
Abstract In the past decade, there has been an intense
effort to comprehensively catalogue the expressed genes
in the yeast Saccharomyces cerevisiae and to determine
the absolute and relative abundance of transcript and
protein levels under different cellular conditions. Several
methods have been developed to monitor gene expres-
sion: DNA microarray analysis, Serial Analysis of Gene
Expression (SAGE), kinetic RT-PCR and monitoring ex-
pression of β-galactosidase fusion proteins. These tech-
niques have been used to measure transcript and protein
abundance in different developmental states and under
different environmental stimuli. A wealth of expression
data for yeast is now publicly available through several
web sites. The expression information that exists has the
obvious benefits of providing a better understanding of
the gene expression patterns that accompany changes in
a yeast cell’s environmental and developmental states.
This data has also, however, provided clues to unravel-
ing the complicated questions surrounding gene regula-
tion: why and how is gene expression controlled?
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Why monitor gene expression?

Understanding the composition of the expressed ge-
nome, knowing both what genes are expressed and the
extent to which they are represented, provides three dif-
ferent types of information. First, the set of genes ex-
pressed at a given time reflects the cellular processes that
a yeast cell is undergoing. Therefore, identifying the

functional classes of genes that are expressed or re-
pressed under specific conditions allows for a better un-
derstanding of the molecular responses to particular
stimuli. For example, the genes that are induced during
sporulation and their temporal pattern mirror the events
of recombination, meiosis, spore formation and spore
wall maturation that are occurring within the yeast (Chu
et al. 1998; Primig et al. 2000).

Second, expression studies can help elucidate the
function of characterized genes and uncharacterized
genes. It is now clear that genes which share similar ex-
pression patterns often participate in the same cellular
processes (Cho et al. 1998; Chu et al. 1998; DeRisi et al.
1997; Gasch et al. 2000, 2001; Primig et al. 2000; Spellman
et al. 1998). In the case of sporulation, 33 uncharacter-
ized ORFs that were found to be induced during sporula-
tion in microarray expression studies were found to be
required for the formation of wild-type spores by muta-
tion analysis (Rabitsch et al. 2001).

The third type of information that can be deduced
from expression studies is information about gene regu-
lation. The patterns and phenomena identified within the
expression data can be used to address the complexities
and nuances of the regulation of gene expression. Cata-
loguing the yeast transcriptome and proteome, and their
variations, has provided some evidence for understand-
ing why some genes have restricted or limited expression
patterns. The data has also provided clues for defining
the upstream molecular regulators of the observed ex-
pression patterns. This review describes the current
methods for monitoring gene expression in yeast, the
plethora of available expression data and how it has been
used to understand gene regulation.

Methods for measuring yeast gene expression

Several new methods have been developed in recent
years to monitor gene expression on a large scale. Using
these approaches, transcript or protein abundance can be
qualitatively or quantitatively determined. Most of these
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techniques measure mRNA abundance, such as microar-
ray and DNA chips, SAGE (Serial Analysis of Gene Ex-
pression) and kinetic RT-PCR. Relative protein levels
have been measured on a large scale using a library of
protein β-galactosidase fusions (Ross-MacDonald et al.
1999). Two-dimensional gel electrophoresis has also
been utilized to measure protein abundance on a large-
scale (Futcher et al. 1999; Gygi et al. 1999). In the fu-
ture, arrays of antibodies raised against all the yeast pro-
teins may be available to comprehensively monitor pro-
tein abundance. Table 1 summarizes each of these meth-
ods and denotes each of their advantages and disadvan-
tages.

Microarray and DNA chip analysis

Microarray and DNA chip techniques involve hybridiza-
tion of fluor-labeled cDNA to an array containing open
reading frame (ORF) sequences (Lashkari et al. 1997;
Shalon et al. 1996). Upon completion of sequencing the
yeast genome, the sequence was annotated to predict all
coding sequences. DNA chips and microarrays have
been designed to contain sequences of those predefined
ORFs. The DNA chips for yeast are commercially avail-
able through Affymetrix. They are high-density oligonu-
cleotide arrays, where 25-mers unique to each gene are
synthesized directly onto these arrays. DNA microarrays,
on the other hand, are arrays of PCR-amplified ORFs.
Each annotated sequence is separately amplified and
printed in a unique position on the arrays. The advantage
of DNA chip and microarray technology is that all of the
approximately 6,300 predicted ORFs can be easily moni-
tored simultaneously in a single experiment. A schematic

of the microarray analysis approach is shown in Fig. 1A.
Figure 1B shows a portion of an ORF microarray that
has been hybridized with fluor-labeled cDNA from wild
type and swi4∆ cells.

