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Abstract
Temperature is a major environmental factor that influences growth, development, metabolism, and physiological perfor-
mance in fish. Grass carp (Ctenopharyngodon idella) is a highly productive fish in freshwater culture. To understand the 
molecular mechanism of grass carp under heat stress, we used RNA-Seq to analyze the liver and brain transcriptome of 12 
libraries constructed from high-temperature (36 °C) and control (28 °C) groups. We obtained 42.49 and 42.57 GB of clean 
data from six liver and six brain libraries, respectively, and identified 2,534 genes that were differentially expressed in liver 
tissue and 1622 in brain tissue (P < 0.05). According to KEGG analysis, significant differences occurred in the expression 
of genes involved in metabolic and immune pathways, such as the cAMP signaling pathway, apoptosis, calcium signaling 
pathway, lipid metabolism, and protein processing in endoplasmic reticulum and peroxisome proliferator-activated receptor 
signaling pathways. This study revealed that high temperature enhanced lipid metabolism, reduced fatty acid synthesis, and 
disrupted the immune system of grass carp. These results investigated the molecular regulation of heat stress in grass carp 
and provided valuable information for the healthy culture of grass carp under high temperatures.
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Introduction

Temperature is a critical environmental factor that severely 
affects the physiological state of fish (Mahanty et al. 2017), 
and, as an eco-physiological variable, is associated with 
metabolic processes that characterize the basic life history 
of animals with variable temperatures (Brett 2015; Huey 
and Stevenson 2015). By disrupting internal homeostasis, 
environmental stress can affect biological functions detri-
mentally. Heat stress is a relatively common environmental 
stressor. A high temperature can have several detrimental 
effects on fish, which can affect respiratory metabolism  
and growth (Handeland et  al.   2008), decrease 

immunity, increase the risk of death (Verma et al. 2007; 
Zhao et  al.  2017), decrease antioxidase activities 
(Bo et  al.  2010), activate apoptosis (Zhi et  al.  2019),  
and disrupt other physiological processes. Recent studies 
have found that liver tissue under high-temperature stress 
could inhibit protein synthesis, decrease fatty acid synthesis, 
and weaken carbohydrate metabolism in juvenile grass carp 
(Huang et al. 2022). Several differentially expressed genes 
(DEGs) with critical roles in immune function, including 
heat shock proteins (HSPs), complement system, PRRs, 
cytokines, antigen processing and presentation, cell adhe-
sion molecules, apoptosis, and keratins are known to influ-
ence the regulatory mechanism of immune responses to high 
temperature in grass carp. Some studies have been discussed 
through the transcriptome of spleen tissue the effect of high 
temperature to immune response against bacterial (Yang 
et al. 2016).

RNA-seq is a method for transcriptome analysis using 
deep sequencing technology (Sangwan et  al.  2013). 
Because high temperature affects the expression of many 
genes in fish, transcriptomic techniques can be applied to 
resolve the complex molecular regulatory mechanisms of 
organisms under temperature stress (Jeffries et al. 2013).  
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Transcriptomic analyses under temperature stress have 
been carried out in various fish species, such as juvenile 
blunt snout bream (Megalobrama amblycephala)  (Bing 
et  al.  2019),  Nile tilapia (Oreochromis niloticus) 
(Mahmoud et al. 2020), common carp (Cyprinus carpio) 
(Iranshahi et  al.  2011), and rainbow trout (Oncorhyn-
chus mykiss) (Huang et al. 2018). Heat stress is a com-
plex adaptive response in an organism, and the brain and 
liver are the two most important organs involved in this 
response. The transcriptome analysis of nutrient metabo-
lism in grass carp (Ctenopharyngodon idella) under heat 
stress has been reported. The liver is a major metabolic 
organ, which performs important physiological functions 
such as metabolism, excretion, and detoxification (Sun 
et al. 2018). At the same time, it was found to be a major 
metabolic organ under high temperatures (Zhao et al. 2021).  
The brain is an organ that regulates the biological function 
of fish and is also closely related to temperature response 
(Zhou et al. 2020). It can further regulate the liver by regu-
lating the function of the pituitary gland. Heat stress will 
have complex effects on all aspects of fish, so it is urgent to 
understand the complex molecular regulation of grass carp  
under high temperatures.

