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Abstract Murine milk protein gene expression requires
insulin, hydrocortisone, and prolactin; however, the role of
insulin is not well understood. This study, therefore,
examined the requirement of insulin for milk protein
synthesis. Mammary explants were cultured in various
combinations of the lactogenic hormones and global
changes in gene expression analysed using Affymetrix
microarray. The expression of 164 genes was responsive to
insulin, and 18 were involved in protein synthesis at the
level of transcription and posttranscription, as well as
amino acid uptake and metabolism. The folate receptor
gene was increased by fivefold, highlighting a potentially
important role for the hormone in folate metabolism, a

process that is emerging to be central for protein synthesis.
Interestingly, gene expression of two milk protein tran-
scription factors, Stat5a and Elf5, previously identified as
key components of prolactin signalling, both showed an
essential requirement for insulin. Subsequent experiments
in HCll cells confirmed that Stat5a and Elf5 gene
expression could be induced in the absence of prolactin
but in the presence of insulin. Whereas prolactin plays an
essential role in phosphorylating and activating Stat5a, gene
expression is only induced when insulin is present. This
indicates insulin plays a crucial role in the transcription of
the milk protein genes.
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Introduction

The lactating mammary gland is emerging as a specific target
tissue of insulin action, in particular as a regulator of milk
protein synthesis (Bolander et al. 1981; Choi et al. 2004;
Chomczynski et al. 1984; Griinari et al. 1997; Kulski et al.
1983; Mackle et al. 1999, 2000; McGuire et al. 1995;
Menzies et al. 2009b; Oka 1974). In preparation for lactation,
the rodent mammary gland becomes sensitive to insulin at
the onset of pregnancy and develops increased insulin
sensitivity during late pregnancy due to an augmented kinase
activity of the insulin receptor (Carrascosa et al. 1998).

Lactation involves the transition of the mammary gland
to synthesise and secrete milk proteins and occurs in two
distinguishable phases: secretory differentiation, followed
by secretory activation. Secretory differentiation begins at
midpregnancy, marked by expression of the milk protein
genes (Neville et al. 2002). Activation of secretion occurs
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around parturition and is characterised by further increase
in milk protein gene expression and the formation of tight
junctions between the alveoli cells to facilitate vectoral
secretion of the milk constituents, including protein, into
the alveoli lumen (Brisken and Rajaram 2006; Muller and
Neville 2001; Neville et al. 2002). This transition is
coordinated by the complex interplay of a milieu of
hormones that includes insulin. The mammary explant
culture model has been used to mimic the lactogenic
process and examine the endocrine control of milk protein
gene expression.

Mammary explant culture studies in the mouse and rat
have shown there is an absolute requirement for insulin,
hydrocortisone, and prolactin for the induction of casein
gene expression (Bolander et al. 1981; Kulski et al. 1983;
Nagaiah et al. 1981). Studies to date in the mouse have
shown hydrocortisone and prolactin play an important role in
both transcription of the casein gene and stabilisation of the
messenger RNA (mRNA; Bolander et al. 1981; Choi et al.
2004; Kulski et al. 1983; Nagaiah et al. 1981). Historically,
insulin was assumed to perform a permissive role of cell
survival and maintenance in mammary culture models
(Barnawell 1965; Rosen et al. 1980), however, mammary
explant culture studies by Nicholas et al. (1983) showed
insulin was essential for casein synthesis, and Chomczynski
et al. (1984) showed the hormone to be essential for
transcription of the β-casein gene, but not for stabilisation
of the transcripts. These studies suggested that insulin clearly
plays a role beyond cell survival and maintenance in the
mammary explant culture model. More recent studies have
shown that murine, bovine, and wallaby mammary explants
can survive in the absence of insulin and any exogenous
macromolecules (Brennan 2008; Brennan et al. 2008),
supporting the concept that the primary role of insulin is
regulating function of mammary epithelial cells.

