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Abstract
Sexual dimorphism is widespread in fish species. The red-tail catfish (Mystus wyckioides) is a commercially important catfish in
the lower reaches of the Lancang River and theMekong basin, and it shows a growth advantage in males. Here, RNA-seq was for
the first time used to explore the gene expression difference between the sexes in the hypothalamus and pituitary of red-tail
catfish, respectively. In the hypothalamus, 5732 and 271 unigenes have significantly higher and lower expressions, respectively,
in males compared with females. KEGG analysis showed that 212 DEGs were annotated to 216 signaling pathways, and
enrichment analysis suggested different levels of cAMP and glutamatergic synapse signaling between male and female
hypothalami and some of the DEGs appear involved in gonad development and growth. In the pituitary, we found only 19
differentially expressed unigenes, which were annotated to 32 signaling pathways, most of which play important roles in gonad
development.
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Introduction

Sexual dimorphism commonly exists in gonochoristic animals
and involves many aspects of biology (Mei and Gui 2015),
including body size (Ma et al. 2016; Rideout et al. 2015; Shine
1986; Wu et al. 2015), brain morphology (Gorski et al. 1978;
Moriarty 1975), buccal morphology (Okuda et al. 2002),

organ morphology (Adamson and King 1984; Yasuda et al.
2005), pituitary and gonadal hormones (Jalouli et al. 2003;
Zimmerberg and Farley 1993), or even life expectancies (Shi
et al. 2017). Fish are the most species-rich vertebrate lineage
including almost half of the extant vertebrate species
(Betancur-R et al. 2017). Liu first reported sex reversal phe-
nomenon in ricefield eel (Monopterus albus), which initiated a
new field on revealing the sex differentiation of fish (Bullough
1947). During the last decades, large numbers of basic studies
have been reported on fish sexual dimorphism and sex deter-
mination and differentiation (Devlin and Nagahama 2002;
Kobayashi et al. 2013; Scott et al. 1989; Wu et al. 2015; Li
and Gui 2018a, b, Li et al. 2018).

Hypothalamus and pituitary are key endocrine glands for
controlling instinctive behaviors and hormone secretion, such
as metabolism, feeding, stress response, and reproduction
(Dhillo et al. 2005; Harris et al. 1978; Rivier and Rivest
1991; Suchecki et al. 1993). Although the reproductive behav-
iors and strategies are diverse in vertebrates, the endocrine
network of reproduction is conserved (hypothalamic-pitui-
tary-gonadal axis) (Sower et al. 2009). When gonadotropin-
releasing hormone (GnRH) is secreted from the hypothala-
mus, the gonadotropins (GTHs) are secreted in pituitary as a
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response. In the following, the GTHs stimulate gonads, where
sex hormones are released and gonad maturation is initiated
(Nozaki 2013). In addition, other adenohypophysial hor-
mones such as growth hormone (GH), adrenocorticotropin,
and prolactin are also responsive to the hypothalamic-
pituitary system (Blackwell and Guillemin 1973; Heinz et al.
1995; Saga et al. 1993; Sayers et al. 1980; Salemi et al. 2007).
In conclusion, hypothalamic-pituitary system is a vital ele-
ment leading to physiological divergence, including sex-
dependent dimorphic growth pattern (Wang et al. 2009).

Red-tail catfish (Mystus wyckioides) belongs to the catfish
family Bagridae and is named after the extending filament-like
ornament in its red tail. It is a native species of the Lancang
River (Tippayadara et al. 2016). Interestingly, just like the other
two fish in Bagridae, Pelteobagrus fulvidraco (Wang et al.
2009; Dan et al. 2013) and Pseudobagrus ussuriensis (Pan
et al. 2015; Wang et al. 2009), the significant sex-dependent
growth difference has been observed in red-tail catfish.
However, previous studies of red-tail catfish have only focused
on artificial breeding, karyotype analysis, and muscle nutrition
analysis (Tippayadara et al. 2016). In the present study, we
performed Illumina RNA-seq to identify differentially
expressed genes and related pathways in the hypothalamic-
pituitary system to reveal the molecular mechanism of sexual
difference between male and female red-tail catfish. This study
is the first comparative transcriptome analysis in red-tail catfish
and reveals significant expression differences between males
and females in hypothalamus and pituitary.