Most of the yeast expression data that is currently
available is based on microarray and DNA chip tran-
script profiling. This expression analysis has been used
to characterize yeast cell response to several different
physiological conditions, including glucose limitation
(Ferea et al. 1999) and the diauxic shift (DeRisi et al.
1997). Many studies have been done to examine yeast
expressional response to different sources of stress. The
transcriptional response to such stresses as DNA damage
(Gasch et al. 2001), starvation (Chu et al. 1998), oxidiz-
ing and reducing agents and heat shock (Gasch et al.
2000) are the subject of a review by Gasch et al. in this
issue.

Microarray expression profiling has examined the
changes in gene expression throughout several different
developmental stages. Multiple studies have been per-
formed to profile expression during the cell cycle and
during the stages of sporulation (Cho et al. 1998; Chu et
al. 1998; Primig et al. 2000; Spellman et al. 1998). The
transcriptional program of mating cells and cells under-
going pseudohyphal growth have also been elucidated
(Roberts et al. 2000). In addition, expression analysis has
been performed for a myriad of mutant yeast strains un-
der different growth conditions (Hellauer et al. 2001;
Holstege et al. 1998; Lopez and Baker 2000; Sudar-
sanam et al. 2000).

This approach of using arrays containing PCR ampli-
fied ORFs is semi-quantitative as the relative fluores-
cence intensity of the sequence elements is a good indi-
cator of relative differences in gene expression, but is a
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Table 1 Methods for measuring gene expression

Method Measures Quantitativeness Comprehensiveness Facility Sensitivity References
protein or 
mRNA 
abundance

Microarray mRNA Semi-quantitative All annotated Easy; single 0.5–200 (Lashkari et al. 1997;
and DNA chip sequences hybridization transcripts/cell Shalon et al. 1996)
analysis
SAGE mRNA Quantitative All expressed Laborious; 0.3–200 (Kal et al. 1999; 

sequences sequencing transcripts/cell Velculescu et al. 
60,000 tags 1997)

Kinetic mRNA Quantitative All annotated Laborious; 0.001–200 (Holland 2002; 
RT-PCR sequences individual PCR transcripts/cell Kang et al. 2000)
β-gal fusion Protein Qualitative All expressed Easy; 96-well 0.001–200 (Ross-MacDonald 
library sequences with format filter proteins/cell et al. 1999)

transposon insertions assay
2D-gel Protein Quantitative Expressed proteins Laborious; 1–1,000 (Futcher et al. 1999; 
electrophoresis that can be separated LC/MS and proteins/cell Gygi et al. 1999)

by their molecular scintillation 
weight and isoelectric counting for 
point individual 

proteins
Antibody Protein Semi-quantitative All annotated Easy; single ?
arrays sequences hybridization



poor indicator of transcript abundance. The fluorescent
signal intensity is influenced by the probe or array ele-
ment length and the melting temperature of the sequenc-
es. The use of oligonucleotide arrays can provide more
quantitative information on transcript levels. A distinct
disadvantage of current microarray methods is that they
require a priori information on the sequences that are ex-
pressed in the genome and are dependent on thorough
and precise annotation of the sequence. Genes that are
expressed and have not been annotated are missing from
the analysis. This problem may be swiftly remedied by
incorporating all genome sequences or genes that are
newly identified by other expression techniques, such as
SAGE and gene-trapping (see below).

