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Abstract Winter wheat lines can achieve cold acclimation
(development of tolerance to freezing temperatures) and
vernalization (delay in transition from vegetative to repro-
ductive phase) in response to low non-freezing tempera-
tures. To describe cold-acclimation-specific processes and
pathways, we utilized cold acclimation transcriptomic data
from two lines varying in freeze survival but not vernaliza-
tion. These lines, designated freeze-resistant (FR) and
freeze-susceptible (FS), were the source of crown tissue
RNA. Well-annotated differentially expressed genes (p≤
0.005 and fold change≥2 in response to 4 weeks cold
acclimation) were used for gene ontology and pathway
analysis. “Abiotic stimuli” was identified as the most
enriched and unique for FR. Unique to FS was “cytoplasmic
components.” Pathway analysis revealed the “triacylgly-
cerol degradation” pathway as significantly downregulated
and common to both FR and FS. The most enriched of FR
pathways was “neighbors of DREB2A,” with the highest
positive median fold change. The “13-LOX and 13-HPL”
and the “E2F” pathways were enriched in FR only with a

negative median fold change. The “jasmonic acid biosyn-
thesis” pathway and four “photosynthetic-associated” path-
ways were enriched in both FR and FS but with a more
negative median fold change in FR than in FS. A pathway
unique to FS was “binding partners of LHCA1,” which was
enriched only in FS with a significant negative median fold
change. We propose that the DREB2A, E2F, jasmonic acid
biosynthesis, and photosynthetic pathways are critical for
discrimination between cold-acclimated lines varying in
freeze survival.
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Introduction

Winter wheat lines can achieve cold acclimation (develop-
ment of tolerance to freezing temperatures) and vernaliza-
tion (delay in transition from vegetative to reproductive
phase) in response to low non-freezing temperatures.
During cold acclimation, plants undergo biochemical
changes to enhance their ability to withstand freezing tem-
peratures and desiccation stress (Guy 1990; Olien and Clark
1993; Hughes and Dunn 1996; Thomashow 1999; Xin and
Browse 2000; Wisniewski et al. 2003).

In both barley and wheat, a number of investigators have
reported on genes that respond to cold treatment over dif-
ferent time scales (Sutton et al. 1992; Houde et al. 1992;
Chauvin et al. 1993; Danyluk et al. 1994; Zhang et al. 1993;
Gana et al. 1997; Han 1997; Monroy et al. 2007). Most of
the studies vary in the length of time of cold acclimation, the
tissue type studied, and the growth medium used. Su et al.
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(2010) described a MYBS3-dependent pathway conferring
cold tolerance on rice after 4 °C for 72 h. Fowler and
Thomashow (2002) performed the cold acclimation studies
leading to the identification of multiple regulatory path-
ways, including the C-repeat binding factor (CBF) cold
response pathway, using seedlings cold-acclimated for 0.5,
1, 4, 8, 24 h, and 7 days. Christova et al. (2006) limited their
studies to 14 days. Laudencia-Chingcuanco et al. (2011)
grew their plants hydroponically and cold-acclimated at
6 °C for up to 98 days. Ganeshan et al. (2011) performed
cDNA-AFLP to compare low-temperature response be-
tween crown and leaf tissues for up to 70 days and deter-
mined that the regulatory pathways were different. Our
study focused not on perception and signaling but on the
identification of long-term cold-acclimation crown process-
es and pathways of winter wheat lines varying in freeze
survival and grown in specified soil and watering conditions
(Kenefick et al. 2002).

