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Abstract
The natural pigment fucoxanthin has attracted global attention because of its superior antioxidant properties. The haptophyte 
marine microalgae Pavlova spp. are assumed to be promising industrial fucoxanthin producers as their lack of a cell wall 
could facilitate the commercialization of cultured cells as a whole food. This study screened promising Pavlova strains with 
high fucoxanthin content to develop an outdoor cultivation method for fucoxanthin production. Initial laboratory investiga-
tions of P. pinguis NBRC 102807, P. lutheri NBRC 102808, and Pavlova sp. OPMS 30543 identified OPMS 30543 as having 
the highest fucoxanthin content. The culture conditions were optimized for OPMS 30543. Compared with f/2 and Walne’s 
media, the use of Daigo’s IMK medium led to the highest biomass production and highest fucoxanthin accumulation. The 
presence of seawater elements in Daigo’s IMK medium was necessary for the growth of OPMS 30543. OPMS 30543 was 
then cultured outdoors using acrylic pipe photobioreactors, a plastic bag, an open tank, and a raceway pond. Acrylic pipe 
photobioreactors with small diameters enabled the highest biomass production. Using an acrylic pipe photobioreactor with 
60-mm diameter, a fucoxanthin productivity of 4.88 mg/L/day was achieved in outdoor cultivation. Thus, this study demon-
strated the usefulness of Pavlova sp. OPMS 30543 for fucoxanthin production in outdoor cultivation.
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Introduction

Fucoxanthin is synthesized by brown algae and diatoms as 
a major photosynthetic pigment; thus, it is the most abundant 
marine carotenoid and is widely distributed in nature (Dembitsky 

and Maoka 2007). Fucoxanthin has attracted considerable atten-
tion for use in the pharmaceutical, nutraceutical, and cosmetic 
industries because of its superior antioxidant properties (Peng 
et al. 2011). Fucoxanthin has also been studied for its anti-cancer 
activity in human cells (Hosokawa et al. 1999; Kotake-Nara 
et al. 2001), anti-type 2 diabetes and anti-obesity effects in mice 
and human cells (Gammone and d’Orazio 2015; Maeda et al. 
2007), in vitro anti-cholesterol activity (Kawee-ai et al. 2013), 
anti-inflammatory effects in rats (Shiratori et al. 2005), anti-
angiogenic effects in human cells (Sugawara et al. 2006), anti-
malarial effects against Plasmodium falciparum (Afolayan et al. 
2008), and anti-hypertensive effects in rats (Ikeda et al. 2003; 
Sivagnanam et al. 2015), as well as for the treatment of Alzhei-
mer’s disease (Kawee-ai et al. 2013). Currently, fucoxanthin is 
produced commercially from brown algae such as Laminaria 
spp. and Undaria pinnatifida and diatoms such as Phaedactylum 
tricornutum (Gayen et al. 2019). Algatechnologies Inc. supplies 
 FucovitalTM, which is manufactured from P. tricornitum, and 
this was the first fucoxanthin food ingredient product approved 
by the US Food and Drug Administration (NDI 1048, 2017). 
Fucoxanthin obtained from diatoms such as Chaetoceros gracilis 
and Odontella aurita also have potential industrial applications 
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(Tokushima et al. 2016; Xia et al. 2018). Culture conditions such 
as light and nutrients have been reported to affect microalgal 
fucoxanthin production (Xia et al. 2013; Gómez-Loredo et al. 
2016; Lu et al. 2018; Yang and Wei 2020). In O. aurita, cultiva-
tion in a high nitrate medium led to high fucoxanthin content 
and volumetric fucoxanthin production (Xia et al. 2013). In P. 
tricornutum, tryptone and urea were examined as supplemental 
nitrogen sources, and tryptone was found to improve cell growth 
and fucoxanthin production (Yang and Wei 2020).