Results

Size Dimorphism Between Males and Females

Aquaculture practices and field measurement have identified
the sexual dimorphism in growth. In this study, 55 4-year-old
individuals (27 males and 28 females) were randomly select-
ed, and it showed that the males had a significant growth
advantage over females based on the values of body weight
and body length. The average weight of females and males
was 9.06 ± 2.74 kg and 11.44 ± 3.95 kg, respectively, which
indicated that the weight of males was 26.27% heavier than
that of females (p < 0.01) (Fig. 1a). As for the length, the
average length of females and males was 93.56 ± 15.82 cm
and 98.55 ± 15.83 cm, respectively, and it showed that the
males were 5.33% longer than the females (p < 0.05) (Fig. 1b).

Illumina Sequencing, De Novo Assembly,
and Functional Annotation

To identify differentially expressed mRNAs in hypothalamic-
pituitary system between male and female red-tail catfish, two
different tissues (hypothalamus and pituitary) of mature male

and female adults were collected and the total RNAs from
each tissue was extracted for cDNA library construction.
After removing low-quality reads, a total of 47.1–48.5 (GC
content = 45%, Q30 = 92.44%) and 46.6–48.3 million (GC
content = 47%, Q30 = 92.51%) clean reads were obtained in
the hypothalamus and pituitary, respectively (Supplementary
Table 1). After trimming, these high-quality reads were de
novo assembled by Trinity version20131110. Finally, a total
of 89,487 unigenes with an average length of 1027.52 bp and
N50 of 1792 bp were obtained in the hypothalamus, and
85,143 unigenes with average length of 1019.74 bp and N50
of 1775 bp were received in the pituitary (Supplementary
Table 2). The length distributions of de novo assembled
unigenes were shown in Supplementary Fig. 1.

The unigenes of two tissues were blasted against the NR,
SWISSPROT, and KOG databases by using BLASTX with a
threshold value of 1e−5. In NR annotation, more than half of
the annotated unigenes (54.83% unigenes in the hypothala-
mus and 54.13% unigenes in the pituitary) were overlapped
with known genes of Ictalurus punctatus (a closely related
species of red-tail catfish) (Supplementary Fig. 2A and B).
The numbers of annotated unigenes against databases are
shown in a Wayne chart (Supplementary Fig. 2C and D).
Besides that, about 60% unigenes did not match with any
database entries, which may represent some non-coding
RNAs or unknown protein coding genes in red-tail catfish.

Screening and Identification of Sexual Differentially
Expressed Unigenes

To identify differentially expressed unigenes (DEGs) between
males and females, the expression levels of assembled unigenes
were determined using the reads per kilobase per million
(RPKM) method. In this study, we focused on DEGs in the
hypothalamus and the pituitary, respectively. Genes were con-
sidered DEGs if they showed a fold change ≥ 2 and p < 0.05
(FDR test). In the hypothalamic comparison, a total of 6003
DEGs were screened; among them, 5732 DEGs were highly
expressed in males and 271 DEGs were highly expressed in
females (Fig. 1c). In the pituitary, 1083 DEGs were found
between genders, of which 480 were expressed significantly
high in males and 603 were expressed significantly high in
females (Fig. 1d). Among them, only 4 common DEGs
(TAAR, Pcdh16, Gcnt3, Amhr2) were identified in both of the
hypothalamus and pituitary (Supplementary Table 3).

Some important genes (GnRH, GnRHR, GHRH, etc.) in-
volved steroid secreting in the hypothalamic-pituitary-gonadal
(HPG) system, genes related to growth (IGF1/2) and aromatase
secreting (CYP19A) were analyzed by performing RPKM and
qRT-PCR. According to normalized value of RPKM and qRT-
PCR in our studies, the greater expression of PACAP, NPY,
KISS1R, IGF-1 was identified in the hypothalamus of a male,
and CYP19A is highly expressed in the hypothalamus of a
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female (Fig. 2a). In the pituitary, FSHβ and LH are mainly
expressed in female and a higher expression of PACAP was
identified in male (Fig. 2b). Linear regression analysis revealed
that the positive correlation between RPKM and qRT-PCR-
dependent unigene expression persisted in both of the hypothal-
amus and pituitary with R2 = 0.86 and 0.89, respectively
(Supplementary Fig. 3A and B).