Insulin has been shown to stimulate milk protein
synthesis in murine mammary tissue in vitro (Wang and
Amor 1971), and it is conceivable that insulin has a role in
synthesis of the milk proteins and not simply expression of
the milk protein genes. Choi and colleagues (2004)
demonstrated that insulin and prolactin acted synergistically
to enhance translation of the β-casein mRNA. Specifically,
insulin enhances translation of β-casein by increasing
initiation of translation and lengthening the poly(A) on
mRNA by the cytoplasmic polyadenylation element bind-
ing protein (Choi et al. 2004). Recent studies in the cow
have suggested a posttranscriptional role for insulin in milk
protein synthesis via folate metabolism (Menzies et al.
2009b). It is plausible that insulin may also regulate folate
in the murine mammary gland and thereby playing a
posttranscriptional role in synthesis of the milk proteins.

The current study has exploited the mammary explant
culture model to investigate the direct role/s of insulin in

milk protein synthesis at the transcription level in the
murine mammary gland. The use of Affymetrix microarray
has allowed a global assessment of mammary gene in
mammary explants and offers potential insight into the
molecular mechanisms underlying the insulin-stimulated
milk protein synthesis.

Materials and methods

Mice

Mice (CV40) were obtained from the Howard Flory Institute
of The University of Melbourne, Parkville, Melbourne. Mice
were maintained in the Zoology Department animal house,
with feed and water provided ad libitum. Day1 of pregnancy
was identified as the first day a postcoital plug was observed.
Mice were euthanased on day12 of pregnancy, and their
inguinal and abdominal mammary glands were excised
under sterile conditions.

Tissue culture

Mammary gland explants from midpregnant mice were
prepared and cultured in Medium 199 with Earle's salts
(Gibco BRL Life technologies, Invitrogen, Melbourne,
Australia) as described previously (Nicholas and Tyndale-
Biscoe 1985), except that 10% foetal calf serum (FCS) was
added, and bovine serum albumin was excluded from the
media. Briefly, explants were incubated at 37°C and 5% CO2

in 5 ml of media per well in six-well plates, and the media
were changed every third day. Hormones were added at the
following concentrations in the indicated combinations:
bovine insulin (I; 100 ng/ml, Sigma, Sydney Australia),
hydrocortisone (F; 50 ng/ml, Sigma), and ovine prolactin (P;
200 ng/ml, National Hormone and Pituitary Program USA).
All explants were initially cultured in the absence of
exogenous hormones (NH) for 8 days to allow effects of
endogenous hormones and inflammatory response of the
tissue to subside. At day8, mammary explants were harvested
for controls, and the remaining explants were cultured for
4 days in media containing FP or IFP. Mammary glands from
a total of 12 mice were used in three separate culture
experiments with mammary glands from four mice pooled for
each culture experiment. In each experiment, three wells of
explants were cultured for each hormone treatment and NH
control. Explants were collected and stored at −80°C until
RNA was extracted for microarray analysis.

Cell culture

HC11 cells, a mouse mammary epithelial cell line, were
maintained in RPMI 1640 medium supplemented with 10%
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FCS, 20 mM (HEPES) buffer solution, 6 mM L-glutamine,
5μg/ml I, 10 ng/ml epidermal growth factor (EGF, Sigma),
0.1125% Na(CO3)2, 50U/ml penicillin, and 50 g/ml
streptomycin. For experiments involving P treatment, FCS
was heat-inactivated by 30 min incubation at 50°C. All cell
cultures were maintained in a 37°C, 5% CO2 humidified
incubator. HC11 cells were seeded in six-well plates at a
density of 1×105 cells per well (day0) and allowed to grow
to 70–80% confluence. On day3, the medium was changed
and replaced with EGF free maintenance medium, and the
concentration of I in the medium was adjusted (to 0, 0.05,
0.5, or 5 μg/ml). On day4, dexamethasone (dex; 0.5 μM,
Sigma) and P (0 or 5 μg/ml) were added to cells to induce
differentiation. The treatment was repeated daily until
day8. Protein and total RNA extracts were isolated from
the cells.