Interpretation of the association of low-temperature re-
sponsive genes to freeze survival has been confounded by
the fact that low temperature also plays a significant role in
vernalization of many winter plants. Gulick et al. (2005)
performed a microarray analysis between the spring wheat
Triticum aestivum L ‘Glenlea’ with a LT50 of −8 °C and
winter wheat T. aestivum L ‘Norstar’ with a LT50 of–19 °C.
The results obtained, although valuable, did not allow for a
selection of low-temperature-regulated genes that are unas-
sociated with the vernalization requirements of those lines.
(Dhillon et al. 2010a, 2010b) utilized two independent dip-
loid wheat lines, Triticum monococcum mutants, varying in
period of time to flowering in the spring due to deletions of
chromosomal regions within the major vernalization gene.
The line that flowered the latest in response to a long
photoperiod was found to be more freeze-tolerant and
expressed high transcript levels for CBF transcription fac-
tors and some of the target cold-responsive (COR) genes.
Dhillon et al. (2010a, 2010b) also reported on the low level
of both CBF and COR transcripts during low-temperature
treatment of the line that flowered earlier (spring-type).
However, because the two lines examined were different
with respect to both freeze tolerance and vernalization
requirements, the cold-acclimation-specific genes and pro-
cesses that are associated with freeze resistance have still to
be described. Therefore, unless the experimental systems are
designed to normalize for vernalization, the cold-regulated
networks described may also apply to vernalization and not
cold acclimation.

To contribute to the identification of cold-acclimation-
specific processes in temperate cereals, we utilized two
hexaploid winter wheat T. aestivum cv. ‘Winoka’ mutant
lines that exhibit similar vernalization requirements but dif-
fer in freeze survival. The lines are designated FR (freeze-
resistant) and FS (freeze-susceptible). We have successfully

completed comparative cold acclimation transcriptomic
analyses between the two mutant lines (Sutton et al. 2009)
with RNA from crown tissue, the most freeze-resistant part
of the plant (Chen et al. 1983; Gusta and Weiser 1972; Olien
1967). When the crown meristematic tissue is destroyed by
freezing, the plants are unable to resume growth in the
spring (Winfield et al. 2010).

Our initial comparison of the crown transcriptomics data
from cold-acclimated FR and FS lines focused on the CBF
cluster within the frost locus on the long arm of chromo-
some 5, as well as on several COR genes. The results were
presented and discussed and revealed six CBF genes that
were significantly differentially expressed between FR and
FS (Sutton et al. 2009). Several other gene expression stud-
ies have utilized RNA from wheat and barley crown tissue
(Janská et al. 2011; Pearce et al. 1998; Skinner 2009;
Winfield et al. 2010). The research presented in this paper
differs from those referenced above in that we performed
cold acclimation on plants at the fourth leaf stage and under
light intensity a minimum of threefold lower than the other
studies.

Utilizing the wheat crown transcriptomic dataset (Sutton
et al. 2009), we generated gene ontology (GO) terms based
on similarities to the Arabidopsis classifications. Those
terms were used for the identification of processes and path-
ways that are differentially expressed or enriched between
FR and FS in response to long-term cold acclimation.
Because cold-acclimated FR has greater freezing survival
than cold-acclimated FS, we propose that the identification
of pathways that differentiate 4-week cold-acclimated FR
and FS lines are critical to deciphering the mechanisms that
discriminate between cold-acclimated lines varying in
freeze survival.

Materials and methods

Plant materials

Generation of FR and FS ‘Winoka’ mutant lines

These lines were derived from azide mutagenesis of the hard
red winter wheat cv. ‘Winoka’ (Sutton et al. 2009; Wells et
al. 1969). An average of two replications of M5 lines in the
Northern Uniform Winter Hardiness Nursery at Casselton,
ND, in 1988 identified Winoka as having 35 % freeze
survival. The winter wheat SD16029 demonstrated 75 %
freeze survival and was designated FR, and the winter wheat
SD16169 demonstrated 30 % freeze survival, and, thus rela-
tive to FR, SD16169 was designated FS. These two mutant
winter wheat lines share with Winoka the need for vernali-
zation before heading is achieved. They also exhibit similar
levels of expression of the VRN genes in response to the
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low-temperature treatment (Fig. 1). The expression data for
the VRN genes was obtained from the transcriptomic studies
(Sutton et al. 2009).