In addition to brown algae and diatoms, haptophyte 
microalgae of Pavlova spp., such as P. lutheri and P. 
pinguis, can produce fucoxanthin (Hiller et al. 1988; 
Lananan et al. 2013). The marine microalga P. lutheri, 
which can produce considerable amounts of polyun-
saturated fatty acids (PUFAs), is commonly employed 
as a larval feed in aquaculture (Brown et  al. 1997; 
Guihéneuf and Stengel 2013), and its PUFA yield is 
increased via random mutagenesis (Meireles et  al. 
2003). P. pinguis contains abundant docosapentaenoic 
acid (Milke et al. 2008). As Pavlova spp. do not have 
a cell wall (Green 1980); they can be commoditized 
as whole foods without the need to extract intracel-
lular fucoxanthin. Thus, Pavlova spp. are considered 
valuable fucoxanthin producers. However, there are no 
quantitative reports regarding fucoxanthin production 
by Pavlova spp.

In the present study, screening of several Pavlova spp. 
to identify a strain with high fucoxanthin content revealed 
that Pavlova sp. OPMS 30543 is a promising producer. 
Culture conditions for OPMS 30543 were examined and 
optimized, and factors affecting biomass and fucoxanthin 
production were investigated in laboratory experiments. 
Large-scale and outdoor cultivation of OPMS 30543 was 
also conducted using various culture facilities.

Materials and Methods

Strains and Laboratory‑Scale Cultivation

Pavlova pinguis NBRC 102807 and P. lutheri NBRC 102808 
were obtained from the National Biological Resource Center 
(NBRC) of the National Institute of Technology and Evaluation. 
Pavlova sp. OPMS 30543 was isolated from brackish water from 
Okinawa Main Island, Japan. Microalgae were photoautotrophi-
cally cultivated in artificial seawater (Marine Art SF-1, Tomita 
Pharmaceutical, Tokushima, Japan) enriched with either Daigo’s 
IMK (FUJIFILM Wako Pure Chemical Corp., Osaka, Japan), f/2 
(Guillard and Ryther 1962), or Walne’s (Walne 1970) elements 
(Table 1). Culture conditions were as follows, unless otherwise 
noted in the figure legends: 800 mL of medium in 1-L sterilized 
bottles, illumination with white fluorescent lamps at an intensity 
of 150 µmol photons/m2/s with a 12-h:12-h light/dark cycle, and 
continuous aeration of 0.25 mL/mL/min. Cells were harvested 
using 0.7-μm pore size glass fiber filter paper GF/F (Cytiva, 
Tokyo, Japan), washed with distilled water, and dried at 120 
°C for 2 h before measurement of dry cell weight (DCW). To 
examine alternative nitrogen sources for Daigo’s IMK, media 
were prepared as shown in Table 2.

Pigment Analysis

Approximately 10 mg of dried cells was suspended in 1 mL 
of acetonitrile, mixed by vortexing for 1 min, and disrupted 
by sonication for 10 min. After centrifugation at 10,000×g 
for 2 min, the supernatant was analyzed by high-performance 
liquid chromatography (Shimadzu, Kyoto, Japan) under the 
following conditions: reverse-phase column, COSMOSIL 
 5C18-AR-II, 4.6 mm I.D. × 150 mm (Nacalai Tesque, Kyoto, 
Japan); column oven temperature, 40 °C; mobile phase, 80% 

Table 1  Nutrients in seawater 
media (mg/L)