Microarray—hybridisation and analysis

Total RNA was extracted using an RNeasy Lipid Tissue Kit
(Qiagen, Sydney, Australia) following manufacturers' instruc-
tions. The complementary DNA (cDNA) was synthesised
from total RNA (20 μg) using Superscript II (Invitrogen).
Synthesis of biotin-labelled complementary RNA was
performed using BioArray High Yield RNA Transcript
Labelling Kit (Enzo Diagnostics, USA). The cDNA probes
were hybridised to Affymetrix MOE430 GeneChips over-
night according to manufacturer's instructions. Three arrays
were performed in total, each chip representing one treatment
using pooled RNA from each of the three mammary explant
culture experiments.

Initial analysis was performed using the Affymetrix
GeneChip® Operating Software to assess array quality.
Signal intensities of each gene were obtained using the
robust multiarray average function of the Affy package in
bioconductor (http://www.bioconductor.org). The cutoff
threshold for gene expression intensity was 200, and
differential gene expression was assessed by fold change.
IFP-responsive genes were determined by identifying genes
differentially expressed by at least twofold in explants
cultured in IFP compared to explants cultured in NH.
Insulin-responsive genes were determined by identifying
genes that were either up- or downregulated at least twofold
in mammary explants cultured in IFP compared to FP. The
biological functions of each gene within the datasets was
manually researched in the literature and PubMed database
(http://www.ncbi.nlm.nih.gov) and then classified by cellular
function.

Quantitative polymerase chain reaction

Total RNA was extracted from HC11 cells using TRIZOL
Reagent (Invitrogen) according to the manufacturer's

instructions and purified using Qiagen RNeasy Mini Spin
columns. Triplicate RNA samples were assessed for quality
and quantity using the 2100 Bioanalyzer (Agilent, Forrest
Hill, Australia). Synthesis of cDNA from HC11 cells was
performed using SuperscriptTM II Reverse Transcriptase
(Invitrogen). Quantitative polymerase chain reaction (PCR)
reactions were performed in triplicate using the TaqMan
probe-based system (Elf5 Mm00468732_m1, Stat5a
Mm00839861_ml, β-casein Mm00839664_m1, and Wap
Mm00839913_m1) on the ABI 7900HT, and relative quan-
tification of the product was performed by comparison to an
internal control (mHPRT Mm00446968_m1). Significant
changes in gene expression were assessed by unpaired, two-
tailed t test. Gene expression data is presented as the mean±
standard error of the mean (SEM).

Western blot

Protein lysates were prepared from HC11 cells in lysis
buffer (20 mM Tris pH7.2, 0.15 M NaCl, 10 mM NaF,
1 mM NaVO4, 1% Triton X-100, 1 mM EDTA, 1 mM
ethylene glycol tetraacetic acid, 2.5 mM Na4P2O7, 1 mM
glycerolphosphate, 0.1% sodium docecyl sulphate, and 1%
sodium deoxycholate) containing protease inhibitor cocktail
(Roche). Lysates were sonicated briefly before protein
determination was performed using bicinchoninic acid
assay reagents (Thermo Scientific). Lysate samples were
prepared and resolved using Invitrogen's NuPAGE reagents,
and gel system before proteins were transferred onto
polyvinylidene fluoride membranes. Blocked membranes
were incubated with α-milk antibody (Accurate Chemical &
Scientific) overnight followed by a horseradish peroxidase-
linked secondary antibody. Protein bands were visualised by
chemiluminescence using electrochemiluminescence reagent
(Perkin Elmer, Sydney, Australia).