Growth conditions

Plants were grown in the green house at 22–28 °C and
soil water maintained at 0.3–0.44 kgH2Okg−1. Plants
were transferred to the 2 °C cold room for cold accli-
mation after reaching the fourth leaf stage. Since light
prior to and during cold acclimation plays a significant
role on freeze survival (Gray et al. 1997), plants were
allowed to accumulate photosynthate prior to cold accli-
mation by supplementing sunlight in the greenhouse
with low-pressure sodium vapor lamps that provided a
photosynthetic photon flux density (PPFD) of 150 μmol
m−2s−1 for a 14-h photoperiod. To replicate the condi-
tions of autumn that result in cold acclimation, plants
transferred to 2 °C were exposed to a shortened photo-
period of 11.5 h and a low light intensity of 4 μmol
m−2s−1 supplied from cool-white fluorescent lamps. We
have previously validated that there was no further plant
development during the cold-acclimation conditions,
since plants remained at the four-leaf stage, and there
was no change in dry weight (Kenefick et al. 2002).

Transcriptomics

RNA isolation and processing of the Affymetrix wheat micro-
arrays were as described (Sutton et al. 2009). The RNA
samples were from untreated and 4-week cold-acclimated
crown tissue. There were two biological replicates consisting
of three pots of four plants for each treatment. The microarray
data have been deposited at the Plant Expression database
http://www.plexdb.org/ website accession number TA22.

The data have also been deposited in the GEO database,
accession # GSE14697 http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?token0dlqnpqqecacwgba&acc0GSE14697.

Statistical methods for identifying differentially expressed
genes

All analyses were based on the Affymetrix GenChip
Manual (Affymetrix Inc.) using the statistical program
R 2.12.0 (http://www.R-project.org) with affy, gcRMA
Bioconductor packages (Irizarry et al. 2003) and log-
transformed for the pre-processing steps. Expression
measurements were calculated according to the model
developed by Bolstad et al. (2003) and Irizarry et al.
(2003). Two-sample t test with equal variances was ap-
plied to detect significantly expressed genes. A cutoff of
p≤0.005 and fold change ≥2 was used to define differ-
entially expressed genes in response to cold acclimation.

Arabidopsis Gene IDs (AGIs) for wheat genes on
array AGIs for the normalized and processed wheat
probes present on the 61K Affymetrix wheat array were
identified by comparing the whole gene consensus
wheat sequences (obtained from Affymetrix) to the
Arabidopsis protein database (TAIR 10) using BlastX.
The top BlastX hits for all genes with E-values less
than E-5 were recorded, and the functional ontologies
from the associated Arabidopsis genes were used for the
various gene set and sub-network analyses.

Gene ontology (GO) analysis

The GO analysis was performed using different programs:
Pathway studio 8.1 http://www.ariadnegenomics.com/);
GOstat by Tim Beißbarth (http://gostat.wehi.edu.au/cgi-bin/
goStat.pl; and the PANTHER Classification System (http://
www.pantherdb.org/) programs. Gene set enrichment analysis
and Fisher’s exact test were used to identify the statistically
significantly enriched GO terms (Beißbarth and Speed, 2004;
Mi et al. 2005; Young et al. 2010; Mi et al. 2010; PANTHER
7.0). GO terms were considered as significantly enriched if
they had a pvalue≤0.001 and at least five genes within the
GO category. GO IDs were converted to GO terms and vice
versa as per http://www.sigenae.org/index.php?id0168. In
order to more specifically identify the processes that were
relevant, we identified the ancestor and children relation-
ships within the GO terms using the AmiGO program
(http://amigo.geneontology.org/cgi-bin/amigo/go.cgi).

Pathway analysis

Pathway Studio was used to identify the statistically signif-
icantly enriched pathways (Bogner et al. 2011; Pathway
studio Desktop 7.1 training manual). Pathways with a pFig. 1 Similar expression of VRN genes in FR and FS mutant lines
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value≤0.005 and at least five genes were considered as
significantly enriched in FR and FS.

