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Abstract Long noncoding RNAs (lncRNAs) have been rec-
ognized in recent years as key regulators of diverse cellular
processes. Genome-wide large-scale projects have uncovered
thousands of lncRNAs in many model organisms. Large
intergenic noncoding RNAs (lincRNAs) are lncRNAs that
are transcribed from intergenic regions of genomes. To date,
no lincRNAs in non-model teleost fish have been reported. In
this report, we present the first reference catalog of 9674 rain-
bow trout lincRNAs based on analysis of RNA-Seq data from
15 tissues. Systematic analysis revealed that lincRNAs in rain-
bow trout share many characteristics with those in other mam-
malian species. They are shorter and lower in exon number
and expression level compared with protein-coding genes.
They show tissue-specific expression pattern and are typically
co-expressed with their neighboring genes. Co-expression
network analysis suggested that many lincRNAs are associat-
ed with immune response, muscle differentiation, and neural
development. The study provides an opportunity for future
experimental and computational studies to uncover the func-
tions of lincRNAs in rainbow trout.
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Introduction

Long noncoding RNAs (lncRNAs) are RNA molecules that
are longer than 200 nucleotides and carry many signatures of
mRNAs, such as 5′ capping, 3′ polyadenylation, and RNA
splicing, but have little or no open reading frame (Bhartiya
et al. 2012; Liao et al. 2011; Carninci et al. 2005). They have
emerged as a new class of regulatory transcripts in recent years
(Perkel 2013; Khaitovich et al. 2006). Recent advances in
sequencing technologies have opened a new horizon for the
identification and annotation of this class of RNAs in many
species. The lncRNAs that are transcribed from intergenic
regions of genomes are termed large intergenic noncoding
RNAs (lincRNAs). As lincRNAs do not overlap with
protein-coding regions, it makes computational analysis of
such RNAs easier. To date, at least 15,512 human lincRNAs
and over 10,000 mouse lincRNAs have been identified
(Derrien et al. 2012; Luo et al. 2013).

Recent studies have supported the view that lincRNAs play
important roles in many biological processes, such as proces-
sion of p53 response pathways (Huarte et al. 2010; Loewer
et al. 2010; Hung et al. 2011), regulation of epigenetic marks
and gene expression (Rinn et al. 2007; Zhao et al. 2008; Khalil
et al. 2009; Pandey et al. 2008), maintenance of pluripotency
(Guttman et al. 2009), and activation of gene expression as
Benhancer RNAs^ (Orom et al. 2010; Wang et al. 2011). In
addition, lincRNAs have also been associated with human
diseases and pathophysiological conditions (Gupta et al.
2010; Zhu et al. 2011; Cabianca et al. 2012).

Rainbow trout (Oncorhynchus mykiss) is a species of sal-
monid native to cold-water tributaries of the Pacific Ocean in
Asia and North America. It is one of the most important cold-
water fish species in the USA due to its importance for food
production, sport fisheries, and as a research model
(Thorgaard et al. 2002). To generate genomic resources for
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genetic studies of this species, we have characterized the rain-
bow trout mRNA and microRNA transcriptomes (Ma et al.
2012; Salem et al. 2010a, b, 2015). In particular, a complete
transcriptome has been generated by RNA sequencing of
cDNA libraries from multiple tissues of a single-doubled hap-
loid rainbow trout (Salem et al. 2015). With the increasing
evidence supporting important roles of lincRNAs in diverse
processes, a systematic catalog of these RNA transcripts and
their expression across tissues in rainbow trout is warranted.
The recent publication of rainbow trout genome sequence
(Berthelot et al. 2014) and computational methods for tran-
scriptome reconstruction (Guttman et al. 2010; Trapnell et al.
2009; Garber et al. 2011) provide an opportunity to compre-
hensively annotate and characterize lincRNA transcripts in
rainbow trout.