Results

Microarray analysis of cultured mammary explants

Microarray analysis confirmed that the mammary explant
culture model is suitable for studying secretory differenti-
ation and milk protein synthesis. Maximal induction of both
the major casein (three- to fivefold) and whey (tenfold)
milk protein genes required I in the presence of FP
(Table 1). A total of 354 genes were differentially expressed
by at least twofold in mammary explants cultured in IFP
compared to explants cultured in NH. Fifty-two genes in the
IFP dataset, 46 upregulated and six downregulated, were
identified as key regulatory and marker genes of lactogenesis
within mammary alveoli in the mouse (supplementary data).
These key genes fall into the general categories of milk
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protein synthesis, lipid synthesis and secretion, carbohy-
drate synthesis, defence factors, tight junction formation,
extracellular matrix, molecular transporters, and signal
transduction.

A total of 164 genes were responsive to insulin in
cultured mammary explants, and 18 were identified to be
involved in protein synthesis (Table 1). These genes
included induction of two major milk protein gene
transcription factors signal transducer and activator of
transcription 5A (Stat5a; twofold) and E74-like factor 5
(ets domain transcription factor; Elf5; fivefold), as well as
the folate receptor alpha (Folr1; fivefold; Fig. 1a).

Confirmation of I-regulated Stat5a and Elf5 gene
expression in HC11 model

HC11 mouse mammary cells are capable of producing milk
proteins when cultured in the presence of I, dex, and P. In
order confirm the key results obtained from explant studies,
we treated HC11 cells with and without I in the presence of
P and dex. Cells cultured in I, P, and dex for 5 days showed
a significant increase in β-casein and Wap mRNA
expression of more than 15- and 200- fold, respectively
(both P< 0.05; Fig. 1b). In contrast, there was little change

in mRNA levels for these genes when either I or P was
absent, indicating that I as well as P is essential for milk
protein expression in these cells. There was no clear dose
effect of I on milk protein mRNA levels (P>0.05),
however Western blot analysis of HC11 cell lysates showed
a clear dose effect of I on synthesis in of the β-casein
protein (Fig. 1c).

The effect of P on HC11 milk protein gene expression
was independent of changes in Elf5 mRNA levels,
however, cells cultured in the absence of I showed greatly
reduced Elf5 mRNA expression (P<0.05 Fig. 1b). This
result suggests that I mediates its lactogenic effect via Elf5
and is consistent with the mammary explant experiments.
Similarly, Stat5a levels were reduced in cells cultured in the
absence of I (P<0.05).

Discussion

This study demonstrates that insulin is essential for milk
protein synthesis at multiple levels in the murine mammary
gland. A central role for insulin was highlighted by the
requirement of insulin for two milk protein transcription
factors, Stat5a and Elf5, which have previously been

Table 1 I-responsive genes involved in protein synthesis in cultured murine mammary explants

Gene description Affy ID Gene symbol Fold change FP→IFP

Milk proteins

Lactalbumin, alpha- 1418363_at Lalba 10

Lactoferrin 1450009_at Ltf 10

Whey acidic protein 1448386_a_at Wap 10

Casein alpha S1 1420627_a_at Csn1s1 5

Casein kappa 1419735_at Csn3 3

Casein beta 1420370_s_at Csn2 3

Casein alpha S2-like A 1420633_a_at Csn1s2a 3

Regulation of transcription

E74-like factor 5 (ets domain transcription factor) 1419555_at Elf5 5

Signal transducer and activator of transcription 5A 1421469_a_at Stat5a 2

Posttranscriptional regulation—one-carbon pool

Aldehyde dehydrogenase 1 family, member L1 1424400_a_at Aldh1l1 3

Folate receptor 1 (adult) 1450995_at Folr1 5

Nucleotide supply

Solute carrier family 28 (sodium-coupled nucleoside transporter), member 3 1419571_at Slc28a3 10