Results

Cold-acclimation regulated genes

Of the 61K Affymetrix wheat probe set, only 31,568 wheat
genes passed the hybridization analyses as good probes. Of
these, only 17,887 were similar enough to Arabidopsis
genes to obtain probable functional associations for onto-
logical analysis (Electronic supplementary material, File 1).
The application cutoff of p≤0.005 and fold change ≥2
identified 2,850 and 3,540 genes as differentially expressed
in response to the cold-acclimated FR and FS lines, respec-
tively (Electronic supplementary material, File 2). Based on
comparison with the total 31,568 genes that passed the
hybridization as good probes, we calculated that approxi-
mately 10 % of the genes were cold-regulated in both FR
and FS. However, a comparison with the 17,887 AGIs
revealed cold regulation of 15.9 % and 19.8 % for FR and
FS, respectively. Further analyses identified 1,254 genes as
upregulated and 1,596 genes as downregulated in the cold-
acclimated FR line. In the cold-acclimated FS line, 1,610
genes were upregulated and 1,930 were downregulated
(Fig. 2). Among the common upregulated genes were those
encoding the transcription factor MYB 51 (~8.3-fold); a
number of LEA proteins including LEA3 (~6.5-fold), dehy-
drins such as Wdhn13 (~6-fold), and protein phosphatase

2C-like (~6-fold). These genes are highlighted in green
(Electronic supplementary material, File 2).

GO analyses

Only the significantly differentially expressed genes (p≤0.005
and fold change ≥2) were used for the GO analysis. The
results of the significantly enriched GO terms in FR and FS
identified by all three GO analysis programs (Pathway Studio,
GO stat, and PANTHER) are displayed in Fig. 3. Application
of a cutoff of p≤0.001 and a minimum of five genes resulted
in a reduction of GO IDs in FR from 583 to 55 and from 735 to
65 in FS. Of these, a total of 38 GO terms were identified as
common in both FR and FS (Electronic supplementary mate-
rial, File 3). A total of 17 and 27 GO terms were identified as
unique and significantly enriched in FR and FS, respectively
(Electronic supplementary material, File 4). Of the 17 GO
terms defined as unique in FR, the classifications were as
follows—11 biological processes, 1 cellular component, and
5 molecular functions. In FS, the 27 GO terms were classified
as 13 biological processes, 5 cellular components, and 9
molecular functions.

Classification of GO terms unique to FR or FS

The top five GO terms with the lowest p values for FR and
FS are depicted in Fig. 4. Four of the five GO terms for FR
belonged to the biological process category. The fifth term
belonged to the molecular functions category. As shown,
“response to abiotic stimulus,” (GO:0009628) with a p
value of 1.59E-09, was the major biological process,

Fig. 2 Flow chart to identify cold acclimation-responsive differential-
ly expressed genes and results. Of the 61K Affymetrix wheat probe set,
only 31,568 wheat genes passed the hybridization analyses as good
probes. Of these, AGIs were available for only 17,887 genes by BlastX
against TAIR10 Arabidopsis protein database with an E-value cutoff
10E-5. The application of cutoff p≤0.005 and fold change ≥2 identified
2,850 and 3,540 genes as expressed in the cold-acclimated FR and FS
mutant lines, respectively. FC0fold change

Fig. 3 GO terms enriched in FR and FS in response to cold acclima-
tion using all three programs. The 583 GO terms are identified by all
three programs in FR, and 735 GO terms are identified by all three
programs in FS. Of these, 17 GO terms are identified unique in FR, 27
GO terms identified in FS, and 38 GO terms identified common in both
FR and FS. CA0cold acclimation, BP0biological processes, CC0
cellular components, MF0molecular functions
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containing 83 genes. “Phosphoric ester hydrolase activity,”
(GO:0042578), p value of 0.00012, of the molecular func-
tions category contained 40 genes. GO terms: “chromatin
organization” (GO:0006325), pvalue 1.75E-08; “response
to ABA stimulus” (GO:0009737), pvalue 1.7E-08; and “im-
mune response” (GO:0006955), pvalue 8.13E-05 contained
24, 25, and 23 genes, respectively.