Serial analysis of gene expression

Serial analysis of gene expression (SAGE) also monitors
gene transcripts. It involves preparation and concatena-
tion of 10- to 15-bp unique expressed sequence tags
from the three prime end of cDNAs and serial sequenc-
ing of the concatamers (Velculescu et al. 1997). The
unique sequence tags are generated by digestion of dou-
ble-stranded cDNA with the NlaIII restriction enzyme,
followed by polyA selection, which will purify the 3′-
most NlaIII cDNA fragments. A BsmFI linker is subse-
quently ligated to this pool of fragments. Since the
BsmFI recognition sequence overlaps with the NlaIII site
and the BsmFI enzyme cuts 14 bp away from its recogni-
tion element, short, unique sequences are created upon
digestion with BsmFI. These sequence “tags” are ligated
together, PCR-amplified and sequenced. This method is
schematized in Fig. 2.

Using this approach, Velculescu et al. studied tran-
script levels during vegetative growth and in cells arrest-
ed at S phase with hydroxyurea and at the G2/M phase
with nocadazole (Velculescu et al. 1997). These studies
with SAGE have shown that each yeast cell contains ap-
proximately 15,000 transcripts that represent at least
76% of the 6,300 predicted yeast genes. A vast majority
of these genes (75%) are represented by one or less tran-
script per cell (Velculescu et al. 1997).

A major advantage of this technique is that it is quan-
titative and the absolute levels of mRNA can be deter-
mined. The number of times the unique tag is sequenced
correlates with its abundance in the transcript popula-
tion. Unfortunately, nearly 60,000 SAGE tags need to be
sequenced in order for the analysis to cover much of the
transcriptome, which makes this approach laborious
(Velculescu et al. 1997) and even this effort is not satu-
rating. However, this method has been valuable for iden-
tifying previously un-annotated genes, since it is not de-
pendent on predetermined sequence annotations. Thirty
such NORFs (non-annotated ORFs) were identified in
logarithmically growing cells (Velculescu et al. 1997). It
has also been successfully used in studies monitoring
gene expression in wild-type and mutant backgrounds
when oleate is used as a carbon source (Kal et al. 1999).

Kinetic RT-PCR

Given that both SAGE and microarray analysis have a
lower limit threshold for detection at 0.3–0.5 transcripts
per cell, expression data for at least a portion of 25% of
yeast genes is lacking (Holland 2002). Recently, kinetic
(or real time) reverse transcription-polymerase chain re-
action (RT-PCR) analysis, which is illustrated in Fig. 3A,
has revealed that some genes are expressed at levels as
low as one-thousandth of a transcript per cell (Holland
2002). With this technique, the concentration of a specif-
ic cDNA species is determined by its PCR-product accu-
mulation rate. A fluorescent DNA indicator, such as
ethidium bromide, is included in each PCR reaction, so
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Fig. 1 A A schematic of DNA microarray expression analysis in
yeast. First, mRNA is isolated from a reference yeast strain (usual-
ly wild-type or untreated cells) and an experimental strain (usually
deletion or chemically treated cells). Reverse transcription is used
to incorporate fluorescent-dye-conjugated nucleotides into cDNA.
The fluorescent probes from each yeast strain are then simulta-
neously probed to a microarray of all yeast open reading frames
(ORFs). B A portion of a yeast ORF microarray. Individual spots
represent unique ORFs. The microarray was probed with a refer-
ence cDNA (derived from wild-type cells) labeled with Cy3 dye
(green) and an experimental cDNA (derived from swi4∆ cells) la-
beled with Cy5 dye (red). A red spot indicates a relative enrich-
ment of that gene transcript in the experimental mRNA pool,
while a green spot indicates a relative enrichment for that particu-
lar ORF in the reference mRNA population. Yellow spots are indi-
cative of equal quantities of that specific ORF in both pools of
mRNA. The fluorescence intensity of each spot corresponds with
transcript abundance in a population of transcripts



that product accumulation can be monitored at each am-
plification cycle by a kinetic thermal cycler (shown in
Fig. 3B). Examples of kinetic RT-PCR curves are illus-
trated in Fig. 3C. Transcript abundance is related to the
inverse log of the number of cycles it takes to reach an
arbitrary unit of fluorescence intensity that falls along
the linear portion of the product accumulation curve.