Grass carp is an important farmed freshwater fish species 
in China (Shen et al. 2019; Guo et al. 2022), and its produc-
tion in farming ranks among the top in global freshwater fish-
eries (Wenning 2020). With the increase in global warming 
and persistent summer heat (Edenhofer et al. 2014), farmed  
grass carp have serious disease problems due to pathogenic 
bacteria and stress (Liu et al. 2010), resulting in reduced 
temperature adaptation and weakened resistance to diseases 
(Yang et al. 2016). Therefore, the application of molecular 
biological research on the regulatory mechanism of grass 
carp under high-temperature stress and the screening of rel-
evant functional genes are essential for the healthy culture 
of grass carp under high temperatures (Shen and Yue 2018).

The aim of this study was to investigate the molecular 
regulatory mechanisms of grass carp under high temperature 
in brain and liver transcriptomes, and to identify the DEGs 
and important pathways involved in the relevant regulatory 
processes. This study laid the theoretical foundation for 
analyzing the complex molecular mechanism of grass carp 
under high temperature stress and will have significance as 
a reference for the healthy culture of grass carp under high 
temperatures.

Materials and Methods

Ethics Statement

All experiments were performed according to the Guidelines 
for the Care and Use of Laboratory Animals in China. The 

animals used in the present study were cultured and sacri-
ficed following the terms for the use of animals approved 
by the Institutional Animal Care and Use Committee at the 
Shanghai Ocean University (Shanghai, China) (approval 
number SHOU-DW-2018 − 026). All efforts were made to 
minimize suffering. Before dissection, fish were anesthe-
tized with 3-aminobenzoic acid ethyl ester methane sul-
fonate (MS-222; Sigma-Aldrich, St. Louis, MO, USA) to 
minimize suffering.

Experimental Animals and Thermal Stress

We obtained healthy grass carp juveniles (average body 
length 82.712 ± 9.808 mm, weight 11.241 ± 3.727 g) from 
a ZhuJiang population provided by Wujiang National Farm 
of Chinese Four Family Carps, Jiangsu Province, China, 
and cultured at Hangzhou Aquaculture Research Institute 
(Hangzhou, China). Before the experiment, the grass carp 
were temporarily cultured in a cement pond for 2 weeks at 
an ambient temperature of 28 ± 2 °C and 180 grass carp of 
similar size were randomly selected. The experimental fish 
were evenly divided into two groups, a high temperature 
group (ZJ-1) and a control group (ZJ), and each group was 
performed in triplicate. The control group was cultured at 28 
°C for 21 days, and the high-temperature group was cultured 
at a heating rate of 1 °C/12 h until the temperature reached 
36 °C and maintained for 21 days. During the experiment, 
fish were fed twice daily with commercial pellet feed from 
Tongwei Co. (Chengdu, China).

Sample Collection and RNA Preparation

The fish were closely monitored for signs of stress. After 
21 days, nine fish (three repetitions per group) were ran-
domly selected from each experimental group and anesthe-
tized in MS-222 (100 mg/L). Liver and brain tissues from 
the high-temperature treatment group (ZJ-GZ1 and ZJ-N1) 
and the control group (ZJ-GZ and ZJ-N) were immediately 
removed from the fish of each tank at the two temperatures, 
and stored quickly at − 80 °C until total RNA extraction for 
RNA-Seq analysis.

