linked them to the senes-
cence process (Fig. 9c) akin to what has been demon-
strated for wheat NAM-B1 (Waters et al. 2009).
Transcriptional profiles of some select genes co-
expressed with the NACs described above (with an
expression correlation of >0.9) included the Mo trans-
porters, several hydrolases, and other genes coding for
NACs, autophagy, and catalase 2 proteins (Fig. 9c).

Discussion

To determine whether gene expression profiles in flag leaves
collected at different times throughout development
corresponded with known markers of leaf development, we
tracked chlorophyll content as a known marker of leaf expan-
sion and senescence onset (Hortensteiner and Krautler 2011;
Thomas 2013). Chlorophyll content in flag leaves increased
from the time of heading to the onset of seed set and declined
thereafter, similar to patterns reported for flag leaves in cereal
crops (Derkx et al. 2012; Kajimura et al. 2010; Liu et al.
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2008). Chlorophyll biosynthesis and degradation are cata-
lyzed by a unique set of enzymes (Hortensteiner and
Krautler 2011; Reinbothe et al. 2010), and the first molecular
signature for the initiation of leaf senescence is the onset of
expression of genes coding for chlorophyll breakdown
(Hortensteiner and Krautler 2011). Consistent with these prior
observations, transcript abundances were high for the genes
coding for chlorophyll biosynthesis during the early part of
switchgrass flag leaf development and declined thereafter;
whereas, transcripts for genes coding for enzymes involved
in chlorophyll degradation were significantly greater with the
onset of leaf senescence. Overall, data on the transcript abun-
dances for genes linked to C, N, and redox balance were
consistent with published work on other plant species such
as maize and rice (Erley et al. 2010; Liu et al. 2008; Sekhon
et al. 2012) and the suggested roadmap for switchgrass flag
leaf development (see Fig. 2).

Pathway analyses also supported these overall findings and
indicated that a projected loss of cytokinin synthesis with the
cessation of flag leaf growth and the up-regulation of targets of
the transcription factor TT2 during the onset of senescence
were as expected (Hoch et al. 2001; Riefler et al. 2006). A
possible role for miRNA156 was also discerned through
pathway analyses. MiRNA156 is a well-known positive reg-
ulator of flowering (Wang et al. 2009) and has also been
implicated in regulation of senescence through down-
regulation of ORESARA 1 (Reinbothe et al. 2009). These
findings were consistent with the floral development activity
during phase 2 and senescence during phase 4 described in
Fig. 2. As small RNAs, these signals have the additional
possibility of being systemic regulators of development (Yoo
et al. 2004) and might participate in the circuits that link shoot
senescence to the onset of rhizome dormancy towards the end
of the growing season (Sarath et al. 2014).

Although the early phases of flag leaf development are
important to the efficient functioning of the leaf as a source
of fixed carbon, the timing and onset of senescence are of
considerable basic and applied interest (Sarath et al. 2014). In
switchgrass, flag leaves appear to be functional after seeds
have attained physiological maturity (this work), and thus
could continue to serve as a source of photosynthate to the
rhizomes towards the end of a growing season. Furthermore, it
is likely that flag leaf senescence is intimately linked to the
remobilization of nutrients from the shoots to the rhizomes
contributing to the perenniality of the plant (Sarath et al.
2014).

Among the host of metabolic changes that occur during the
onset of leaf senescence are increase in reactive oxygen spe-
cies (ROS), the suppression of transcription of genes, and the
remobilization of nutrients to sinks (Thomas 2013). Increase
or decrease in transcripts of genes in these diverse pathways
was discerned in switchgrass flag leaves, especially as they
entered phase 4 (see Fig. 2) of development. As examples,

genes coding for enzymes involved in C and N assimilation
and ascorbate biosynthesis were down-regulated, and other
genes implicated in alleviating oxidative stress and substrate
level generation of NAD(P) H, including several SAGs, were
up-regulated.