Among the top five GO terms in FS with the lowest p
values: “cytoplasm” (GO:0005737), pvalue 7.9E-28, 510
genes, belonged to the “cellular components” classification.
The other four terms are: “hydrolase activity acting on acid
anhydrides” (GO:0016817), pvalue 7.13287E-06, 61 genes;
“ATPase activity” (GO:0016887), pvalue 4.7E-06, 50 genes;
“helicase activity” (GO:0004386), pvalue 3E-09, 29 genes;
and “polysaccharide metabolic process” (GO:0005976), pval-
ue 1.50351E-05, 20 genes.

Pathway analysis

As depicted in Fig. 5, of the 2,850 cold-acclimated FR
genes, 25 pathways were identified, and of the 3,540
cold-acclimated FS genes, 28 pathways were identified
(Electronic supplementary material, File 5). A filter with

a cutoff of p≤0.005 and at least five genes present
identified nine pathways as unique for FR, two as
unique for FS, and one (triacylglycerol degradation) as
common to both. A list of the unique pathways for FR
and FS is presented in Table 1. The median fold change
and pvalues for the pathways are provided. As observed
(Electronic supplementary material, File 5), all FS p
values are >0.005, whereas all FR pvalues are <0.005,
and thus, the pathways listed in Table 1 are considered
unique for FR.

In terms of levels of fold change, “neighbors of DREB2A”
had the highest positive median fold change of 20.34 for FR
compared with 4.32 for FS. All other pathways in both FR and
FS displayed negativemedian fold changes. “Binding partners
of LHCA1” was the most cold-acclimation downregulated
pathway, with a median fold change of −18.2 in FS.
Pathway “binding partners of LHCA1” was not significantly
cold-acclimation-regulated in FR, and so it was designated not
detected, “nd.” The two most downregulated pathways in FR
were “neighbors of ribulose 1, 5-bisphosphate carboxylase/
oxygenase (RuBisCo)” (−16.44-fold) and the “13-LOX and
13-HPL pathway” (−16.09-fold). The “13-LOX and 13-HPL
pathway” was not cold-acclimation-regulated in FS, and so it
was designated “nd.” However, the pathway “neighbors of
RuBisCo” was downregulated in FR (−16.14) and in FS
(−5.13) but at a pvalue of 0.0021 (FR) compared with 0.017
(FS).

The pathway “neighbors of E2F” was not detected as
cold-acclimation-regulated in FS and so was also listed as
“nd.” However, in FR, it was downregulated with a fold
change of −9.94. The “photorespiration” pathway was also
not cold-acclimation-regulated in FS. However, in FR, it
was downregulated with a median fold change of −6.66.

Among the FR unique pathways listed in Table 1,
“jasmonic acid biosynthesis” was detected in both FR
and FS with median fold changes of −8.06 and −6.67,
respectively. However, the pvalues varied, with FR at
0.0006 and FS at 0.021. The higher FS pvalue resulted
in this pathway being filtered out, and thus the “jasmonic

Fig. 4 Top five highly
significant GO terms in a FR
and b FS. a The highest number
of genes (83) corresponds to
response to “abiotic stimulus”
in FR, and b the highest number
of genes (510) corresponds to
“cytoplasm” in FS

Fig. 5 Highly enriched (p≤0.005 and presence of at least five genes)
pathways in FS using Pathway Studio. A total of 25 pathways were
identified in FR and 28 in FS. Of these, nine pathways in FR and two
pathways in FS passed the threshold (p≤0.005 and presence of at least
five genes)
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acid biosynthesis” pathway is considered enriched only
for FR.