RNA Isolation, Library Construction, 
and Sequencing

Total RNA was isolated from liver and brain tissues using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) follow-
ing the manufacturer’s procedure. The total RNA quantity 
and integrity were analyzed by a Qubit RNA assay kit 
(Life Technologies, Carlsbad, CA, USA), and a Bioana-
lyzer 2100 RNA Nano 6000 assay kit (Agilent Technolo-
gies, Santa Clara, CA, USA) with RIN > 7.5, to meet the 
experimental requirements. After total RNA was extracted, 
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magnetic beads with oligo (dT) were used to enrich the 
mRNA. Then, the mRNA fragment was reverse transcribed 
into cDNA with random primers. Second-strand cDNA 
was synthesized with dNTP, DNA polymerase I, and 
RNase H and then subjected to 3′-end repair, a poly(A)-
tail was ligated to the sequencing linker. Finally, PCR 
amplification was performed. The constructed libraries 
were quantified with the Agilent 2100 Bioanalyzer and 
sequenced with an Illumina HiSeq X Ten sequencer (San 
Diego, CA, USA) to generate 150 base pair (bp) double-
end data.

Data Processing, Assembly, and Differential 
Expression Analyses

A large number of double-ended sequencing data were 
obtained through the Illumina platform. In view of the data 
error rate influence on the results, Trimmomatic (Bolger 
et  al.  2014) was used to preprocess the quality of the 
original data, and the number of reads in the whole qual-
ity control process was summarized statistically. Hisat2 
(Kim et al. 2015) was used to conduct sequence align-
ment between cleaned reads and the specified reference 
genome to obtain the location information on the reference 
genome or genes, as well as the sequence characteristic 
information of the sequenced samples. The known refer-
ence gene sequences and annotation files were used as a 
database, and a sequence similarity comparison method 
was used to identify the expression abundance of each 
protein-coding gene in each sample. Htseq-count was used 
to obtain the number of reads compared to protein-coding 
genes in each sample (Anders et al. 2015). DESeq2 (Love 
et al. 2014) was used to standardize the count number of 
each sample gene (BaseMean value was used to estimate 
the expression level), calculate the multiple of difference, 
and the negative binomial distribution (NB) test was used 
to test the significance of the difference. Finally, the dif-
ferential protein-coding genes were screened according 
to the difference in multiple and significance test results 
(|fold-change|≥ 2 and P value < 0.05).

GO enrichment analysis (http://​geneo​ntolo​gy.​org/) was 
performed on the DEGs obtained to describe their func-
tions (combined with GO annotation results). KEGG is 
a major public database of molecular pathways. Pathway 
analysis was carried out on differential protein-coding 
genes using the KEGG database (http://​www.​genome.​jp/​
kegg/), and the significance of differential gene enrichment 
in each pathway item was calculated using a hypergeomet-
ric distribution test. GO/KEGG enrichment analyses were 
performed using the ClusterProfiler R package.

Validation of DEGs

The response of genes to high temperature stress was used 
to select 24 differential genes in related pathways from 
the liver and brain tissues, and these were verified and 
analyzed by quantitative real-time PCR (qRT-PCR). To 
evaluate the reliability of the RNA-Seq method to iden-
tify the differential genes, the total RNA used in quantita-
tive experiments was the same as that used in sequencing. 
Primer3.0 (Wang et al. 2019) was used to design primers 
for different genes (Table 1). CFX96™ Real-Time fluores-
cence quantitative PCR detection system (BioRad, Hercu-
les, CA, USA) and SYBR Green master mixture (Takara, 
Shanghai, China) were used for qRT-PCR experiments. 
The 20 µL reaction system consists of the following com-
ponents: 1.6 µL cDNA produced by reverse transcription, 
0.8 μL of each primer (10 μm/L), 10 μL of TB Green™ 
Premix ExTaq (Takara), and 6.8 μL of RNase free H2O. 
The PCR amplification procedure is as follows: one cycle 
at 95 °C for 30 s; 35 cycles at 95 °C for 5 s, 60 °C for 30 s, 
and 72 °C for 1 min; and 1 cycle at 72 °C for 3 min. The 
2−ΔΔCt method was used to calculate the relative expres-
sion levels of different genes at different sites. The 18 s 
rRNA gene was used as an internal control and three 
biological replicates were performed for each sample. 
SPSS19.0 (SPSS Inc.) was used for statistical analysis, 
and a one-way ANOVA and t-test were used to determine 
the significance of the difference. A p value of < 0.05 was 
considered statistically significant.