GO Enrichment Analysis of DEGs

For both the hypothalamus and pituitary, DEGs were searched
against the Gene Ontology database (www.geneontology.org)
to infer their function according to GO annotation. In the
hypothalamus, 405 DEGs were annotated to 1585 GO terms
accompanied by 345 and 60 DEGs with relatively higher
expression in male and female hypothalami, respectively.

Ninety-eight male-highly expressed unigenes (MEGs) were
annotated to nucleus (GO:0005634), 95 MEGs were annotat-
ed to cytoplasm (GO:0005737), 71 MEGs were annotated to
plasma membrane (GO:0005886), 70 MEGs were annotated
to DNA binding (GO:0003677), 70 MEGs were annotated to
metal ion binding (GO:0046872), etc. Twenty-six female-
highly expressed unigenes (FEGs) were annotated to nucleus
(GO:0005634), 18 FEGs were annotated to cytoplasm (GO:
0005737), 17 FEGs were annotated to ATP binding (GO:
0005524), 11 FEGs were annotated to DNA binding (GO:
0003677), 9 FEGs were annotated to transcription DNA-
templated (GO:0006351), etc. (Fig. 3a).

In pituitary, a total of 47 DEGswere annotated into 348 GO
terms. Among them, 16 male-highly expressed unigenes were
related to 164 GO terms, 4 MEGs were annotated to metal ion
binding (GO:0046872), 4 MEGs were annotated to plasma

Fig. 1 a Statistics of body weight
of 55 4-year-old red-tail catfish
between sexes (27 males and 28
females, p = 0.001). b Statistics of
body length of 55 4-year-old red-
tail catfish between sexes (27
males and 28 females, p = 0.037).
Difference of unigene expression
between the hypothalamic-
pituitary axis in male and female
red-tail catfish. The x-axis pre-
sents level of differential expres-
sion, and the y-axis presents value
of significant difference. c DEGs
in the hypothalamus of male and
female. dDEGs in the pituitary of
male and female
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membrane (GO:0005886), 4 MEGs were annotated to cyto-
plasm (GO:0005737), 3MEGswere annotated to extracellular
space (GO:0005615), 3 MEGs were annotated to calcium ion
binding (GO:0005509), etc. Thirty-one female-highly
expressed unigenes were annotated to 219 GO terms.
Among them, 8 FEGs were annotated to integral component
of membrane (GO:0016021), 5 FEGs were annotated to ex-
tracellular exosome (GO:0070062), 5 FEGs were annotated to
nucleus (GO:0005634), 4 FEGs were annotated to cytoplasm
(GO:0005737), 3 FEGs were annotated to protein
homodimerization activity (GO:0042803), etc.(Fig. 3b).

KEGG Enrichment Analysis of DEGs Between Males
and Females

KEGG enrichment annotation can help us clarify the function
of enriched DEGs in the metabolic pathways. In the hypothal-
amus, 212 DEGs were annotated to 216 KEGG pathways
accompanied by 171 and 41 DEGs with relatively higher ex-
pression in males and females, respectively. In detail, most of
the male-highly expressed unigenes (MEGs) were assigned to
cAMP signal ing pathway (30 MEGs, ko04024) ,

glutamatergic synapse (30 MEGs, ko04724), circadian en-
trainment (29 MEGs, ko04713), calcium signaling pathway
(29 MEGs, ko04020), retrograde endocannabinoid signaling
(26 MEGs, ko04723), dopaminergic synapse (26 MEGs,
ko04728), amphetamine addiction (24 MEGs, koko05031),
insulin secretion (23 MEGs, ko04911), oxytocin signaling
pathway (23 MEGs, ko04921), cGMP-PKG signaling path-
way (22 MEGs, ko04022), etc. (Fig. 4a). Most of the female-
highly expressed unigenes (FEGs) were assigned to cell ad-
hesion molecules (CAMs) (4 FEGs, ko04514), aminoacyl-
tRNA biosynthesis (3 FEGs, ko00970), hepatitis C (3 FEGs,
ko05160), leukocyte transendothelial migration (3 FEGs,
ko04670), cell cycle (3 FEGs, ko04110), viral carcinogenesis
(3 FEGs, ko05203), tight junction (3 FEGs, ko04530), and
axon guidance (3 FEGs, ko04360) (Fig. 4b).