The steady state transcript levels of the 65 genes on
the left arm of chromosome 3 and 185 transcription fac-
tors genes were examined using kinetic RT-PCR. These
studies revealed that the most abundant transcripts,
which are present at 50–200 copies per cell, have func-
tional roles in protein synthesis and general metabolism,
while transcription factors as a class of genes tend to be
among the least abundant transcripts (Holland 2002;
Kang et al. 2000). Obviously, kinetic RT-PCR is sensi-
tive enough to monitor the expression of these weakly
expressed genes, however it has been too arduous to per-
form on a genome-wide scale.

β-Galactosidase fusion proteins

Much of the published yeast genomic expression data in-
volves monitoring mRNA levels; however, cataloguing

the yeast proteome is of key interest. The molecular activ-
ities within a cell are more readily characterized by the
proteins that are present than by the transcriptome. The
prevailing approach for monitoring relative protein levels
is a library of expressed ORFs fused to a promoter-less
and 5′-truncated β-galactosidase gene. A library of gene
chimeras was created by random insertion of a modified
transposon containing the β-gal gene and a yeast select-
able marker as shown in Fig. 4A (Ross-MacDonald et al.
1999). When the β-gal gene is inserted in-frame with an
ORF, it will be transcribed and translated. The level of β-
gal activity can be assayed on a filter and may be correlat-
ed with the level of expression of the gene to which it is
fused. An example of this β-gal fusion colormetric assay
is shown in Fig. 4B. This approach has been used to assay
for gene expression under vegetative growth, sporulation,
in mating-pheromone-treated cells and in mutant back-
grounds (Erdman and Snyder 2001; Erdman et al. 1998;
Ross-MacDonald et al. 1999). As all the fusions in the li-
brary have been sequenced and arrayed in a 96-well for-
mat, it is relatively easy to assay for β-gal activity under
different conditions by simply plating the library to differ-
ent growth media. This approach can also be used to iden-
tify non-annotated expressed genes and, in fact, 137 of
these previously overlooked genes were identified from
this fusion library (Kumar et al. 2002c). The major disad-
vantage of this method is that the library is not complete,
in that it contains only about 60% of the 6,300 annotated
genes (Kumar et al. 2002b). Another disadvantage is that
the colormetric β-gal filter assays used to monitor protein
abundance are qualitative, not quantitative. Thus, only rel-
ative protein abundance can be derived with this assay.

Other technologies

Other methods of protein abundance monitoring are
emerging. As described below, two-dimensional gel
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Fig. 2 A schematic of serial analysis of gene expression (SAGE;
adapted from Velculescu et al. 1997). Three-prime end cDNA
fragments are first created by digestion of double-stranded cDNA
with NlaIII and polyA selection of the cDNA fragments. The 3′-
most NlaIII sites are indicated with a black arrowhead and all oth-
er NlaIII sites within a cDNA are represented by gray arrowheads.
BsmFI sites are ligated to selected cDNA fragments and a unique
SAGE tag is then generated by digestion with BsmFI enzyme,
which cuts 14 bp away from its recognition site that overlaps with
the original NlaIII site. These tags are ligated together to create di-
tags, which are subsequently amplified by PCR. The amplified di-
tags are cleaved with NlaIII and self-ligated. The concatenated
tags are then serially sequenced, quantitated and compared against
the genome sequence



electrophoresis has been used to monitor the abundance
of over 1,500 proteins. With this method, 35S-labeled
proteins are separated by their molecular weight and
their isoelectric point by polyacrylamide gel electropho-
resis. Protein spots can then be excised and quantitated
by scintillation counting and identified by mass spec-
trometry. While this approach allows for accurate mea-
surements of protein abundance, it is quite laborious.
Another drawback is that not all proteins can be fully
separated on a two-dimensional gel, so it can never be
completely comprehensive.

Perhaps, the most promising approach for easily mon-
itoring protein concentrations is an array of antibodies

raised against all yeast proteins. In a manner analogous
to DNA microarrays, proteins isolated from yeast can be
labeled and hybridized to the antibody array and protein
abundance can be surmised from the fluorescent intensi-
ty signal. The utility of this method will hinge on the
quality and specificity of antibodies that are prepared.