Ectonucleotide pyrophosphatase/phosphodiesterase 2 1448136_at Enpp2 2

Amino acid supply

Aldehyde dehydrogenase family 1, subfamily A7 1418601_at Aldh1a7 3

Aldehyde dehydrogenase 1 family, member L1 1424400_a_at Aldh1a1 3

Glutamic-pyruvate transaminase (alanine aminotransferase) 1426502_s_at Gpt 2

Sulphotransferase family, cytosolic, 1A, phenol-preferring, member 1 1427345_a_at Sult1a1 2

Solute carrier family 7 (cationic amino acid transporter, Y+ system), member 5 1418326_at Slc7a5 2
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considered prolactin-responsive. The concentration of insulin
used in the current study is significantly lower than is
commonly used in culture experiments, but is still sufficient
to induce milk protein gene expression, as observed in earlier
work by Bolander et al. (1981). This concentration of insulin
(100 ng/ml media) is below the insulin receptor saturation

rate (Akers 2002), and therefore, the lactogenic response
observed in the cultured explants is independent of IGF-1
receptor signalling, contrary to prior suggestion by Akers
(2002) and Neville et al. (2002).

The secretory differentiation stage of lactogenesis begins
around midpregnancy and involves induction of the milk

5 0 0.05 0.5 5 I (ug/ml)

- + + + + P (5ug/ml)

Fig. 1 Insulin stimulated milk protein synthesis a Microarray analysis
showed maximal expression of signal transducer and activator of
transcription 5A (Stat5a), E74-like factor (Elf5), and folate receptor 1
(Folr1) genes required insulin (I) in the presence of hydrocortisone (F)
and prolactin (P) in mammary explants. Mammary explants from 12
midpregnant mice were cultured with no hormone (NH) for 8 days
and then with FP or IFP for a further 3 days. Cultures were performed
in triplicate using mammary explants from four mice for each culture.
Mammary explant RNA of the same hormone treatment was pooled. b
Maximal expression of β-Casein, Wap, Elf5, and Stat5a required the
presence of insulin in HC11 cells that were cultured for 4 days in
dexamethasone and various concentrations of I in the presence or

absence or P. There was no clear dose effect of I on milk protein gene
expression. RNA extracts of cultured HC11 cells were analysed by
real-time PCR for gene expression, and data were presented as means
±SEM. c The synthesis of β-casein protein in cultured HC11 cells was
dose-responsive to the amount of insulin included in the culture
media. Cells were cultured for 4 days in dexamethasone and various
concentrations of I and P, protein extracts prepared, and Western blot
analysis of β-Casein performed using an antimilk antibody. *P<0.05
(indicates significant fold change in gene expression compared to no P
control), #P<0.05 (indicates significant fold change in gene expression
compared to P+5 ug/ml insulin)
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protein genes (Hartmann 1973; Neville et al. 2002).
Maximal induction of the major milk protein genes required
the coordinate involvement of insulin, glucocorticoid, and
prolactin, which is in agreement with previous studies
(Bolander et al. 1981; Kulski et al. 1983; Nagaiah et al.
1981). The second phase of lactogenesis, secretory activa-
tion, occurs around parturition when the mammary epithelial
cells begin to synthesise and secrete protein, lipid, lactose,
and other milk constituents such as defence factors into the
alveoli lumen (Brisken and Rajaram 2006; Muller and
Neville 2001; Neville et al. 2002). In accordance with this
process occurring in the cultured mammary explants, there
was an increase in expression of genes involved the
synthesis of these major milk constituents in response to
insulin, glucocorticoid, and prolactin. The differential
regulation of genes involved in the concomitant synthe-
sis of extracellular matrix, signal transduction, and the
closure of tight junctions between mammary epithelial
cells, was also evident, the latter necessary for cells to
maintain polarity around a central lumen and prevent
paracellular communication such that milk constituents
may be secreted into the alveoli lumen (Blanchard et al.
2006; Itoh and Bissell 2003; Linzell and Mepham 1974;
Morgan and Wooding 1982; Nguyen and Neville 1998).
Furthermore, 13 signalling and transporter genes, as well
as one lipid synthesis gene, identified in the current study
are common to the datasets arising from three studies that
have utilised functional genomics to identify key regula-
tory genes involved in secretory activation in the murine
mammary gland (Naylor et al. 2005; Ramanathan et al.
2007; Rudolph et al. 2003). This indicates that the
mammary explants were a useful model to examine the
role of insulin in induction of milk protein synthesis that
occurs at lactogenesis.