Here we report the systematic identification and character-
ization of lincRNAs in 15 major tissue types of rainbow trout.
We analyzed the known genomic features of the identified
lincRNAs including transcript length, exon number, and spa-
tiotemporal expression specificity. We also used weighted
gene co-expression network to assign functionalities to the
lincRNAs, which revealed that lincRNAs are expressed in a
strong tissue-specific manner, and many of them are highly
associated with biological processes specific to that tissue
(e.g., a brain-specific group is enriched with functional terms
such as neural development and axon injury response). This
study is the first report of a genome-wide annotation of rain-
bow trout lincRNAs, which will facilitate future experimental
and computational studies to uncover the functions of
lincRNAs in rainbow trout.

Materials and Methods

Tissue Sample Collection and RNA Sequencing

Tissue collection and RNA sequencing were described in de-
tail in a previous study (Salem et al. 2015). In brief, 13 differ-
ent tissues were collected from a single male homozygous
rainbow trout, which was euthanized under protocol no.
02456 approved by the Washington State University
Institutional Animal Care and Use Committee. These tissues
include the brain, fat, gill, head kidney, intestine, kidney, liver,
testis, red muscle, skin, spleen, stomach, and white muscle. In
addition, oocyte and pineal samples were collected from dif-
ferent fish. Total RNA from each sample was isolated using
Trizol (Invitrogen, Carlsbad, CA). Library construction and
sequencing were performed at Roy J. Carver Biotechnology
Center, University of Illinois at Urbana-Champaign. Each li-
brary was loaded onto one lane and paired-end sequencing
with 2×100 cycles was performed on an Illumina Genome
Analyzer IIx (Illumina, San Diego, CA).

RNA-Seq Reads Mapping and Transcriptome Assembly

Spliced read aligner TopHat version V2.0 (Trapnell et al.
2009) was used to map all sequence reads to the rainbow trout
genome (Berthelot et al. 2014). A two-step mapping process
was performed by TopHat using the following parameters:
min-anchor=5, min-isoform-fraction=0, and default values
for the remaining parameters. Bowtie2 (Langmead and
Salzberg 2012) was used first to align reads with no gaps that
can directly map to the genome reference sequence. Gapped
alignment was then performed to align the reads that were not
aligned in the first step. The aligned reads from each sample
were assembled into transcriptome by Cufflinks version
V2.2.1 (Trapnell et al. 2010) that uses spliced reads informa-
tion to determine exons connectivity. The Cufflinks assembler
generates the output in the form of fragments per kilo base of
exons per million fragments generated (FPKM) value, which
is directly proportional to the relative abundance of a tran-
script in a given sample.

FPKM Threshold for Classifying Complete and Partial
Transcripts

Individual transcript assembly may have noise from multiple
sources such as artifacts generated by sequence alignment,
unspliced intronic pre-mRNA, or genomic DNA contamina-
tion. Sebnif (Sun et al. 2014), an integrative bioinformatics
pipeline that identifies high-quality single- and multi-exonic
lincRNAs by optimizing a FPKM threshold, was used to min-
imize the assembly noise and enhance the quality of identified
lincRNAs. Considering the difference of the structure between
the multi- and single-exonic transcripts, two separate algo-
rithms were used to identify the optimal FPKM thresholds.
(1) For multi-exonic transcripts, a fully reconstruction fraction
estimation (FRFE) approach was used by Sebnif (Guttman
et al. 2010). Briefly, multi-exonic transcripts in reference an-
notation were first divided into N expression quantiles based
on their FPKM values. At each expression quantile, the refer-
ence transcript set was then divided into two categories, fully
reconstructed transcripts and partially reconstructed tran-
scripts. The assembly quality was evaluated by the proportion
of the fully reconstructed transcripts, which is also called fully
reconstruction fraction (FRF), at each expression quantile.
The index of the optimum FPKM threshold was obtained by
balancing the sensitivity and specificity based on the FRF
value with the following formula (Sun et al. 2012):

i* ¼ argmin
i∈I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−sensitivities i½ �ð Þ2 þ 1−specificities i½ �ð Þ2
q

� �

where i* is the index of FPKM threshold for each quantile i.
The sensitivity [i] and specificity [i] indicate the ith sensitivi-
ties and specificities, respectively. The i belongs to [1, N].
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The optimum FPKM threshold was generated by pROC
(Robin et al. 2011). (2) For single-exonic transcripts, single-
exonic transcript Gaussian/gamma estimation (STGE) was
implemented to estimate the optimal expression threshold
(Sun et al. 2014). In the STGE algorithm, the appropriate
model was determined by fitting the expression values of the
single-exonic transcripts in the reference annotation. Any tran-
script whose expression falls into either tail of fitting model
distribution was considered unreliable and discarded.