Results

Preliminary Analysis of the Liver and Brain 
Transcripts

Twelve experimental cDNA libraries were constructed from 
the liver and brain tissues of the high-temperature (ZJ-1) 
and control (ZJ) groups. Through the Illumina HiSeq™ 2000 
platform, a total of 584,782,480 clean reads and 85.24 GB of 
clean data were obtained from the 12 samples. The effective 
data of each sample ranged from 6.83 to 7.33 GB. The Q30 
bases in the transcriptome data ranged from 90.81 to 94.66% 
and the average GC content was 46.42% (Table 2). By com-
paring reads to the reference genome, the genome align-
ment of each sample was obtained, and the alignment rate 
was 95.11–95.74%. After the counts were obtained by com-
parison, the protein-coding genes were filtered to remove 
the genes with zero reads. The number of genes detected in 
each sample is shown in Table 3. The expression of protein-
coding genes was calculated using fragments per kilobase 
per million reads (FPKM) (Roberts et al. 2011). This could 
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eliminate the influence of protein-coding gene length and 
the difference in the amount of sequence on the expression 
of the calculated protein-coding gene, which is either high 
or low (Fig. 1).

Analysis of DEGs

A total of 4156 DEGs were identified by differential expres-
sion analysis from the high-temperature treatment (ZJ-1) 
and the control (ZJ) groups (Fig. 2a). In liver tissue, 2534 
DEGs (Table S1) were identified between the ZJ-GZ1 and 
ZJ-GZ groups, including 974 upregulated genes and 1560 
downregulated genes. In brain tissue, 1622 DEGs (Table S2) 
were identified between the ZJ-N1 and ZJ-N groups, among 
which, 1027 genes were upregulated and 595 were down-
regulated. Venn diagram in Fig. 2b showed statistics of the 
number of common and unique differentially expressed 
genes among different comparison groups. A volcano map 
was used to understand the overall distribution of DEGs 
(Fig. 2c). The results showed that the fold change of DEGs 
generally ranged from − 10 to − 1 and 1–10. More differen-
tial genes were identified in the liver than in brain tissues. 
Similar to the volcano map, the results in the heat map also 
showed that there were more upregulated DEGs in the ZJ-N 
group and more downregulated DEGs in the ZJ-GZ group 
(Fig. 2d).

Gene Ontology and KEGG Analysis of DEGs

GO enrichment analysis was performed for DEGs, and their 
functions were described (combined with GO annotation 
results) and classified into three broad categories: biologi-
cal process, cellular component, and molecular function. 
GO entries with more than two different genes in the three 
categories were identified, and 10 items were sorted in 
descending order according to the corresponding − log10 p 
value of each entry. The top 30 items in the GO enrichment 
analysis can be found in Fig. 3. The results showed that the 
top three terms with the most enriched genes between the 
ZJ-GZ1 and ZJ-GZ groups were rRNA processing (GO: 
0006364), cell junction (GO: 0030054), and ATPase bind-
ing (GO: 0005524). Between ZJ-N1 and ZJ-N, the top 
three terms with the most enriched genes were cholesterol 
biosynthetic process (GO: 0006695), condensing complex 
(GO: 0000796), and hormone activity (GO: 0005179). GO 
is generally divided into three levels according to the func-
tional classification. Figure 4 showed the comparison of 
upregulated and downregulated DEGs at GO level 2. In 
the comparison between experimental group ZJ1 and con-
trol group ZJ, cellular process, biological regulation, and 
metabolic process were the top three terms with the most 
enriched genes in biological process; organelle, macromo-
lecular complex, and membrane were the most enriched 
terms; in cellular component; and binding, catalytic activ-
ity, and transporter activity were the most enriched terms 
in molecular function.