Transcript vs protein abundance

Although, gene-to-gene variation exists, transcript and
protein levels are not always strongly correlated (Futcher
et al. 1999; Gygi et al. 1999). This observed discrepancy
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Fig. 3 A A schematic of kinet-
ic RT-PCR. First, cDNA is gen-
erated and then a specific
cDNA species is amplified by
PCR with unique primers.
Ethidium bromide is incorpo-
rated in the PCR as an indicator
of DNA concentration (repre-
sented as orange fragments)
which can be monitored by a
kinetic thermal cycle at each
amplification step. B The opti-
cal components of the kinetic
thermal cycler are illustrated.
UV light is shone through the
shutter onto the dichroic mirror
and onto the PCR sample
block. Sample fluorescence re-
flects off the mirror and
through the Fresnel lens and in-
terference filter into a CCD
camera (illustration adapted
from Kang et al. 2000). C Ex-
amples of kinetic RT-PCR
curves for a single primer pair
with 103, 104 or 105 cell equiv-
alents of total RNA and a no
template control. A relative flu-
orescence at 1.5 is designated
as the arbitrary fluorescence
level (AFL) to compare the ki-
netic curves. Specific transcript
concentration is proportional to
the inverse log of the cycle
number at which the curve
crosses the AFL (results taken
from Kang et al. 2000)



likely reflects differences in relative translation efficien-
cies or stability of the protein products. A well-studied
example of translational control of gene expression
comes from the analysis of GCN4, a transcription factor
involved in the regulation of amino acid synthesis.
Gcn4p is translationally induced when histidine is de-
pleted (Natarajan et al. 2001).

Two studies comparing protein abundance data from
two-dimensional gel electrophoresis spots that were
identified and quantified by tandem capillary liquid
chromatography-mass spectrometry with SAGE data
found little to moderate correlation between mRNA and
protein abundance for the lowest abundance proteins
(Gygi et al. 1999). More than 1,500 proteins were ana-
lyzed in this manner. Similarly, only two-thirds of the
yeast genes identified as induced during sporulation us-
ing β-gal fusions were also found to be induced using

mRNA microarray analysis (Ross-MacDonald et al.
1999).

Both transcript and protein abundance data will prove
invaluable. Both kinds of data provide information about
the molecular responses of a cell and, when the data is
combined, major modes of regulation can be inferred.
Where their abundance is correlative, it can be presumed
that abundance is largely regulated at the level of tran-
scription or mRNA processing. When discrepancies are
observed in protein and transcript levels, it presumably
indicates that abundance is regulated at the translational
level or via protein degradation/stabilization.

Yeast expression database resources

Over fifty global expression studies have now been per-
formed using the approaches described above. These
studies evaluate yeast expression in about 1,000 physio-
logical conditions and developmental states. The data
obtained from these large-scale expression experiments
are now publicly available via the web. These websites
are summarized in Table 2.

The cell cycle and sporulation expression data can be
accessed through two websites that have been devoted to
each of these expression data sets (Table 2). These data
sets plus most or all other microarray expression data
can be accessed through one of three websites: the Ex-
pression Connection, the Yeast Microarray Global View-
er (yMGV) and Webminer (Table 2; Heiman and Walter
2000; Marc et al. 2001). The cell cycle analysis project
and sporulation project datasets, as well as the Expres-
sion Connection and the yMGV can be searched for sin-
gle gene expression profiles in multiple experiments.
yMGV and Webminer provide tools to isolate subsets of
genes that share similar expression patterns across multi-
ple sets of data. Identifying these sets of genes can help
to ascribe a function to genes within the set or derive a
potential mechanism of transcriptional regulation, for ex-
ample identifying transcription factors involved in regu-
lating expression (Heiman and Walter 2000; Marc et al.
2001). The yTAFNET database focuses on expression
profiles of mutated or ectopically expressed yeast tran-
scriptional regulators (Table 2; Devaux et al. 2001b).

Expression data from SAGE and β-gal fusion analysis
can be accessed through separate databases. Table 2 also
lists these websites. SAGE data for vegetatively growing
cells is publicly available and the β-gal fusion expres-
sion assay data for vegetatively growing cells and spor-
ulating cells can be accessed via the TRIPLES database
(Kumar et al. 2002b).