Lowered levels of ascorbate and higher ROS have been
associated with the progression of leaf senescence (Chen et al.
2013; Gallie 2013; Srivalli and Khanna-Chopra 2009), and
increased abundance of isocitrate dehydrogenase (ICDH;
Fig. 3) has been suggested to reduce oxidative stress by
regenerating NADPH (Mhamdi et al. 2010). Substrate level
regeneration of NADPH might be important in senescing
switchgrass leaves when mitochondrial generation of reduc-
ing equivalents could become compromised. Several switch-
grass SAGs with potential roles during leaf senescence were
also identified. Among these, SAG14-HEXOKINASE-1 and
SAG28-ATAF1 are known to be involved in different aspects
of cellular signaling involving sugars (Hanson and Smeekens
2009; Pourtau et al. 2006) and signaling involving ROS (Wu
et al. 2009) in other plants. SAG 18, which codes for a
cytosolic NADP-malic enzyme (NADP-ME), was also pres-
ent in this cohort. NADP-ME is expected to provide NADPH
and pyruvate in the cytoplasm. The expression profiles for the
NADP-ME (SAG 2 and SAG18) mirrored those of the
HEXOKINASE1 SAG14 (Fig. 7) suggesting that the transcrip-
tional co-expression profiles of these genes could be linked to
changes in the sugar, nitrogen, and redox metabolism expect-
ed with the onset and progression of leaf senescence (Thomas
2013). Sugar sensing has been proposed to be coupled to ROS
through an interplay between the cytoplasm and mitochondria
(Xiang et al. 2011), which in turn is linked to the production of
ascorbate and ascorbate utilizing enzymes such as ascorbate
peroxidases and other redox processes (Bolouri-Moghaddam
et al. 2010; Xiang et al. 2011). SAG 57 and SAG 63, which
code for cytosolic ascorbate peroxidases, were significantly
up-regulated during phase 4.

There were significant increases in transcript abundance for
glutamate dehydrogenase (GDH, Fig. 3) over time. In
Arabidopsis, GDH isoforms are largely localized in the mito-
chondria present in phloem companion cells in leaves and
roots (Fontaine et al. 2012). They are also important to the
catabolism and remobilization of amino acids during seed
germination and senescence and are expected to be involved
in signaling associated with C and N metabolism in plants
(Forde and Lea 2007; Lehmann and Ratajczak 2008; Marchi
et al. 2013). We also observed a significant up-regulation of
genes involved in the remobilization of lipids with the onset of
senescence primarily through the action of lipases and β-
oxidation. It is known that lipids are lost from senescing
switchgrass leaves (Yang and Ohlrogge 2009), and up-
regulation of genes coding for enzymes in the β-oxidation
and a large number of lipases occurs in senescing Arabidopsis
leaves (Troncoso-Ponce et al . 2013) . However,
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gluconeogenesis did not appear to be occurring during leaf
senescence in switchgrass, since transcripts for a key enzyme
(PEPCK; Fig. 3) were low in senescing leaves and highest
during the phases 1 and 2 of leaf development, in accordance
to data from cucumber cotyledons and barley leaves (Chen
et al. 2000b). Similar changes in the profiles for lipid degra-
dation pathways have been reported in barley and sweet
potato leaves (Chen et al. 2000a, 2000b). Our data also sug-
gest that much of the organic acids are used as skeletons to
synthesize amino acids (see Fig. 8), chiefly ASN, GLN, and
possibly GLU, for eventual export to sinks, probably the
rhizomes.

Epigenetic control of plant development is well established
(Berr et al. 2011), and transcripts for a large number of
switchgrass genes coding for these histone modifying en-
zymes were differentially regulated during flag leaf develop-
ment. As examples, genes encoding switchgrass Jumonji-type
demethylases JMJ5 and JMJ6 (Fig. 5) were most highly
expressed in senescing leaves. Switchgrass JMJ6 is
orthologous to the Arabidopsis PKDM7B (AT4G20400) gene
that codes for an enzyme that demethylates histone H3 lysine
4 and suppresses gene transcription (Yang et al. 2010).

Mineral acquisition, transport, and remobilization is an
integral part of plant development, and senescence often
serves as a cue for redistribution of some, but not all, minerals
from senescing tissues to sinks. Mineral concentration data
from switchgrass crowns and rhizomes (Palmer et al. 2014)
and aerial biomass (Wilson et al. 2013) harvested over the
course of a growing season would indicate that there is remo-
bilization of several minerals from the shoots to the rhizomes.
Several genes coding for different classes of switchgrass min-
eral nutrient transporters were significantly overexpressed
during the phase 2 (period of active growth) or during phase
4 (onset of senescence). These included transporters for am-
monia (AMT), K (KUP), S (SULTR), P (PHO), and Zn (ZIP)
(Fig. 6). These nutrients are needed during active growth and
can be remobilized during senescence, (Abdallah et al. 2011;
Nagarajan et al. 2011; Sinclair and Kramer 2012; Wang and
Wu 2013), suggesting that these specific switchgrass genes
are integral for efficient mineral mobilization.