LincRNA Detection Pipeline

A step-wise filtering pipeline (Fig. 1) was used to identify
putative lincRNAs from deep sequencing data. (1) All tran-
scripts smaller than 200 bases were excluded. (2) Assembled
transcripts were annotated using Cuffcompare from Cufflinks
(Trapnell et al. 2010). Transcripts that are located in the
intergenic region, at least 1 kb from any known protein-
coding genes, were selected as putative lincRNAs (Luo et al.
2013). (3) The coding potential of each transcript was calcu-
lated using Coding-Potential Assessment Tool (CPAT) (Wang
et al. 2013a) and Coding Potential Calculator (CPC) (Kong
et al. 2007). (4) To evaluate which of the remaining transcripts
contains a known protein-coding domain, HMMER-3 (Finn
et al. 2011) was used to identify transcripts translated in all six

possible frames having homologs with any of the 31,912
known protein family domains in the Pfam database (release
24; both PfamA and PfamB). All transcripts with a Pfam hit
were excluded. (5) Putative protein-coding RNAs were fil-
tered out by applying a maximal open reading frame (ORF)
length threshold. Any transcripts with a maximal ORF>100
amino acids was excluded. (6) Sequence homology search
was performed to remove those transcripts with significant
similarity with RNAs in several different public RNA data-
bases including Rfam (Gardner et al. 2009), RNAdb (Pang
et al. 2007), and lncRNAdb (Amaral et al. 2011). (7) The
remaining transcripts that are at least 1 kb from any known
protein-coding genes were selected (Luo et al. 2013).

Tissue Specificity Score and Neighboring Gene
Correlation Analysis

To evaluate tissue specificity of a transcript, an entropy-based
metric that relies on Jensen-Shannon (JS) divergence was used
to calculate specificity scores (0 to 1). A perfect tissue-specific
pattern is scored as JS = 1, which means a transcript is
expressed only in one tissue (Cabili et al. 2011). In neighbor-
ing gene analysis, two genes were defined as neighbors if the
minimal distance between them is <10 kb (regardless of their
directions) (Zhang et al. 2014; Luo et al. 2013). The

Fig. 1 Pipeline used to identify
rainbow trout lincRNAs. a Raw
RNA-Seq data was pre-processed
and mapped using TopHat and
assembled using Cufflinks in ab
initio mode. b Sebnif was used to
filter all lowly expressed
unreliable transcripts. c Pipeline
for lincRNA detection
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expression correlation between two neighbors was estimated
by calculating the Pearson correlation coefficient between
their density-normalized expression values (log2 FPKM+1).

Weighted Gene Co-expression Network Construction
and Gene Module Detection

All genes with expression variance ranked in the top 75 per-
centile of the data set were retained (Liao et al. 2011). R
package BWGCNA^was then used to construct the weighted
gene co-expression network (Langfelder and Horvath 2008).
A matrix of signed Pearson correlation between all gene pairs
was computed, and the transformed matrix (TOM) was used
as input for linkage hierarchical clustering (Langfelder and
Horvath 2008). Genes with similar expression patterns were
clustered together.

Functional Enrichment Analysis

To investigate the potential roles of lincRNAs in rainbow trout,
we performed Blast2GO (Conesa and Gotz 2008) analysis to
assign gene ontology (GO) terms to all protein-coding genes
associated with lincRNAs in each network module. A cutoff
value of 1E−10 was used for the BLASTx search. GO term
enrichment analysis was performed using Fisher’s exact test (p
value <0.01). The interaction networks among lincRNA and
protein-coding genes were constructed based on co-expression
using Cytoscape (http://www.cytoscape.org/).