1× Daigo’s IMK f/2 Walne’s

NaNO3 200 NaNO3 75 NaNO3 100

Na2HPO4 1.4 NaH2PO4 ・  2H2O 6 NaH2PO4 ・  2H2O 20
K2HPO4 5 - -
NH4Cl 2.68 - -
Fe-EDTA 5.2 FeCl3 ・  6H2O 3.16 FeCl3 ・  6H2O 1.3
Mn-EDTA 0.332 MnCl2 ・  4H2O 0.18 MnCl2 ・  4H2O 0.36
Na2-EDTA 37.2 Na2-EDTA 4.4 Na2-EDTA 45
ZnSO4・7H2O 0.023 ZnSO4 ・  7H2O 0.021 ZnCl2 0.021
CoSO4・7H2O 0.014 CoSO4 ・  7H2O 0.012 CoCl2 ・  6H2O 0.02
Na2MoO4・2H2O 0.0073 Na2MoO4 ・  2H2O 0.007 (NH4)6Mo7O24 ・  4H2O 0.009
CuSO4・5H2O 0.0025 CuSO4 ・  5H2O 0.007 CuSO4 ・  5H2O 0.02
H2SeO3 0.0017 - -
- Na2SiO3 ・  9H2O 10 -
- - H3BO3 33.6
Thiamine-HCl 0.2 Thiamine-HCl 0.1 Thiamine-HCl 0.01
Biotin 0.0015 Biotin 0.0005 Biotin 0.0002
Vitamin B12 0.0015 Vitamin B12 0.0005 Vitamin B12 0.01
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acetonitrile aqueous containing 0.1% formic acid; flow rate, 
1 mL/min; and detection, 450 nm using a photodiode array 
detector. Fucoxanthin signals were identified and quantified 
using a standard curve generated using the fucoxanthin stand-
ard (FUJIFILM Wako Pure Chemical Corp.).

Large‑Scale Cultivation

OPMS 30543 was cultivated outdoors under natural sunlight 
using the following common cultivation systems: (1) 60-mm 
outer diameter and 5-mm thickness acrylic pipe photobioreac-
tor (PBR), (2) 114-mm outer diameter and 5-mm thickness 
acrylic pipe PBR, (3) 216-mm outer diameter and 5-mm thick-
ness acrylic pipe PBR, (4) 267-mm outer diameter and 5-mm 
thick acrylic pipe PBR, (5) 450-mm outer diameter and 0.1-
mm thickness plastic bag, (6) 200-L polycarbonate open tank, 
and (7) 500-L raceway pond, in 50% artificial seawater con-
taining 2× Daigo’s IMK elements described above (Table 1). 
Agitation was performed by aeration at 0.25 mL/min for (1) 
and (2), and 0.1 mL/min for (3), (4), (5), and (6) except for the 
raceway pond, in which the flow rate was adjusted to 0.5 m/s by 
stirring with a paddle. During cultivation, the pH was adjusted 
to 8 by supplying 100%  CO2.

Results

Screening of Pavlova Strains for Fucoxanthin 
Production

To develop a fucoxanthin production method using Pavlova 
spp., three strains (i.e., P. pinguis NBRC 102807, P. lutheri 
NBRC 102808, and P. sp. OPMS 30543) were examined in 

this study (Fig. 1a). The strains were cultured in 50% seawa-
ter containing 2× Daigo’s IMK at 25 °C to identify a promis-
ing strain with high fucoxanthin production. Strain NBRC 
102808 exhibited the lowest biomass production, whereas 
NBRC 102807 exhibited the highest biomass production, 
1.54 g DCW/L at day 12 (Fig. 1b). In contrast, among these 
Pavlova strains, strain NBRC 102807 exhibited the low-
est fucoxanthin content (2.06 mg/g DCW, day 3) (Fig. 1c). 
OPMS 30543 exhibited measurable biomass production of 
0.85 g DCW/L over 12 days and achieved the highest fucox-
anthin content, 12.88 mg/g DCW at day 9. Fucoxanthin pro-
duction (calculated by multiplying the biomass and fucoxan-
thin content) of 9.01 mg/L at day 9 was achieved by OPMS 
30543, which was higher than that of strains NBRC 102807 
(2.32 mg/L, day 12) and NBRC 102808 (0.61 mg/L, day 9) 
(Fig. 1d). Thus, OPMS 30543 was identified as a promising 
Pavlova strain for fucoxanthin production.