Table 1   Primers used to verify transcriptome data. Selected differen-
tially expressed genes

Gene name Primers

GLRB F:C TTC​AGC​ATC​GTC​GGC​TCT​C
R:AGC​AGT​GCC​GAC​TTC​AAT​GG

GRIA2 F:CCA​AAT​GGC​GCA​TCA​ACG​TC
R:AGA​GCG​CTG​GTC​TTC​TCC​TT

BCL2L1 F:CTG​CGT​TAT​TCC​CGAGVGTT​
R:CGC​GGA​ACA​CCT​CAT​CCA​TC

SLC22a5 F:AGA​CAC​CGA​GTG​GAC​ATC​GT
R:AGC​CGT​CCA​TAC​AGG​CTT​CT

Abca1 F:CTG​CAG​CCG​GTG​ATG​AAG​TT
R:TGT​GAG​CGA​GGG​AGG​TAA​GG

Asah1 F:CGC​AGA​ACA​CCG​GCA​ATG​A
R:GGC​GTG​CAT​GGA​TTT​GGA​CA

rest F:TCT​GAG​TCA​TCG​CCA​GCA​CG
R:TCA​GCC​GCA​CCA​TTT​ACC​AC

Faf2 F:GAG​TTC​TGC​CGA​GCC​ACA​TT
R:CAC​TCG​GTA​ACC​CTC​TGG​CT

GPX3 F:GCC​AAA​CGT​CAC​CCT​CAT​GT
R:CCT​ACA​CCT​GGG​CTG​GGT​AT

Anxa6 F:GGT​CTC​TCG​CGC​TGA​GAT​TG
R:CAG​CAG​GGT​GCG​TTT​GTA​CT

SLC22a1 F:TGC​TGC​TCG​CAT​TTG​TGC​TA
R:AGC​GCG​TCA​AAC​TTC​ACA​CA

Fgfbp1 F:TGT​AGC​AAA​GCC​CGC​AAC​AT
R:GCT​CCT​GCA​CAT​ACT​GGC​TT

mad2l2 F:GCT​GCT​GAG​AGC​AGT​GAT​CC
R:TTC​TTG​TGG​CGG​CTT​CCC​TA

Wee2 F:GCC​TCA​GAC​AGG​GTG​AGC​TA
R:AGC​TCC​TTG​CGA​AGC​TGT​TC

ZDHHC2 F:TCT​GCC​TGA​TAC​CCA​AGC​CA
R:GCA​GAC​AAG​CCA​GCA​GTG​AT

Ebp F:CTA​TTG​GCC​ACG​CAA​CCT​GT
R:TGC​TCC​CAG​ACA​CTT​TAC​GC

abhd8 F:GCA​AAG​ACG​ACC​AGC​GTT​GT
R:CTG​GCT​TCA​CCT​CCA​CGA​AC

GDF9 F:AGA​GCC​ACG​CAA​GGT​AGG​AT
R:TGA​CTC​CCA​CAA​CGT​GGA​CT

ddit4l F:ATG​TCC​GCC​AGG​AGA​GTT​CA
R:GGA​CGC​ACG​TCT​TCT​CCT​TC

GFRA2 F:CCG​GTG​TTC​CCT​GGG​ACT​AT
R:AGC​GCA​TGA​GGT​TGT​TCT​GG

trpt1 F:TCA​GGG​CCT​CAG​CAG​AAT​GA
R:CAG​CAC​ACC​GTT​CTC​TGA​CC

ADAM19 F:AGT​GCA​TCC​TTC​CTG​CAA​GC
R:CAA​TCA​CAG​GCC​CAC​TGT​CC

Prss23 F:TGT​CCG​GTG​GAG​GAT​GAG​TC
R:AGC​GAA​CAG​CCA​CGT​TGT​AG

859Marine Biotechnology  (2022) 24:856–870

1 3



KEGG enrichment analysis of DEGs in liver and brain 
tissues identified 247 and 240 signaling pathways, respec-
tively, 68 and 53 of which were significantly altered at high 
temperatures. The pathway items with more than two DEGs 
were screened and sorted in descending order according 
to their -log10 P value. The top 20 bubbles in the KEGG 
enrichment analysis are shown in Fig. 5. In liver tissues, 
the DEGs between the ZJ-GZ1 and ZJ-GZ groups were 
mainly enriched in the cAMP signaling pathway (ko04024, 
50 genes), apoptosis (ko04210, 30 genes), and pancreatic 
secretion (ko04972, 27 genes). Between the ZJ-N1 and ZJ-N 
groups of the liver tissue, DEGs were mainly enriched in 
the calcium signaling pathway (ko04020, 37 genes), MAPK 
signaling pathway (ko04010, 31 genes), and cGMP-PKG 
signaling pathway (ko04022, 22 genes).