Insulin and milk protein gene transcription

The current study showed that the major casein and whey
protein genes are insulin-responsive and confirms earlier
studies on the hormonal regulation of casein gene expres-
sion (Bolander et al. 1981; Goodman et al. 1983; Kulski et
al. 1983; Nagaiah et al. 1981). Consistent with this
induction of the milk protein genes is a concomitant
increase in gene expression of two key milk protein gene
transcription factors, Stat5a and Elf5 (Gass et al. 2003;
Harris et al. 2006; Wakao et al. 1995, 1992), in response to
insulin. A major role for insulin in Elf5 and Stat5a gene
expression was confirmed in HC11 cells, which showed
only reduced expression of these genes in the absence of
insulin. In contrast, prolactin was not required for maximal
expression of Elf5 and Stat5a. Interestingly, both Stat5a and
Elf5 have been identified as major regulators of the
prolactin signalling pathway to induce milk protein gene

expression and mammary development (Delcommenne and
Streuli 1995; Gass et al. 2003; Gouilleux et al. 1994; Harris
et al. 2006; Naylor et al. 2005; Neville et al. 2002; Philp et
al. 1996; Zhou et al. 2005).

Insulin has previously been identified to play a role in
Stat5 signalling by Chen et al. (1997) who showed the
major insulin receptor substrate, IRS-1 activates Stat5 by
phosphorylation. Phosphorylation of the Stat5 proteins,
Stat5a and Stat5b, is important for their dimerisation and
binding to GAS (γ-interferon activation sequence) elements
in the promoter region of milk protein genes (Gouilleux et
al. 1994; Groner et al. 1994; Litterst et al. 2003; Wartmann
et al. 1996). Although the heterodimer of Stat5a and Stat5b
proteins, as opposed to homodimers, is essential for its
recognised role in milk protein gene expression (Calvert
and Shennan 1996), the level of expression of the Stat5a
gene is greater in mammary epithelial cells, and this protein
is regarded the main regulator in mammary gland functions
(Teglund et al. 1998). Prolactin (Burdon et al. 1994; Philp
et al. 1996) and insulin (Chen et al. 1997), to a lesser
extent, have been recognised a key role in phosphorylation
of Stat5a, but the current study shows Stat5a gene
transcription is insulin-responsive.

Elf5 is an Ets transcription factor that regulates secretory
alveolar epithelium differentiation during mammary mor-
phogenesis, lobuloalveolar development in the mammary
gland, and transcription of the milk protein genes (Harris et
al. 2006; Li et al. 2005; Oakes et al. 2008; Zhou et al. 2005,
1998). Elf5 directly activates a GGAA site in the Wap gene
promoter (Thomas et al. 2000), but the mechanism by
which Elf5 regulates transcription of the casein genes
remains to be elucidated. It has been suggested Elf5 has a
negative regulatory domain that inhibits DNA binding
(Oettgen et al. 1999), but it is not known if this is related
to casein gene transcription. Fibroblast growth factor (Fgf)
signalling is essential for Elf5 expression in the lung
epithelium, and explant culture studies suggest this regula-
tion of Elf5 by Fgf is by means of the PI3-kinase/Akt
pathway (Metzger et al. 2007). Insulin can signal by the
PI3-kinase/Akt pathway (Saltiel and Pessin 2002), and this
signalling pathway has been identified a central role in
lactation (Lemay et al. 2007). While insulin has also been
shown to regulate Elf5 in bovine mammary tissue (Menzies
et al. 2009b), whether insulin regulates Elf5 in the
mammary gland via PI3-kinase/Akt signalling mechanisms
or not remains to be resolved.