Examination of Culture Medium for OPMS 30543

To determine the optimal medium for fucoxanthin produc-
tion, biomass and fucoxanthin content were investigated 
using OPMS 30543 grown in 50% seawater enriched with 
either 2× Daigo’s IMK, f/2 (Guillard and Ryther 1962) 
or Walne’s (Walne 1970) elements (Table  1). Among 
these conditions, cultivation in 2× Daigo’s IMK medium 
resulted in higher biomass (0.92 g DCW/L) relative to f/2 
(0.55 g DCW/L) and Walne’s (0.56 g DCW/L) media after 
14 days of cultivation (Fig. 2a). In addition, the fucoxan-
thin content of OPMS 30543 grown in 2× Daigo’s IMK 
medium was significantly higher (2.62 mg/g DCW, day 
14) than that of cells grown in f/2 (1.48 mg/g DCW, day 
7) or Walne’s (1.39 mg/g DCW, day 7) media (Fig. 2b). 

Table 2  Nutrients in modified 
IMK (mIMK) media (mg/L)

1× Daigo’s IMK mIMK  (NaNO3) mIMK  (KNO3) mIMK 
 (CO[NH2]2)

mIMK  (NH4Cl)

NaNO3 200 200 - - -
KNO3 - - 200 - -
CO(NH2)2 - - - 200 -
NH4Cl 2.68 - - - 200
Na2HPO4 1.4 - - - -
K2HPO4 5 5 5 5 5
Fe-EDTA 5.2 - - - -
Mn-EDTA 0.332 - - - -
Na2-EDTA 37.2 37.2 37.2 37.2 37.2
ZnSO4・7H2O 0.023 0.023 0.023 0.023 0.023
CoSO4・7H2O 0.014 - - - -
Na2MoO4・2H2O 0.0073 - - - -
CuSO4・5H2O 0.0025 0.0025 0.0025 0.0025 0.0025
H2SeO3 0.0017 - - - -
Thiamine-HCl 0.2 - - - -
Biotin 0.0015 - - - -
Vitamin B12 0.0015 - - - -
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Fucoxanthin production of 1.51 mg/L on day 14 was 
achieved by culturing cells in 2× Daigo’s IMK medium, 
which was double the production of cells grown in medium 
containing f/2 (0.73 mg/L, day 7) or Walne’s (0.79 mg/L) 
elements (Fig. 2c). Thus, these data suggest that the use 
of 2× Daigo’s IMK was the most suitable for maximizing 
OPMS 30543 biomass and fucoxanthin production.

Examination of Culture Conditions for OPMS 30543

To improve the biomass production of OPMS 30543, vari-
ous culture conditions (i.e., seawater concentration, pH, 
and temperature) were examined. When cultivated in 2× 

Daigo’s IMK with different concentrations of seawater, 
biomass production was observed only in the presence 
of seawater; OPMS 30543 did not grow in 0% seawater 
medium (Fig. 3a). The highest biomass of 6.16 g DCW/L 
on day 14 was achieved in the medium with 50% seawater. 
The effect of varying the culture pH by supplying  CO2 
gas to the medium was also examined (Fig. 3b). OPMS 
30543 biomass production was reduced when the pH 
was adjusted to 6, whereas the highest biomass of 3.78 g 
DCW/L on day 6 was observed when pH was adjusted to 
8. Culture temperature was investigated over the range of 
15–35 °C (Fig. 3c). Within this temperature range, OPMS 
30543 produced higher biomass at higher temperatures, 

Fig. 1  Comparison of three Pavlova strains. a Microscopic images of Pavlova cells. Scale bars: 50 μm. b Biomass. c Fucoxanthin content. d 
Fucoxanthin production
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and cultivation at 35 °C resulted in the highest biomass 
production of 3.32 g DCW/L on day 6. Thus, cultiva-
tion in 50% seawater medium at 35 °C and pH 8 was 
determined to be the optimal condition for OPMS 30543 
biomass production.