Quantitative Real‑time PCR Validation

To verify the accuracy of the transcriptome sequencing, 12 
randomly selected DEGs from brain and liver tissues were 

used for validation. A comparison of the results between 
qRT-PCR and RNA-Seq for these DEGs was obtained. The 
expression patterns identified using qRT-PCR for all tested 
genes were in agreement with the Illumina RNA-Seq data 
(Fig. 6). This confirmed that the results of the RNA-Seq 
were accurate and could be trusted.

Discussion

In aquatic ectotherms, changes in temperature have profound 
effects on physiology, metabolism, and behavior (Clarke and 
Johnston 1999). In this study, we identified DEGs and path-
ways involved in high-temperature stress through the tran-
scriptome analysis of grass carp brain and liver tissues. We 
found that high temperature affected multiple metabolism-
related pathways, such as lipid metabolism, insulin resist-
ance, and peroxisome proliferator-activated receptor (PPAR) 
signaling. This suggested that high temperature stress-related 
genes were involved in multiple biological processes.

Water temperature is the most relevant abiotic factor influ-
encing lipid metabolism in teleost species (Tocher 2003). 
Lipid metabolism is a complex physiological process. The 
dysregulation of lipid metabolism can cause a variety of met-
abolic diseases, such as obesity, metabolic syndrome, type 2 
diabetes, and cardiovascular disease (Srivastava et al. 2014; 
Wang et al. 2013). These diseases seriously threaten the 
organism’s health (Xiaoli and Yang 2013). A previous study 
by Tzab et al. (2021) showed that lipid metabolism plays an 
active role in the turbot response to high-temperature stress. 
Turbot maintain lipid metabolism by regulating genes and 
metabolites associated with lipid metabolism, maintaining 
membrane balance, and inhibiting  lipid deposition, thus 
relieving the deterioration in meat quality caused by high-
temperature stress (Tzab et al. 2021). The stability of lipid 
metabolism is regulated by multiple signaling pathways, and 

Table 2   Summary of the grass 
carp transcriptome data.Q30: 
percentage of nucleotides with a 
quality value > 30 in reads

Raw read
(Mb)

Raw bases
(Gb)

Clean reads
(Mb)

Clean bases
(Gb)

Valid bases Q30 GC

ZJ-N-1 48.53 7.28 47.72 6.95 95.42% 94.37% 45.13%
ZJ-N-2 49.91 7.49 49.07 7.14 95.35% 94.54% 44.79%
ZJ-N-3 48.81 7.32 47.9 6.98 95.39% 93.70% 44.78%
ZJ-N1-1 50.27 7.54 49.46 7.19 95.39% 92.51% 46.43%
ZJ-N1-2 48.59 7.29 47.8 6.96 95.51% 92.82% 46.33%
ZJ-N1-3 50.82 7.62 50.05 7.27 95.40% 92.72% 46.20%
ZJ-GZ-1 47.61 7.14 46.81 6.83 95.61% 93.33% 46.78%
ZJ-GZ-2 50.61 7.59 49.78 7.27 95.78% 93.93% 47.12%
ZJ-GZ-3 50.87 7.63 50.07 7.33 96.01% 94.54% 46.88%
ZJ-GZ1-1 48.1 7.22 47.34 6.91 95.76% 94.48% 47.47%
ZJ-GZ1-2 50.47 7.57 49.78 7.27 96.04% 94.66% 47.56%
ZJ-GZ1-3 49.77 7.47 49 7.14 95.59% 90.81% 47.56%