A posttranscriptional role for insulin

The synthesis of β-casein protein, but not transcription of the
β-casein, or Wap, genes in cultured HC11 cells was dose-
responsive to the amount of insulin included in the culture
media. This provides evidence of a posttranscriptional role for
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insulin in milk protein synthesis and is consistent with the
microarray data that revealed a number of the genes
responsive to insulin were involved in protein synthesis at
the posttranscriptional level. An increase in expression of
several genes involved in the uptake and metabolism of
nonessential amino acids (Alnouti and Klaassen 2008a, b;
Davis and Mepham 1976; Jakoby and Ziegler 1990; Kansal
et al. 2000; Mepham 1982; Roh et al. 1994; Sharma and
Kansal 1999; Welch 1972) is also consistent with recent data
from the hormone's action in cultured bovine mammary
explants (Menzies et al. 2009b). The increased gene
expression of the Y+ cationic transporter gene (Slc7a5)
provides a molecular mechanism for the requirement of
insulin to stimulate cationic amino acid transport into the
mammary gland (Kansal et al. 2000; Menzies et al. 2009b;
Roh et al. 1994; Sharma and Kansal 1999).

Insulin and folate metabolism

Recent comparative genomics studies that combined bio-
informatics and animal models with a high (and increased)
milk protein production during an established lactation
have indicated a key role for folate receptor alpha (Folr1) in
the mammary gland for milk protein production (Menzies
et al. 2009a). A specific role for folate in milk protein
synthesis is also supported by folate supplementation
studies in lactating cows, which resulted in a positive
response to milk production and milk protein yields (Girard
and Matte 1998, 2005; Graulet et al. 2007). The current
study indicated that two genes that are central to the
metabolic pathway of folate were responsive to insulin in
the cultured mammary explants. Folr1 was upregulated
fivefold, and expression of the gene encoding the folate
reducing enzyme, formyltetrahydrofolate dehydrogenase
(Aldh1l1) gene, was also increased (Shane 1989). A role
for insulin in stimulating mammary genes involved in folate
uptake and metabolism is consistent with a recent report
that these genes were also insulin responsive in bovine
mammary tissue (Menzies et al. 2009b).

Folate metabolism plays an important role in protein
synthesis due to the single, important biochemical function
of folate in mammals to accept and release one-carbon
units, otherwise known as the one-carbon pool (Choi and
Mason 2000). This role is essential for the synthesis of
purines and pyrimidines, generation of methionine, and the
de novo synthesis of methyl groups for formation of the
primary methylating agent, S-adenosylmethionine (Bailey
and Gregory 1999). The importance of Folr1 for cellular
uptake of folate was established by the analysis of renal
folate handling in mice with targeted gene knockouts of
folate binding proteins 1- and 2 (also known as Folr1 and
Folr2) (Birn 2006). Once in the cell, Aldh1l1 plays a central
role in reducing folate to its active forms of tetrahydrofolates

(Barlowe and Appling 1988; Cook et al. 1991; Shane
1989).

The current study demonstrates that insulin plays an
important role in milk protein synthesis at multiple levels in
the murine mammary gland. The new data presented
demonstrates that the requirement of insulin for milk protein
gene expression may primarily be facilitated by the major
milk protein transcription factors, Elf5 and Stat5a. Whereas
prolactin plays an essential role in phosphorylating and
activating Stat5a, insulin plays an integral role in the gene
expression of this protein. This indicates that insulin plays a
crucial role in the prolactin-induced expression of the milk
protein genes and confirms that the primary role of insulin,
together with hydrocortisone, equally as important as
prolactin in milk protein synthesis. Therefore, this study
has begun to elucidate the molecular mechanisms of insulin
underpinning the coordinate induction of milk protein
synthesis.
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