Modification of IMK Medium by Replacing Nitrogen 
Sources and Adding Carbon Sources

To further improve OPMS 30543 biomass production 
and fucoxanthin content, the effect of varying the nitro-
gen source in the medium was examined. The modified 
IMK medium was prepared by replacing  NaNO3 in 1× 
Daigo’s IMK with either  NaNO3,  KNO3, CO(NH2)2, or 
 NH4Cl (Table 2). After 9 days of cultivation, cells cultured 
in the modified IMK medium containing  KNO3 exhibited 
the highest biomass of 1.8 g DCW/L (Fig. 4a). Both urea 
CO(NH2)2 and  NH4Cl were found to be available as nitro-
gen sources for OPMS 30543 cultivation, and biomass 
production of 1.58 and 0.82 g DCW/L at 10 days was 
observed, respectively. Use of  NaNO3-containing medium 
resulted in higher fucoxanthin content (12.74 mg/g DCW) 
than in media with  KNO3 (5.57 mg/g DCW), CO(NH2)2 

(8.38 mg/g DCW), or  NH4Cl (7.80 mg/g DCW) (Fig. 4b). 
Fucoxanthin production was the highest when  NaNO3 was 
used as the nitrogen source (Fig. 4c). Fucoxanthin produc-
tion of OPMS 30543 grown in modified IMK medium con-
taining  NaNO3,  KNO3, CO(NH2)2, or  NH4Cl was 17.84, 
10.03, 13.24, and 6.40 mg/L, respectively. Thus, these data 
suggest that  NaNO3 is the best nitrogen source for maxi-
mizing OPMS 30543 fucoxanthin production.

The effect of adding various carbon sources to the 
medium was also examined to enhance biomass and fucox-
anthin production. Modified IMK medium was prepared 
by adding either glucose, methanol, sodium acetate, or 
sodium bicarbonate to 50% seawater enriched with 1× 
Daigo’s IMK. Each of the additional carbon sources 
increased biomass production compared with that with 
the normal 1× Daigo’s IMK (Fig. 4d). After 4 days of 
cultivation, OPMS 30543 grown in medium with sodium 
acetate exhibited the highest biomass of 1.79 g DCW/L, 
whereas OPMS 30543 biomass in medium containing glu-
cose, methanol, and sodium bicarbonate was 1.19, 0.71, 
and 1.28 g DCW/L, respectively. Use of medium contain-
ing methanol resulted in the highest fucoxanthin content 
(7.26 mg/g DCW) relative to medium containing glucose 

Fig. 2  Comparison of different media for OPMS 30543 cultivation. 
a Biomass. b Fucoxanthin content. c Fucoxanthin production. Cells 
were statically cultivated in 200 mL Erlenmeyer flasks with a 100-mL 

working volume of 50% seawater containing either 2× Daigo’s IMK, 
f/2, or Walne’s elements
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(4.25 mg/g DCW), sodium acetate (4.11 mg/g DCW), or 
sodium bicarbonate (2.99 mg/g DCW) (Fig. 4e). Fucoxan-
thin production was the highest when sodium acetate was 
added to the medium (Fig. 4f). Fucoxanthin production 
by OPMS 30543 grown with glucose, methanol, sodium 
acetate, and sodium bicarbonate was 5.06, 5.15, 7.36, and 
3.83 mg/L, respectively. Thus, sodium acetate was sug-
gested as the optimal carbon source for enhancing fucox-
anthin production.