The pathway considered as unique to FS is “binding
partners of LHCA1.” This pathway was found not to be
cold-acclimation-regulated in FR, and so it was listed as
“nd” while in FS it was downregulated with a median fold
change of −18.212.

Discussion

Cold-acclimation-regulated genes

It was of interest to know whether the percentage of cold-
acclimation-regulated genes we obtained agreed with those
reported by others. We determined that the results of 15.9 %
and 19.8 % for FR and FS, respectively, obtained from com-
parison with the total AGIs are higher than that reported by
others. However, the lower percentage of 10% obtained when
the calculation was performed with all good probes on the
array was due to the fact that the total number of genes from
AGIs was 13,681 less than that of the total number of good
probes on the array. However, the 10 % value was more
consistent with other studies. Hannah et al. (2005) reported
that 10 % of Arabidopsis genes are cold-regulated. Houde et
al. (2006) reported that 8.4 % of wheat genes are cold-
regulated. The presence of common FR and FS cold-
acclimated genes (encoding: the MYB51 transcription factor;
some LEAs and dehydrins; and the protein phosphatase 2C-
like proteins) reveals that these genes are responsive to cold.
However, individually, they do not appear to be involved in
long-term cold-acclimation-induced differential freeze surviv-
al between the two lines, since they are not differentially
expressed between the two lines. We proposed that a better
understanding of the relationship between cold-acclimated
gene expression and freeze survival can be achieved by com-
paring gene ontologies GO and pathways between the lines
varying in freeze survival.

Gene ontologies of FR versus FS in response
to cold acclimation

The large number of significantly over-represented ontolo-
gies common among the cold-regulated genes in FR and FS
reflects the fact that these lines are very similar. Both lines
were derived from the same cv “Winoka.” We believe that
the common GO terms (Electronic supplementary material,
File 3) will aid in deciphering the default mechanisms of
cold acclimation and vernalization for cereals in general.
These GO terms included some such as: GO:0006979 (re-
sponse to oxidative stress); GO:0005985 (sucrose metabolic
process), and GO:0009266 (response to temperature stimu-
lus). However, in this study, we focused on the GO terms
and pathways unique or highly enriched to FR and to FS.
These will provide significant insights into differential
freeze survival via cold-acclimation-specific processes and
not vernalization processes, since these lines share the same
vernalization requirement.

GO terms identified for FR, such as “response to abiotic
stimulus,” were listed among those described from EST
studies for the cold-acclimated freeze-resistant winter
wheat cv. “Norstar” (Houde et al. 2006). The second GO
term unique to FR, “chromatin organization,” has been
previously reported by Laudencia-Chingcuanco et al.
(2011) in their genome-wide study using the same
Affymetrix wheat array with RNA from cold-acclimated
crown tissue of different lines with neutralized spring
vernalization. “Response to ABA stimulus” has long been
implicated as distinguishing between freeze resistance
among plants. Such studies include our research on the
differential expression of the ABA-regulated gene HVA1
in barley between the freeze-resistant cv. “Dicktoo” and
the less freeze-resistant cv. “Winter Malt” (Sutton et al.
1992).

The unique FR cellular component GO term, “mitochon-
drial part,” corroborates the role of mitochondria in cold
acclimation. Lee et al. (2002) reported on the lesion in the

Table 1 Pathways identified for
FR and FS

Median change is the median
fold change (non-log) for genes
identified by ontology. In cases
where more than one represen-
tative of a given gene was pres-
ent, the gene with the lowest
p value was chosen

nd not detected

*pvalue<0.0050; **pvalue<
0.05

Enriched pathways FR FS

No. of genes Median change No. of genes Median change

Neighbors of DREB2A 5 20.345* 6 4.320**

Photosynthesis 20 −5.742* 21 −4.377**

Photosynthesis, light reaction 11 −5.751* 11 −4.377**

Photorespiration 6 −6.66* nd

Jasmonic acid biosynthesis 10 −8.065* 9 −6.676**

Neighbors of E2F 7 −9.939* nd

13-LOX and 13-HPL pathway 5 −16.096* nd

Neighbors of RuBisCo 5 −16.440* 5 −5.127**

Binding partners of LHCA1 nd 5 −18.212*
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mitochondrial electron transfer chain in the cold-sensitive
Arabidopsis mutant frostbite1.