There was a significant up-regulation in putative MOTs
with the onset of leaf senescence. The switchgrass genome
appears to code for at least five MOTs (Palmer et al. 2014). In
plants, molybdenum is assimilated into a pterin to form the
MoCo factor, which is present in nitrate reductase (NR),
xanthine dehydrogenase (XDH), sulfite oxidase (SO), and
aldehyde oxidase (AO) (Mendel and Kruse 2012). How Mo
is remobilized during leaf senescence is not known. However,
XDH appears to be important for scavenging purines into
ureides during leaf senescence (Brychkova et al. 2008). Of
four switchgrass genes predicted to code for XDH
(Pavirv00070280; Pavirv00060710; Pavirv00032623;
Pavirv00030276), the first three exhibit increased transcript

abundance during leaf senescence, in concert with the tran-
scripts for three putative switchgrass ureide transporters
(Pavirv00005720; Pavirv00055942; Pavirv00023499), sug-
gestive of a role in moving ureides (N and C) from senescing
tissues to the crowns and rhizomes, as has been described for
Arabidopsis (Brychkova et al. 2008). Changes in the flux of C
and N metabolites could link aerial senescence to the onset of
dormancy in the crowns and rhizomes, since these metabolites
can serve as signals integrating physiological processes
(Forde and Lea 2007; Zheng 2009). In Arabidopsis, there
are two MOTS, and MOT2 protein is involved in molybde-
num transport and allocation within the plant. Arabidopsis
MOT2 transcripts have been documented to be elevated in
senescent tissues (Gasber et al. 2011).

Plant developmental processes are controlled through the
concerted action of transcription factors, and a number of
these factors involved in senescence and affecting the remo-
bilization of nutrients to sink tissues have been described
(Ricachenevsky et al. 2013; Thomas 2013). Although a large
number of switchgrass genes coding for transcription factor
families were identified and shown to be divergently
expressed (Fig. S3; Fig. 9), there were three NAC genes that
were up-regulated close to the onset of senescence. Two of
these three NACs were orthologous to the Wheat NAM-B1
shown to impact nutrient remobilization (Waters et al. 2009)
suggesting a similar role in switchgrass. The third switchgrass
NAC which lacks the C-terminal NAM-B1 signature domain
(Fig. 9) appears to be orthologous to Arabidopsis NAC 029
(AT1G62300), which has a known role in promoting leaf
senescence (Guo and Gan 2006), suggesting a similar role in
switchgrass and reinforcing the evidence for NACs
(Pavirv00068192 and Pavirv00065253) to be involved in
nutrient remobilization from senescing flag leaves. Unlike
switchgrass and wheat, the rice and Arabidopsis orthologs to
Wheat NAM-B1 were most abundantly expressed in anthers
(Alvarado et al. 2011; Distelfeld et al. 2012), and the
orthologous rice NAC did not have a role in nutrient remobi-
lization (Distelfeld et al. 2012). These data would indicate that
some caution is needed before fully ascribing the role of these
three switchgrass NACs as causally related to remobilization
and senescence. Nevertheless, the expression data for the
switchgrass NACs discussed above support their role in flag
leaf senescence. Among the genes that displayed a significant
co-expression profile with the NACs were the MOTs
(discussed above) and several SAGs, including genes coding
for an autophagy protein and catalase. The autophagy
ortholog in Arabidopsis (AT3G19190; ATG2) is involved in
the early stages of the biogenesis of the autophagosomes
(Wang et al. 2011), and lowered expression of the catalase 2
ortholog in Arabidopsis (AT4G35090, CATALASE2) leads to
premature senescence (Smykowski et al. 2010). These data
indicate that phase 4 switchgrass leaves were not fully senes-
cent and required proteins such as CATALASE 2 to maintain
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cellular function and permit the remobilization of nutrients
from the flag leaves to the rhizomes. Seeds were at physio-
logical maturity at this harvest date, and unlikely to be active
sinks, indicating a bulk of the remobilized nutrients was
targeted to the belowground tissues.

Our data provide a comprehensive, global transcriptomic
inspection of switchgrass flag leaf development. The coordi-
nation of gene expression with known physiological processes
during leaf development provides new insights into biochem-
istry, mineral metabolism, and epigenetic processes. Because
we have identified specific transcripts, our data can be mined
for other insights andwill inform future investigations. Overall,
we identified several genes that could be important to signaling
the onset of senescence and nutrient remobilization.
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