Large‑Scale Outdoor Cultivation of OPMS 30543

A large-scale outdoor OPMS 30543 cultivation test was per-
formed to evaluate the potential of fucoxanthin production 
outdoors. Acrylic pipe PBRs (5-mm thickness with differ-
ent outer diameters of 114, 216, and 267 mm), a plastic bag 
(0.1-mm thickness with 450-mm outer diameter), a 200-L 
polycarbonate open tank, and a 500-L raceway pond were 
used for cultivation (Fig. 5). Six days of cultivation out-
doors in acrylic pipe PBRs with 114-, 216-, and 267-mm 
outer diameter produced biomass of 0.73, 0.39, and 0.31 g 
DCW/L, respectively (Fig. 6a). Cultivation using a plastic 
bag, a 200-L polycarbonate open tank, and a 500-L raceway 
pond produced 0.24, 0.26, and 0.10 g DCW/L, respectively, 

on day 6. Thus, the acrylic pipe PBRs with smaller outer 
diameters achieved higher biomass production than the plas-
tic bag, open tank, or raceway pond. To further examine 
these results, OPMS 30543 was cultivated using an acrylic 
pipe PBR with a 60-mm outer diameter. Biomass of 1.82 g 
DCW/L and 2.20 g DCW/L were observed on days 6 and 8, 
respectively (Fig. 6b), both of which were higher than the 
biomass production achieved using the acrylic pipe PBR 
with a 114-mm outer diameter. The fucoxanthin content on 
day 8 was 20.86 mg/g DCW, which was higher than that 
achieved with any of the laboratory-scale cultivations in this 
study. Using a PBR with a 60-mm outer diameter, biomass 
productivity of 0.23 g DCW/L/day and fucoxanthin produc-
tivity of 4.88 mg/L/day were demonstrated in large-scale 
outdoor cultivation.

Discussion

In previous studies, P. lutheri and P. pinguis were examined 
as aquatic feed producers that accumulate high levels of ω-3 
fatty acids, including docosahexaenoic acid and eicosapen-
taenoic acid (Guihéneuf and Stengel 2013; Guihéneuf et al. 
2015; Fernandes et al. 2020). However, these organisms 

Fig. 3  Comparison of culture conditions for OPMS 30543. a Seawa-
ter concentration in medium. b pH, adjusted by supplying  CO2 gas to 
the culture. Cultures were illuminated with red, blue, and white LEDs 

at a total intensity of 300 µmol photons/m2/s with a 12-h:12-h light/
dark cycle. c Culture temperature
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have not been studied extensively for their use as fucoxan-
thin producers, despite several reports describing fucoxan-
thin production by P. lutheri (Hiller et al. 1988; Lananan 
et al. 2013) and the advantages of the lack of a cell wall in 
Pavlova spp. (Green 1980). To develop a useful fucoxanthin 
production method, this study first compared fucoxanthin 
production in three Pavlova strains and identified Pavlova sp. 
OPMS 30543 as a promising strain owing to its significantly 
higher fucoxanthin production than that of P. pinguis NBRC 
102807 and P. lutheri NBRC 102808 (Fig. 1d).

To determine the optimal conditions for OPMS 30543 
cultivation, three types of media were examined. The use 
of 2× Daigo’s IMK medium resulted in higher fucoxanthin 
production than with either f/2 or Walne’s medium (Fig. 2c). 
A likely reason is that 2× Daigo’s IMK contains a much 
higher level of nitrate (400 mg/L  NaNO3) than f/2 (75 mg/L 
 NaNO3) or Walne’s (100 mg/L  NaNO3) (Table 1). Nitrate 
supplementation has been reported to increase fucoxanthin 
production in the diatoms Phaeodactylum tricornutum and 
O. aurita (Xia et al. 2013; McClure et al. 2018). Nitro-
gen supplementation with tryptone improved fucoxanthin 