The cAMP signaling pathway is involved in some funda-
mental functions including body growth and spermatogenesis
(Skålhegg et al. 2002). Gamma-aminobutyric acid (GABA) B
receptor 1 (GABBR1), adenylate cyclase 5 (ADCY5), rap gua-
nine nucleotide exchange factor 3 (RAPGEF3), calcium/
calmodulin-dependent protein kinase 2 (CAMK2), peroxi-
some proliferator-activated receptor alpha (PPARα), and T

Fig. 2 RNA-seq expression data and qRT-PCR data of selected genes
involved steroid secreting in the hypothalamic-pituitary-gonadal (HPG)
system. Asterisks represent significant difference (p < 0.05) between
sexes. a Normalized RPKM data of selected genes in the hypothalamus.

b Normalized qRT-PCR data of selected genes in the hypothalamus. c
Normalized RPKM data of selected genes in the pituitary. d Normalized
qRT-PCR data of selected genes in the pituitary
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lymphoma invasion and metastasis-inducing protein 1
(TIAM1) were also identified as highly expressed in males
(Fig. 5). Previous studies confirmed that the cAMP pathway
is regulated by some glutamate receptors, which are essential
in male development (Mao andWang 2002;Winder and Conn
1993). In the glutamatergic synapse signal pathway, the glu-
tamate receptors GRIA1, GRIA2, GRIA3, GRIA4, GRIN1, and
GRIN 2B were expressed about 3.13-, 3.59-, 2.94-, 3.62-,
3.93-, and 3.16-fold higher in males compared with females
(Fig. 6). Interestingly, the different expressions of CACNA1D
between sexes were found in 17 KEGG pathways, ADCY5
were concentrated in 13 pathways, and PPP3C were concen-
trated in 9 pathways, which were enriched in most of signifi-
cant KEGG pathways that may play vital role in growth sexual
dimorphism or sex differentiation of red-tail catfish.

In the pituitary, only 18 DEGs were annotated to 30 path-
ways, 9 DEGs were highly expressed in males, and 9 DEGs

were highly expressed in females. For example, the anti-
Mullerian hormone type 2 receptor (AMHR2) was only iden-
tified in males and was enriched in the cytokine-cytokine re-
ceptor interaction and TGF-beta signaling pathway. While
cyclin B2 (CCNB2), progesterone receptor (PGR), peroxi-
somal biogenesis factor 11 alpha (PAX11A), and cytochrome
P450 family 26 subfamily A (CYP26A) were enriched in oo-
cyte meiosis, p53, peroxisome, and retinol metabolism signal-
ing pathway with higher expression in females. The desert
hedgehog (DHH) was enriched in hedgehog signaling path-
way and only identified in males (Table 1).

qRT-PCR Confirmation for DEGs Between Sexes

To verify accuracy of the RNA-seq data, DEGs related to
mainly enriched signal pathway were randomly chosen and
validated by qRT-PCR. In the hypothalamus, we analyzed

Fig. 3 Functional classification of
male-highly expressed unigenes
(MEGs) and female-highly
expressed unigenes (FEGs) based
on Gene Ontology (GO) terms.
The x-axis is level 2 name of GO
term, and the y-axis is the number
of differently expressed unigenes.
a The GO classification of male-
highly expressed unigenes
(MEGs) in the hypothalamus. b
The GO classification of female-
highly expressed unigenes
(FEGs) in the pituitary
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Fig. 5 DEGs involved in the cAMP signaling pathway. Male-highly expressed unigenes are represented in green and female-highly expressed unigenes
are represented in red. The number is the value of fold change