The websites housing all of the expression informa-
tion for yeast prove invaluable for identifying the ex-
pressional response of a single gene under a myriad of
growth conditions. The tools provided by some of these
databases easily allow for comparison of expression pro-
files under different conditions and, as will be discussed
below, the expression data can be accessed to begin to
understand why and how gene expression is controlled.
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Fig. 4 A A schematic of random transposon insertion of the lacZ
gene into yeast ORFs (adapted from Ross-MacDonald et al. 1999).
A multipurpose transposon (mTn) containing promoterless lacZ
gene and a yeast selectable marker is randomly inserted into yeast
DNA within E. coli. Yeast DNA is isolated from the E. coli plas-
mid sequence by NotI digestions. Yeast insertions are transformed
into yeast cells by homologous recombination. In-frame lacZ in-
sertions are then identified by a β-galactosidase filter assay. B The
results of a colormetric filter assay for β-gal activity from a small
collection of lacZ gene fusions. The intensity of blue color corre-
sponds to the level of β-gal activity and thus the level of expres-
sion of the gene to which the lacZ gene is fused



Importance of gene regulation

All of these expression studies clearly illustrate that a
shift in environmental or developmental states is often
accompanied by a shift in the genes that are expressed.
Why is gene expression altered depending on cellular
status? There are several answers to this question that
have been supported by the expression data itself.

For the most part, genes are expressed only under
limited conditions because quite simply they are only
needed at specific times or under particular conditions
and presumably it would be a waste of energy and re-
sources to express them constitutively. For example,
genes involved in the process of DNA synthesis are only
needed during the synthesis phase of the cell cycle. Most
of these genes, in fact, exhibit peak transcript levels in
late G1 just before the DNA synthesis phase of the cell
cycle (Cho et al. 1998; Spellman et al. 1998).

In accordance with this theory that gene expression is
regulated to conserve energy, one would predict then that
the largest, most expensive genes in energy terms would
have the most restricted expression. A recent study cor-
roborated this prediction. Using the quantitative and
semi-quantitative transcript data that is now available
from SAGE and microarray experiments, respectively,

mRNA concentration per cell was found to be negatively
correlated with protein length (Coghlan and Wolfe
2000).

While a majority of genes have restricted expression
to conserve energy, some genes’ expression may be regu-
lated because their inappropriate expression is toxic.
Overabundance of several proteins is known to be lethal,
most notably, several regulatory components of karyoga-
my, including KAR1 (Rose and Fink 1987). In addition,
misexpression of other genes will promote a less advanta-
geous developmental state. For example, the expression
of MUC1 is generally limited to particular starvation con-
ditions and once expressed will promote cell-cell adhe-
sion and hyperinvasive growth (Guo et al. 2000). While
this response may be advantageous under nutrient-re-
stricted conditions, the misexpression of MUC1 under
rich growth conditions will slow yeast growth. Microar-
ray and northern analysis have shown that MUC1 expres-
sion is dependent on four different transcription factors
via at least three different upstream pathways. The multi-
ple mechanisms employed to regulate MUC1 expression
indicates the importance of restricting the expression of
this gene (Pan and Heitman 2000; Roberts et al. 2000).

Gene expression is also linked to cellular and envi-
ronmental states not only because it may be an energy
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Table 2 Useful websites

Expression data analysis
Expression This database can be accessed through Saccharomyces Genome Database and allows one to search for single gene
connection expression profiles from 11 microarray data sets generated at Stanford University and Rosetta Pharmaceuticals.

http://genome-www.stanford.edu/cgi-bin/SGD/expression/expressionConnection
Webminer Boolean searches from multiple microarray datasets to identify genes that are similarly regulated (Heiman and 

Walter 2000). http://webminer.ucsf.edu/
Yeast microarray This database can be searched for single and multiple gene transcript profiles for 50 different microarray studies, 
global viewer but whole sets of genes with similar expression profiles for multiple datasets can be identified. Other interesting 

data is also available including the least and most variant gene expression (Marc et al. 2001). 
http://www.transcriptome.ens.fr/ymgv/