production in P. tricornutum (Yang and Wei 2020). This 
study also investigated different nitrogen sources with 
which to modify 2× Daigo’s IMK and found that the use 
of  NaNO3 resulted in the highest fucoxanthin accumulation 
(Fig. 4c). Microalgae growth and fucoxanthin generally 
show a positive relationship, except under some conditions 
such as nitrogen depletion, under which fucoxanthin con-
tent decreases (Xia et al. 2018). In this study, the modified 
IMK medium containing  KNO3 led to the highest biomass 
(Fig. 4a), although the fucoxanthin content was the low-
est (Fig. 4b). This might be because the nitrogen source 
was depleted in the  KNO3 medium owing to the highest 
cell growth. The effect of the nitrogen source on fucoxan-
thin production has not been examined in detail in previous 
studies. Absorption and assimilation of different nitrogen 
sources were investigated in Pelagophycea Aureococcus 
anophagefferens, which also accumulates fucoxanthin (Ou 
et al. 2018). Different from the results of this study, cultiva-
tion using urea resulted in the highest fucoxanthin content 
in this microalga compared with cultivation with  NaNO3, 
 NH4Cl, or glutamic acid. Although the effects differ among 

Fig. 4  Examination of alternative nitrogen sources and additional 
carbon sources. a Biomass, b fucoxanthin content, and c fucoxanthin 
production of cells grown in 50% seawater enriched with modified 
IMK and different nitrogen sources. d Biomass, e fucoxanthin con-

tent, and f fucoxanthin production of cells grown in 50% seawater 
enriched with 2× Daigo’s IMK with additional carbon sources, illu-
minated with red, blue, and white LEDs at a total intensity of 300 
µmol photons/m2/s with a 12-h:12-h light/dark cycle
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algae species, these results suggest that supplementation and 
type of nitrogen source are important factors affecting fucox-
anthin accumulation.

Among the Pavlova strains tested in this study, P. pinguis 
NBRC 102807 exhibited the highest biomass production 

(Fig. 1b). In contrast, Pavlova sp. OPMS 30543 could grow 
under a wide range of seawater concentrations, ranging from 
25 to 100%, with similar biomass productivity (Fig. 3a). 
This robustness toward salinity is a valuable characteris-
tic for seawater cultivation. OPMS 30543 did not produce 

Fig. 5  Facilities used for outdoor cultivation. a Acrylic pipe photo-
bioreactors (5-mm thickness with outer diameters of 114, 216, and 
267 mm) and a plastic bag (0.1-mm thickness with a 450-mm outer 

diameter). b 200-L polycarbonate open tank. c 500-L raceway pond. 
d Acrylic pipe photobioreactor (60-mm outer diameter)

Fig. 6  Large-scale outdoor cultivation of OPMS 30543. a Biomass 
of OPMS 30543 cultivated using natural light in acrylic pipe PBRs 
(5-mm thickness with different outer diameters of 114, 216, and 267 
mm), a plastic bag (0.1-mm thickness with a 450-mm outer diam-
eter), 200-L polycarbonate open tank, and 500-L raceway pond. b 
Biomass of OPMS 30543 cultivated outdoors under natural light in 

an acrylic pipe PBR with a 60-mm outer diameter. In these experi-
ments, 50% seawater enriched with 2× Daigo’s IMK was used as the 
medium. Aeration was provided except for the raceway pond. In the 
raceway pond, cells were stirred using a paddle. During cultivation, 
the pH was adjusted to 8 by blowing  CO2.
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biomass when cultured in medium with 0% seawater, pos-
sibly because Daigo’s IMK medium depends upon supple-
mentation of  Mg2+ and  Ca2+ in seawater (Table 1). Of the 
three media examined, 2× Daigo’s IMK provided the high-
est OPMS 30543 biomass production (Fig. 2a), probably 
because it contained more nitrate than either f/2 or Walne’s 
media (Table 1). The effects of an additional carbon source 
were also examined. This analysis revealed that the addition 
of glucose, sodium acetate, or sodium bicarbonate to 2× 
Daigo’s IMK medium enhanced OPMS 30543 biomass pro-
duction (Fig. 4d). In haptophyte Isochrysis galbana, glycerol 
was found to be the best additional carbon source to enhance 
biomass production, whereas acetate had no effect and glu-
cose only slightly enhanced the growth rate (Alkhamis and 
Qin 2013). Overall, these data suggest that the addition of a 
suitable carbon is a promising approach for enhancing the 
biomass production of microalgae, including OPMS 30543.