Fig. 4 TOP-enriched KEGG signal pathways in the hypothalamus. The
x-axis represents KEGG enrichment score, the size of the dots represents
numbers of DEGs, and the color of dots represent p value. a TOP-

enriched KEGG signal pathways with male-highly expressed unigenes
(MEGs). b TOP-enriched KEGG signal pathways with female-highly
expressed unigenes (FEGs)
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fourteen DEGs, such as CACNA1D, RAPGEF3, TIAM1,
PPARα, CAMK2, PPP3C, GABBR1, ADCY5, GIRIA1,
GIRIA2, GIRIA3, GIRIA4, GIRIN1, and GIRIN2B, which
were highly expressed in males (Fig. 7a), which was
corresponded with expression data generated by qRT-PCR
except CAMK2 (Fig. 7b). In the pituitary, RNA-seq showed
that four genes (CYP26A, PEX11A, PGR, CCNB2) were high-
ly expressed in the female, while DHH and Amhr2 were high-
ly expressed in the male (Fig. 7c). Except for CCNB2, the
qRT-PCR analysis confirmed the findings of the RNA-seq
data (Fig. 7d). Linear regression analysis confirmed that the
positive correlation between RPKM and qRT-PCR dependent
unigenes expression persisted in both of the hypothalamus
and pituitary with R2 = 0.87 and 0.89, respectively
(Supplementary Fig. 3C and D).

Discussion

The hypothalamic-pituitary system is the most vital system for
regulating reproduction and associated behaviors, and it is
conserved from jawless fishes to mammals (Sower et al.
2009). The HiSeq platform has been used to compare DEGs
between sexes and provide precious data for studying the sex-
ual differentiation and its mechanism (Lin et al. 2017; Wu
et al. 2015). The red-tail catfish is a native and distinctive fish
in the Lancang River and also shows sexual dimorphism, such
that males have a faster growth rate than females. Therefore,
we performed transcriptome sequencing to identify

differentially expressed genes in the hypothalamic-pituitary
system between males and females in red-tail catfish.

Reproduct ion of animals is control led by the
hypothalamic-pituitary-gonadal (HPG) axis. In detail, if the
hypothalamus is stimulated, gonadotropin-releasing hormone
(GnRH) will be secreted to stimulate releasing of pituitary
gonadotropins (follicle-stimulating hormone (FSH) and lu-
teinizing hormone (LH)) (Macmanes et al. 2017; Sower
et al. 2009). In this study, genes of GnRH, insulin-like growth
factor I (IGF1), pituitary adenylate cyclase–activating poly-
peptide (PACAP), norepinephrine, neuropeptide Y (NPY), and
kisspeptin (KISS1/KISS1R) were for the first time identified in
the hypothalamus and pituitary of red-tail catfish. We found
several key endocrine genes of GH/IGF axis highly expressed
in males, coinciding with a higher level of IGF1 in male yel-
low catfish (Ma et al. 2016), and whose deficiency leads to
dwarfism (Liu and Leroith 1999; Meyer et al. 2004; Petkovic
et al. 2007). In the present work, a higher expression of
KISS1R was also identified in the hypothalamus of a male,
and previous studies showed that KISS1R was highly
expressed in testis (Lapatto et al. 2007; Tariq et al. 2013)
and brain, which was crucial for the onset of puberty in both
sexes and essential for testicular function (Filby et al. 2008;
Mohamed et al. 2007; Navarro et al. 2004). In our study, a
higher expression of PACAP andGHRHwas also identified in
males, which was identical with previous findings in the half-
smooth tongue sole (Ji et al. 2011). We found that LHβ and
FSHβ are mainly expressed in the pituitary of females, which
are the most important gonadotropins and are associated with
oocyte development (Hassin et al. 1999).

Fig. 6 DEGs involved in the glutamatergic synapse signal pathway. Male-highly expressed unigenes are represented in green and female-highly
expressed unigenes are represented in red. The number is the value of fold change
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It is very interesting to identify the DEGs, which are
parts of specific signaling pathways that regulate sex dif-
ferentiation and sexual size dimorphism. To this end,
KEGG enrichment analysis was performed. In the hypo-
thalamus, the top 20 signaling pathways were identified.
The cAMP signaling pathway plays essential roles in
postnatal body growth and spermatogenesis, as loss of
cAMP-dependent protein kinases reduced IGF1 mRNA
in the liver and would lead to defective sperm motility
(Skålhegg et al. 2002; Liu and Leroith 1999). GRIAs
and GRIN1 are important receptors of the glutamatergic