Yeast cell cycle Cell cycle microarray data from Spellman et al. (1998). 
analysis project http://genome-www.stanford.edu/cellcycle/
The transcriptional Sporulation microarray data from Chu et al. (1998). 
program of http://cmgm.stanford.edu/pbrown/sporulation/
sporulation
SAGE data SAGE data from Velculescu et al. (1997). 

ftp://genome-ftp.stanford.edu/pub/yeast/tables
TRIPLES Database of expression, localization and phenotypic analysis of the library of transposon insertions 

(Kumar et al. 2002b). http://ycmi.med.yale.edu/ygac/triples
yTAFNET Database devoted to microarray expression profiles in specific transcription factor mutants or in response to 

ectopic transcription factor expression (Devaux et al. 2001b). http://transcriptome.ens.fr/ytafnet/

Promoter analysis
SCPD http://cgsigma.cshl.org/jian/
TRANSFAC http://transfac.gbf.de/TRANSFAC/
The mirage website http://www.ifti.org/
Systematic http://arep.med.harvard.edu/network_discovery
determination of 
genetic network
architecture
Regulatory sequence http://copan.cifn.unam.mx/~jvanheld/rsa-tools/
analysis tools



waste or because it may be harmful, but also because
timing of expression may be critical for the order of pro-
tein complex formation. Cell cycle microarray analysis
revealed that the homologs BUD8 and BUD9, which are
involved in bud site selection, have disparate peaks in
mRNA abundance during the cell cycle (Spellman et al.
1998). BUD9 transcript levels peak in the G1 phase,
while the homolog BUD8 peaks in the mitosis phase of
the cycle. Promoter swapping studies indicate that the
timing of expression of these genes is critical for their
localization and function. Bud9p expression from BUD8
promoter can rescue a bud8∆ mutant, but not a bud9∆
mutant, and vice versa (Schenkman et al. 2002).

Inherent in the plethora of gene expression data is ex-
planations for why gene expression is controlled. The
data would predict that energy and resource conservation
is a major reason for restricting gene expression, but
gene expression may also be limited to prevent inappro-
priate physical responses. There is evidence to suggest
that temporal expression patterns are required for appro-
priate protein complex formation for at least some pro-
teins. Pinpointing the molecular mechanisms that control
and restrict these important expression patterns is a chal-
lenge, but one which has also been aided by genome-
wide expression profiling.

Regulation of gene expression

Gene expression is regulated at both the mRNA and pro-
tein levels. Thus far, great emphasis has been placed on
defining the transcription factors that are important in
regulating the gene expression responses. There are ap-
proximately 500 known and potential transcription fac-
tors and chromatin modifiers in yeast (Kumar et al.
2002a). Each of these general and specific transcription-
al regulators can influence the expression of ten to hun-
dreds of genes. The web of transcriptional control is pre-
sumably quite complex and features many redundant
mechanisms for controlling gene expression. Three
methods have currently been used to map this complex
circuit of gene regulation.

The first approach utilizes bioinformatics to deduce
putative transcriptional regulators by promoter sequence
analysis. Clusters of co-regulated genes are identified
from individual or multiple expression data sets and the
promoter regions of these genes can be searched for sim-
ilar sequence motifs. Several methods for DNA sequence
motif searching are now available through the promoter
analysis websites listed in Table 2. Only a handful of
transcription factors have well-defined consensus bind-
ing motifs, thus this approach is somewhat limited for
pinpointing the transcription factors that regulate gene
expression clusters. Typically, promoter motif searching
has been used to find enrichments for known transcrip-
tion factor binding sites in the promoters of co-regulated
genes. For example, 58% and 52% of the genes in the
CLN2 cluster of cell cycle genes (those genes with peak
mRNA abundance in the late G1 phase) contained an