In the large-scale outdoor cultivation experiment, the 
acrylic pipe PBRs demonstrated higher biomass production 
than the open tank or raceway pond (Fig. 6a). A possible 
reason for this result is that the open tank and raceway pond 
were highly contaminated with bacteria, fungi, and protozoa 
(data not shown). Among the acrylic pipe PBRs examined, 
those with a smaller diameter produced higher biomass, 
most likely because the higher surface area-to-volume ratio 
contributes to more efficient illumination. Using the 60-mm 
diameter acrylic pipe PBR, a fucoxanthin content of 20.86 

mg/g DCW and fucoxanthin productivity of 4.88 mg/L/day 
was obtained after 8 days of cultivation (Fig. 6b). Fucox-
anthin content in various microalgae and macroalgae has 
been reported in previous studies (Table 3). Microalgae such 
as haptophytes, diatoms, and chrysophytes generally show 
higher fucoxanthin content than macroalgae. In diatoms, P. 
tricornutum and Cylindrotheca closterium were reported 
to achieve 59.2 mg/g DCW and 25.5 mg/g DCW fucoxan-
thin content, respectively (McClure et al. 2018; Wang et al. 
2018). Chrysophytes Mallomonas sp. also showed a high 
fucoxanthin content of 26.6 g/g DCW (Petrushkina et al. 
2017). For commercialization of cultured cells as a whole 
food, however, these microalgae would not be favorable 
because they have a cell wall. In this study, as a cell wall-
lacking microalga, Pavlova sp. OPMS 30543 achieved a 
fucoxanthin content of 20.86 mg/g DCW, which is higher 
than that achieved with Isochrysis aff. galbana (Kim et al. 
2012). Thus, Pavlova sp. OPMS 30543 is a promising feed-
stock for fucoxanthin, characterized by both a high fucoxan-
thin content and the absence of cell wall. With the develop-
ment of a large-scale outdoor cultivation method for OPMS 
30543 fucoxanthin production as demonstrated in this study, 
the utilization of Pavlova cells as whole foods has taken a 
step toward successful commercialization.
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Table 3  Summary of 
fucoxanthin content in 
microalgae and macroalgae

Species Cell wall Fucoxanthin con-
tent (mg/g DCW)

References

Haptophytes Pavlova sp. Negative 20.86 This study
Isochrysis aff. galbana Negative 18.23 Kim et al. (2012)
Isochrysis galbana Negative 15.8 Sun et al. (2019)
Tisochrysis lutea Negative 16.39 Gao et al. (2020)

Diatoms Chaetoceros gracilis Positive 2.24 Kim et al. (2012)
Cylindrotheca closterium Positive 25.5 Wang et al. (2018)
Nitzschia laevis Positive 12.0 Lu et al. (2018)
Nitzschia sp. Positive 4.92 Kim et al. (2012)
Odontella aurita Positive 18.47 Xia et al. (2013)
Phaeodactylum tricornutum Positive 59.2 McClure et al. (2018)
Thalassiosira weissflogii Positive 9.5 Marella and Tiwari (2020)

Chrysophytes Mallomonas sp. Positive 26.6 Petrushkina et al. (2017)
Brown algae Cystoseira hakodatensis Positive 2.01 Susanto et al. (2016)

Cystoseira indica Positive 3.56 Fariman et al. (2016)
Nizamuddinia zanardinii Positive 1.65 Fariman et al. (2016)
Padina sp. Positive 1.97 Dang et al. (2017)
Sargassum horneri Positive 2.12 Susanto et al. (2016)
Sargassum linearifolium Positive 1.76 Dang et al. (2017)
Sargassum siliquastrum Positive 1.99 Susanto et al. (2016)
Sphaerotrichia divaricata Positive 1.15 Maeda et al. (2018)
Undaria pinnatifida Positive 0.73 Xiao et al. (2012)
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