synapse pathways. Defect of GRIAs leads to much small-
er body size and reduced weight (Jia et al. 1996;
Zamanillo et al. 1999). Moreover, GRIA2/4 was found to
be functional in motility of spermatozoa by regulating
miR-141-3p (Wu et al. 2015). Interestingly, the voltage-
dependent calcium channel L type alpha-1D (CACNA1D)
was confirmed to be enriched in most of KEGGs (17 of
20 KEGGs). Functional analysis found that CACNA1D-
knockout mice were smaller than their littermates, as
CACNA1D defect leads to significant reduction of β-cell
proliferation in islets (Namkung et al. 2001). ATP2B−/−

Table 1 Illumina expression for
genes found to be enriched in
KEGG term of the pituitary

Gene RPKM p KEGG term

Male Female

AMHR2 17.29 0 0.001 Cytokine-cytokine receptor interaction

TGF-beta signaling pathway

CCNB2 5.73 46.07 0.041 Oocyte meiosis

p53 signaling pathway

Cell cycle

FoxO signaling pathway

Cellular senescence

PGR 0 9.54 0.032 Oocyte meiosis

PdxK 14.95 4.46 0.026 Vitamin B6 metabolism

Gcnt3 0 29.64 0.036 Mucin type O-glycan biosynthesis

Odc1 0.63 41.68 0.0000023 Glutathione metabolism

Arginine and proline metabolism

Ccl20 17.18 49.52 0.037 TNF signaling pathway

Cytokine-cytokine receptor interaction

Myh 0 9.53 0.028 Tight junction

Taar 0 8.42 0.043 Neuroactive ligand-receptor interaction

Dchs1 11.97 0.63 0.042 Hippo signaling pathway—fly

Hippo signaling pathway—multiple species

Mpdz 28.88 5.47 0.022 Hippo signaling pathway—fly

Tight junction

Meth 15.18 1.55 0.045 Selenocompound metabolism

One carbon pool by folate

Cysteine and methionine metabolism

Afmid 118.78 45.42 0.003 Glyoxylate and dicarboxylate metabolism

Tryptophan metabolism

Itga4 9.52 0.25 0.023 ECM-receptor interaction

Cell adhesion molecules (CAMs)

Regulation of actin cytoskeleton

Focal adhesion

PI3K-Akt signaling pathway

Ncf2 8.42 0 0.043 Phagosome

PAX11A 26.92 65.57 0.036 Peroxisome

CYP26A 50.11 103.83 0.026 Retinol metabolism

DHH 8.81 0 0.035 Hedgehog signaling pathway
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mouse also showed a lower body weight (Ver et al. 2001).
ATP2B and CACNA1D are members of the histocompati-
bility complex I (Seuánez et al. 1997), and we suspect that
CACNA1D may interact with ATP2B and regulate growth.

In the hypophysis, the cytokine-cytokine receptor in-
teraction and oocyte meiosis pathways are indispensable
during ovary development and oogenesis, because loss
of function of REC8, AMHR2, and PGR leads to female
infertility (Bannister et al. 2004; Hernandez Gifford
et al. 2009; Lydon et al. 1995; Zhu et al. 2015). In
our enriched KEGGs, PEX11A and DHH were also
identified. Previous studies demonstrated that a signifi-
cantly lower PEX11 may lead to higher body weight
(Weng et al. 2013), and DHH appears in pre-Sertoli
cells, displays male-specific transcription, and is essen-
tial for spermatogenesis (Bitgood et al. 1996).

Taken together, our study provided a new window for
revealing the sexually/differently expressed genes in the
hypothalamic-pituitary system. Further work will be un-
dertaken to explore some important genes in this work

to reveal sex differentiation and growth dimorphism in
red-tail catfish.

Materials and Method

Sample Collection and Growth Comparison
Between Males and Females

All experimental procedures of this study were permit-
ted by the Institutional Animal Care and Institute of
Hydrobiology, Chinese Academy of Sciences. The red-
tail catfish involved in this study was collected in
Xishuangbanna, Yunnan Province, China. Fifty-five 4-
year-old individuals including 27 males and 28 females
from the same parent were randomly selected. Body
weight and length were compared by t test between
males and females. All fish was dissected, and sex
was confirmed anatomically.