MCB or SCB element, respectively, in their promoter re-
gions (Spellman et al. 1998). These elements are the
known binding sequences for two transcription factors
that are known to regulate the G1/S transition. Sequence
motifs can be identified from clusters of genes without a
priori information on the binding sequence. The consen-
sus binding sequence for the forkhead transcription fac-
tors, Fkh1p and Fkh2p, was identified from the promoter
regions of cell-cycle-regulated genes with peak mRNA
abundance in the G2 phase of the cell cycle without prior
information regarding the consensus binding motifs of
these factors (Zhu et al. 2000). Serendipitously, the con-
sensus site of the forkhead proteins was determined
around the time that this motif was revealed from the ex-
pression data (Zhu et al. 2000). In some cases, it will be
possible to experimentally verify the identity of a tran-
scription factor from a promoter sequence motif by a
yeast one-hybrid approach. The putative binding se-
quence is coupled to a reporter and its expression is
monitored when in the presence of a library of transcrip-
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Fig. 5 A schematic drawing of the ChIp-chip technique for epi-
tope-tagged DNA-binding proteins (adapted from Horak and Sny-
der 2002). The approach first involves chemical crosslinking of in
vivo protein-DNA complexes. Yeast cells are subsequently lysed
and their chromatin is sheared to 500- to 1,000-bp fragments by
sonication. An epitope-tagged transcription factor and its bound
DNA fragments can then be immunopurified with an antibody
raised against the epitope tag. DNA fragments are isolated and la-
beled for hybridization to a yeast microarray of promoter frag-
ments (see cover)



tion factors fused to the activation domain of a well-
studied transcription factor, Gal4p.

Many attempts have been made to identify the full
complement of transcription factor targets by expression
profiling experiments when the activity of a specific
transcription factor is altered. The yTAFNET database is
devoted to these expression experiments (Table 2;
Devaux et al. 2001b). Target identification from expression
studies is based on the preconception that a target gene’s
transcript levels will be altered by more than twofold in
the transcription factor mutant. Given that a majority of
yeast genes are represented by one transcript per cell or
less, more subtle variations in mRNA abundance may be
biologically relevant. In general, simply deleting the
transcription factor of interest will not give striking dif-
ferences in transcript levels as observed via microarray
analysis. This is not a surprise given the complexity of
gene expression, the significant proportion of redundan-
cy that exists and the fact that many transcription factors
control the temporal pattern of gene expression rather
than absolute transcript levels. Microarray analysis of
yeast ectopically expressing specific transcription factors
or expressing dominant transcription factor mutants has
proven more useful in determining their target genes.
Gene targets of Pdr1p, a transcription factor involved in
pleiotropic drug resistance, were identified by expression
analysis of a hyperactive allele of Pdr1p and using a fu-
sion the Pdr1p DNA-interacting domain to the Gal4p
transcriptional activation domain, which is constitutively
active (DeRisi et al. 2000; Devaux et al. 2001a).

The third approach to transcription factor identifica-
tion is chIp-chip, which also involves microarray analy-
sis, but examines DNA-binding targets of transcription
factors rather than transcript profiling. ChIp-chip analy-
sis, which stands for chromatin immunoprecipitation and
DNA chip analysis, identifies sequences that are directly
bound by a specific transcription factor of interest in vi-
vo, by probing a microarray of promoter sequences with
labeled DNA that has been immunoprecipitated with the
protein. A schematic of this method is shown in Fig. 5.
Using this technique, transcription factor targets can be
found regardless of the factor’s contribution to gene tran-
scriptional regulation; thus genes that are only marginal-
ly influenced by a specific transcription factor can be
isolated. Another advantage of this approach is that it al-
lows for the direct detection of transcription factor tar-
gets, whereas expression analysis will also identify
genes that are indirectly regulated by modulating trans-
cripion factor activity. ChIp-chip has been performed
with only a handful of yeast transcription factors so far,
including many of the key factors in regulating the cell
cycle (Iyer et al. 2001; Lieb et al. 2001; Ren et al. 2000;
Simon et al. 2001). The binding data obtained from this
type of analysis in combination with the information
gathered from the other two approaches will be required
to construct a complete map of transcriptional regulation
in yeast.

Information regarding the yeast transcriptome and the
proteome under numerous cellular conditions has been

rapidly generated in recent years as a result of the devel-
opment of several genomic approaches for monitoring
transcript and protein abundance. Undoubtedly, the vol-
ume of expression data will grow, and more sensitive
and direct approaches for expression analysis will
emerge in the coming years, which will enhance the un-
derstanding of regulation of gene expression.
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