The unique FS cellular GO term “Cytoplasm” (510
genes) is too broad to gain any insight into the cold
responses of FS as it pertains to freeze susceptibility.

Go term “phosphoric ester hydrolase activity,” which is
unique to FR molecular functions, contains the child term
phosphatase. Sharma et al. (2005) listed the cold-signal-
mediating phosphatases in plants. The phosphatases associ-
ated with phosphoric ester hydrolase activity were not listed
among them. The long-term cold acclimation (4 weeks) of
our study would not necessarily result in the identification
of enzymes involved in perception and early signaling.
“Phosphoric ester hydrolase activity” was also identified as
over-represented in studies on both salt stress in Arabidopsis
(Sakamoto et al. 2008) and acute drought stress in mosquito
(Wang et al. 2011). These reports suggest that “phosphoric
ester hydrolase activity” is a highly evolutionarily conserved
process related to osmotic stress such as desiccation, salt,
and freezing stress. It is not clear at this point the unique role
of this process in FR.

“Chromatin organization” which was also listed as a
unique term for FR has previously been shown to be in-
volved in plant response to stress. Zhu et al. (2008) sug-
gested that HOS15 serves as a repressor of gene expression
important to cold tolerance through histone deactylation.
This and other epigenetic changes, which result in repres-
sion of gene expression, fit the hypothesis of a developed
FR cold-acclimation state in which metabolism, growth, and
development are quiescent.

The last of the FR five unique GO terms “immune re-
sponse” reflects the crosstalk between abiotic and biotic stress,
since plant immune response is usually described in terms of
pathogen response (Kwon et al. 2008). In particular, our
results reflect an association between immune response and
higher freeze tolerance, since this term did not appear among
the terms unique to FS.

In the case of FS, the unique GO terms corresponding to
cytoplasmic cellular components, helicase and ATPase ac-
tivities, reflect a higher level of metabolic processes in cold-
acclimated FS than in FR. The DEAD-box ATPase/RNA
helicase (FL2-5A4/At3g01540) was classified by Seki
et al. (2002) as responsive to cold. However, Fowler and
Thomashow (2002) did not observe such a cold response.
Gusta et al. (2005), in the review of DEAD-box helicases
and ABA, reflected on a positive correlation between heli-
case activity and cold acclimation as deduced from the work
of Gong et al. (2005) who demonstrated an essential role for
these enzymes in mRNA nucleo-cytoplasmic export. We
propose that such a role for the helicases would be important
at the onset and not the later stage of cold acclimation. Such
activity could serve to reduce the level of cold acclimation
as reflected by the higher activity in FS than FR.