Table 3   Number of genes 
detected in each sample

Sample Gene number

ZJ-N1-1 27084
ZJ-N1-2 26954
ZJ-N1-3 26989
ZJ-N-1 26315
ZJ-N-2 26330
ZJ-N-3 26205
ZJ-GZ1-1 22242
ZJ-GZ1-2 22082
ZJ-GZ1-3 22859
ZJ-GZ-1 22090
ZJ-GZ-2 23803
ZJ-GZ-3 23201
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Fig. 1   a Boxplot of the FPKM value of each sample gene. The horizon-
tal axis is the sample name and the vertical axis is log10(FPKM + 1). 
The box plot for each region corresponds to five statistics (maximum, 

third quartile, median, first quartile, and minimum). b Distribution of 
FPKM expression. The horizontal axis is the sample, and the vertical 
axis is the number of protein-coding genes
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Fig. 2   a Statistical histogram of differentially expressed genes 
(DEGs) between the high-temperature treatment group (ZJ-GZ1, 
ZJ-N1) and the control group (ZJ-GZ, ZJ-N) in the liver and brain 
tissues. The comparison groups are on the horizontal axis; the verti-
cal axis is the number of differentially expressed genes in the com-
parison group, where Up is the number of significantly differentially 
expressed upregulated genes and Down is the number of significantly 
differentially expressed downregulated genes. b Venn diagrams show-
ing the overlap of DEGs among common and unique differentially 

expressed genes among different comparison groups. c Volcano maps 
of DEGs between the high-temperature treatment group (ZJ-GZ1, 
ZJ-N1) and the control group (ZJ-GZ, ZJ-N) in the liver and brain tis-
sues. Gray indicates non-significantly different genes, red and green 
are significantly different genes. The horizontal axis is log2Fold-
Change, and the vertical axis is -log10q-value. d Heat map of DEGs 
in ZJ-GZ1 vs ZJ-GZ, ZJ-N1 vs ZJ-N, red represents the protein-
encoding genes with relatively high expression and blue represents 
the protein-encoding genes with relatively low expression
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the signaling pathway centered on PPAR plays an impor-
tant role in the regulation of lipid metabolism (Bionaz and 
Loor 2011). Aquaporins (AQP) are a family of transmem-
brane protein channels that facilitating the permeation of 

water and small solutes. For example, glycerol, across cell 
membranes, are recognized as important players in fat metab-
olism (Agre 2004; Verkman 2005; Lopes et al. 2018). In our 
study, the FATP and AQP7 genes, which are related to lipid 

Fig. 3   GO enrichment analysis of the top 30 terms in ZJ-GZ1-vs-ZJ-GZ (a) and ZJ-N1-vs-ZJ-N (b), the horizontal axis is the GO entry name 
and the vertical axis is -log10 p-value
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metabolism in the PPAR signaling pathway, were signifi-
cantly upregulated under high-temperature stress (Fig. 7a). 
We hypothesized that high temperature upregulated fatty 
acid metabolism by increasing the expression of FATP and 
affected lipid metabolism by increasing the expression of the 
AQP7 gene.

Apoptosis is a process of programmed cell death that plays 
an important role in cell development and the host immune 
system. Meanwhile, it is an integral component of various cel-
lular processes that mediating phagocytosis to remove dying 
or infected cells (Li et al. 2015; Luo et al. 2017), preventing 
autoimmunity (Chen et al. 2006), and remodeling sites of 

Fig. 4   Comparison of upregulated and downregulated differential 
genes at GO Level 2 in ZJ-GZ1 vs ZJ-GZ (a) and ZJ-N1 vs ZJ-N (b). 
Red represents the GO level 2 entry enriched with upregulated dif-
ferentially expressed genes and green represents the GO level 2 entry 

enriched with downregulated differentially expressed genes. The hori-
zontal axis represents the entry name, and the vertical axis represents 
the number and percentage of genes corresponding to the entry
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Fig. 5   KEGG analysis of the first 20 enriched pathways in bubble 
graphs for ZJ-GZ1 vs. ZJ-GZ (a) and ZJ-N1 vs. ZJ-N (b). The x-axis 
represents the enrichment score: the larger the bubble, the greater 