Fig. 7 Concordance of RNA-seq data (RPKM) with qRT-PCR relative
expression. Asterisks represent significant difference (p < 0.05) in gene
expression between sexes. aNormalized RPKM data of selected genes in

the hypothalamus. b Normalized qRT-PCR data of selected genes in the
hypothalamus. c Normalized RPKM data of selected genes in the pitui-
tary. d Normalized qRT-PCR data of selected genes in the pituitary
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Libraries Construction and Sequencing

Tissues of the hypothalamus and pituitary were sampled
from 3 adult male and female individuals, respectively,
and the sex was confirmed by mature testis and ovary
anatomically. Total RNA was extracted by Trizol method
with manufacturer’s protocol (Ambion), and Agilent 2100
Bioanalyzer (Agilent Technologies) was used to perform
RNA integrity assessment. In each biological replicate,
50-μg total RNA of each tissue was used for RNA library
construction. The procedures of RNA purification and
synthesis of cDNA were performed by using TruSeq
Stranded mRNA LTSample Prep Kit (Illumina). In detail,
the mRNA was purified and concentrated by magnetic
beads and then fragmented into short fragments to serve
as templates for synthesizing the first strand cDNA. The
double strand cDNA was synthesized and purified by aga-
rose gel purification; after that, the cDNA fragments were
coupled by sequencing adaptors at the 5′/3′ ends. The
libraries of the hypothalamus and pituitary were se-
quenced with HiSeq 2000 platform. After wiping out the
adaptor and low-quality bases, the clean paired-end reads
were assembled in Trinity.pl script with the following pa-
rameters (-seqType fq -min_contig_length 200 -JM 400G
-left $R1 -right $R2 -SS_lib_type RF -CPU 80) for each
of tissue assemblies (Grabherr et al. 2011). The
Trinity_stats.pl script was performed to obtain assembly
metrics. Finally, unigenes were obtained by performing
TGICL version 2.1 with default parameters (Pertea et al.
2003).

Analysis of Differentially Expressed Unigenes

To detect the differentially expressed unigenes (DEGs)
between sexes in the hypothalamus and pituitary,
DESeq package with the negative binomial distribution
was performed to quantify the expression of two expres-
sion profiles. Fold change was performed to quantificate
the differential expression and only DEGs with fold
change ≥ 2, adjusted p value ≤ 0.05 (Wang et al. 2010).
The false discovery rate test (adjusted p value) was ap-
plied to correct significant levels by eliminating random
errors and fluctuations (Ott et al. 2012).

GO/KEGG Enrichment Analysis

The differentially expressed unigenes (DEGs) were blasted
against database of NR, SWISSPROT, KOG, GO, and
KEGG (p < 0.05). The statistical significance of the GO/
KEGG enrichment was evaluated by the hypergeometric

distribution testing, p ¼ 1−∑m−1
i¼0

M
i

� �
N−M
n−i

� �

N
n

� � , in which

N represents the number of unigenes with GO/KEGG an-
notation, n represents number of DEGs with GO/KEGG
annotation, M represents number of unigenes with one spe-
cific GO/KEGG annotation, and m represents the number
of DEGs with one specific functional annotation (Hassin
et al. 1999). A smaller p value presented a more abundant
enrichment.

Quantitative Real-Time PCR

For verifying the results of analysis of DEGs, total RNA of the
hypothalamus and pituitary from both sexes was reverse-
transcribed by using the PrimeScriptRT reagent Kit (Takara)
following the manufacturer’s protocol. The quantitative real-
time PCR (qRT-PCR) reaction was performed using a Roche
LightCycler 480 instrument with SYBR Green PCR master
mix (Roche). Five biological replicates were performed in
each reaction. The expression ofβ-actin was used as reference
to normalize the Ct values to conduct the 2−ΔΔCt method
(Nolan et al. 2006). The differential expression analysis was
confirmed by ANOVA analysis (Anderson 2010). The se-
quences of pr imers involved in this s tudy were
Supplementary Table 4.
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