Pathways of FR and FS in response to cold acclimation

The most important dataset from our studies are those
resulting from the pathway analysis. As with the GO
analysis data, we can validate our results by comparison
with previous research. Pathways involved in photosyn-
thesis are downregulated in response to cold acclimation
in both FR and FS, since cold acclimation was per-
formed under low PPFD. Kosmala et al. (2009) in
studying proteins involved in photosynthesis reported
on the depression of photosynthesis during cold accli-
mation and the differential regulation of the relevant
proteins between high freeze-tolerant and low freeze-
tolerant plants. The significantly downregulated “photo-
respiration” and “neighbors of RuBisCo” pathways
would suggest less energy production and thus a lower
level of activity within the FR crown tissue at advanced
cold acclimation compared with the FS crown tissue.
Reduced photosynthesis in FR lines may result in pro-
tection from photo-oxidative stress commonly associated
with chilling-damaged chloroplast membranes. Janská et
al. (2011) reported on some induction of genes involved
in photosynthesis in the crown tissue. Such induction of
photosynthetic genes in the non-photosynthetic crown
tissue was also observed by Skinner (2009). Our results
demonstrated repression of the pathway to a greater
extent in FR than FS. These results do not necessarily
contradict that of Janská et al. (2011) or Skinner (2009),
since those studies were performed with plants at dif-
ferent stages of development and cold-acclimated under
different light intensities than ours. Janská et al. (2011)
performed cold acclimation when barley plants were at
the second leaf stage under light intensity of 120 μmol
m−2s−1. Skinner (2009) performed cold acclimation on
wheat plants at the third leaf stage and under 250 μmol
m−2s−1 light intensity. Additionally, the focus of the
Skinner (2009) study was on the post-cold acclimation
transcriptomic changes in the crown. As described pre-
viously (Sutton et al. 2009), our study was performed
with wheat plants at the fourth leaf stage with cold
acclimation under the low light intensity of 4 μmol
m−2s−1. The most relevant variable is probably the light
intensity which was 62.5-fold less in our wheat study
than that of Skinner (2009).

Pathway “neighbors of E2F” is under the control of E2F
transcription factors, which were first described in animal
cells and demonstrated to be involved in cell cycle regulation
and growth. Ramirez-Parra et al. (1999) were the first to
clone a plant E2F and to demonstrate its similarity to the
animal E2F protein structure. del Pozo et al. (2002), de Jager
et al. (2001), and Mariconti et al. (2002) demonstrated that
E2F is cell-cycle-regulated as transcripts accumulated in the
S phase. GUS activity under the control of the 5’ upstream
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region of E2F revealed that E2F is expressed in actively
dividing cells as well as shoot and root meristem (del Pozo
et al. 2002). At present, we can only assume that the E2F
downregulation in response to cold acclimation in FR crown
tissue reflects a strong association between cold-acclimation-
induced cell quiescence and level of freeze survival.

The last of the enriched pathways identified as downregu-
lated in FR were “13-LOX and 13-HPL” and “jasmonic acid
biosynthesis.” Lipoxygenases (LOX) and hydroperoxide
lyases (HPL) are involved in the biosynthesis of jasmonic
acid. The fact that 13-LOX and 13-HPL pathway was signif-
icantly downregulated in FR and not cold-acclimation-
responsive in FS suggests that this pathway may play a critical
role in distinguishing between lines varying in freeze survival.

Of all the cold acclimation pathways identified, only
“neighbors of DREB2A” was significantly enriched and
over-represented in FR as compared with FS, and thus more
significantly linked to freeze survival. Kume et al. (2005)
isolated two wheat DREB1 homologs they designated
WCBF2. This gene was found to be upregulated in early
and late cold acclimation and by drought but not ABA.
WCBF2 was also mapped to chromosome 5. Egawa et al.
(2006) isolated a DREB2 homolog designated WDREB2.
They described the generation of three transcripts due to
alternative splicing and the induction of all three transcripts
by low temperature treatment. In response to cold acclima-
tion, WDREB2 transcripts increased and remained high until
63 days. The Arabidopsis DREB2A has been reported to be
induced by dehydration (Liu et al. 1998) resulting from
freezing (review, Sharma et al. 2005). Our results and those
of Egawa et al. (2006) reflect cold-acclimation induction of
WDREB2Awithout freezing-induced dehydration. However,
since cold acclimation also includes dehydration, we cannot
rule out that WDREB2A is not also drought-regulated as
described by Egawa et al. (2006).

In summary, we propose that the cold-acclimation-enriched
pathways function to reduce energy, shut-down metabolism,
inhibit cell division, and maintain cell quiescence needed to
withstand freeze stress. The degree to which one line is able to
achieve those functions would appear to confer a higher
degree of freeze survival.
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