the number of DEGs. The color of the bubble changes from purple 
to blue to green to red, and the smaller the enrichment P value, the 
greater the significance
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Fig. 7   Significantly differen-
tially expressed genes identified 
by KEGG in the PPAR signal-
ing pathway (a), apoptosis (b), 
and protein processing in the 
endoplasmic reticulum (c). Red 
indicates significantly upregu-
lated genes, green indicates sig-
nificantly downregulated genes, 
and yellow indicates genes 
that were both upregulated and 
downregulated. The red box 
indicates the genes discussed in 
the discussion section
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inflammation by inhibiting the release of pro-inflammatory 
cytokines (Savill 1997). Previous studies have found that a 
high-temperature challenge could increase endogenous reac-
tive oxygen species (ROS) in aquatic organisms (Madeira 
et al. 2013; Li et al. 2015). The overproduction of ROS can 
also trigger apoptosis. High temperature-induced oxidative 
stress may cause apoptosis in pufferfish blood cells, and 
cooperatively activate the p53-Bax and caspase-dependent 
apoptotic pathway (Li et al. 2015). Caspases are a family of 
cysteine proteases that play an important role in both extrin-
sic and intrinsic pathways and are associated with apopto-
sis (Budihardjo et al. 1999). Cheng et al. (2018) found that 
thermal stress induced caspase-9 and caspase-3 activities in 
pufferfish, suggesting that the caspase-dependent pathway 
was playing an important role in thermal stress-induced 
apoptosis in fish (Cheng et al. 2018). Fas-associated pro-
tein with Death Domain (FADD) is closely associated with 
cell death and plays a key role in hematopoiesis, cell cycle 
regulation, embryogenesis, and innate immune signaling (Lu 
et al. 2021). In our study, Casp9 and FADD genes were signif-
icantly upregulated in the apoptotic signaling pathway under 
high temperatures (Fig. 7b). This indicated that the Casp9 and 
FADD genes played important roles in thermal stress-induced 
apoptosis.

The endoplasmic reticulum (ER) has important functions  
in intracellular calcium homeostasis, modifications, trans-
port, and protein synthesis and folding (Naidoo 2009; Krebs  
et al. 2015). Stress conditions, including heat stress, oxida-
tive stress, or inflammation, can lead to protein denaturation  
or misfolding, thereby reducing protein function. When an  
organism is stressed, many enzymes and proteins are structur-
ally and functionally altered, and the organism then stimulates 
the synthesis of heat stress proteins to protect itself against 
adversity (Liu S et al. 2013, Parsell and Lindquist 1993). HSPs 
are a class of molecular chaperones that play an important role 
in hematopoiesis and protein metabolism (Bukau et al. 1998; 
Kregel 2002). The HSP family contributes not only to the 
correct folding of denatured proteins but also to the removal 
of unfolded damaged proteins (Wang et al. 2015). In a previ-
ous study, elevated water temperature increased the expres-
sion of Hsp90 and Hsp70 (Cheng et al. 2015; Cui et al. 2013).  
In our study, we found that high-temperature stress increased 
the expression of Hsp70, Hsp90, and Hsp40 in brain tissue 
(Fig. 7c). Among all the HSPs, Hsp40 was the largest HSP 
family and binded to the Hsp70 ATPase domain in assisting 
protein folding (Song et al. 2014). The significant upregula-
tion of heat-stimulated proteins HSP70 and HSP90, as well 
as HSP40, indicated the property of heat-stimulated proteins 
to stimulate expression when subjected to high-temperature 
stress. These chaperone proteins interacted with denatured 
proteins to prevent their aggregation and misfolding and may 
enable grass carp to avoid the potential damage from high 
temperatures.

In conclusion, our transcriptome analysis of liver and 
brain tissues of grass carp under persistent high temperature 
stress clarified the DEGs and important pathways involved in 
relevant regulatory processes, which included enhanced lipid 
metabolism, reduced fatty acid synthesis, disrupted immune 
system, and increased HSP expression. The reliability of 
the transcriptome sequencing results was verified by real-
time fluorescence quantitative PCR, and these results laid 
the foundation for the subsequent analysis of grass carp in 
response to high-temperature stress.
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