Validation of Expression Specificity of lincRNAs

Expression specificity of selected lincRNAs was validated by
reverse transcription polymerase chain reaction (RT-PCR)
analysis as described previously (Wang et al. 2013b). PCR
primers are listed in Supplemental file 1. Tissue samples used
in the analysis include the brain, fat, gill, head kidney, intes-
tine, kidney, liver, testis, red muscle, skin, spleen, stomach,
white muscle, oocyte, and pineal. 18S rRNA was used as a
control for RNA quality.

Results and Discussion

Transcriptome Reconstruction and Filtering Low-Quality
Assemblies

To comprehensively identify rainbow trout lincRNAs, we col-
lected and deeply sequenced the RNA samples from the brain,
fat, gill, head kidney, intestine, kidney, liver, testis, red muscle,
skin, spleen, stomach, white muscle, oocyte, and pineal. A
total of 1.3 billion raw paired-end sequence reads (100-bp
read length) were generated from these samples. The number
of reads from each tissue ranged from 78.8 to 93.5 million. A

total of 1,087,497,866 cleaned reads (81.4 %) were harvested
for further analysis. These sequence reads were mapped to the
rainbow trout genome using TopHat (Trapnell et al. 2009),
and approximately 447 million (82 %) mapped reads were
recovered. Themapping ratio ranged from 76.9 to 89.5%with
an average of 82.3 % (Table 1). We then used the ab initio
assemble software Cufflinks (Trapnell et al. 2010) to recon-
struct the transcriptome for each tissue based on the read-
mapping results (Fig. 1a). On average, 79,021 transcripts for
each tissue were obtained.

The first challenge to annotate lincRNA gene loci is to
distinguish lowly expressed lincRNAs from the tens of thou-
sands of lowly expressed unreliable fragments assembled
from RNA-Seq (Guttman et al. 2010). To address this chal-
lenge, we removed unreliable lowly expressed transcripts
using a learned FPKM threshold, which was calculated using
Sebnif (Sun et al. 2014) (Fig. 1b). First, we classified all tran-
scripts that did not overlap the genomic region of known
protein-coding genes as novel intergenic transcripts (category
of Bu^ assigned by Cuffcompare) and defined an average of
28,012 u transcripts for each tissue (Fig. 1b; Supplemental file
2), among which 6975 and 21,037 are multi- and single-
exonic transcripts, respectively. Next, FRFE and STGE algo-
rithms were used to distinguish partial transcripts from full
length transcripts. For 6975 multi-exonic transcripts, Sebnif
applied a FRFE threshold of 0.5. For 21,037 single-exonic
transcripts, STGE was used to model the transcript expression
profiles with the lower and upper probability cutoffs set at
0.05 and 0.95, respectively. Following this filtering, an aver-
age of 4628 multi-exonic (FPKM >2.76) and 4071 single-
exonic (FPKM >3.14) transcripts for each tissue were
retained. Finally, a total of 39,745 intergenic transcripts were
obtained by merging all intergenic transcripts from 15 tissues.

Identification and Characterization of Rainbow Trout
lincRNAs

The currently available coding potential prediction methods
only work well for protein-coding RNAs. Therefore, the most
widely used strategy to annotate potential noncoding RNAs
(ncRNA) is to exclude those that possess protein-coding fea-
tures (Solda et al. 2009). The filtering pipeline we used to
identify novel lincRNAs is shown in Fig. 1c. First, we ana-
lyzed the coding potential of unannotated transcripts using
CPAT (Wang et al. 2013a) and CPC (Kong et al. 2007), which
filtered out 61 % (24,329) of all transcripts. Second, we
scanned each transcript in all six frames to exclude transcripts
that contain any of the 31,912 protein-coding domains
cataloged in the protein family database Pfam (Finn et al.
2008). This filtering retained 10,773 potential lincRNA tran-
scripts. Furthermore, a minimal ORF length criterion was ap-
plied to distinguish lincRNAs from mRNAs. A cutoff of
300 nt (100 codons) was used to exclude putative mRNAs
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(Okazaki et al. 2002). For the characterization of ncRNAs not
yet annotated in the rainbow trout genome assembly, sequence
homology search was performed to exclude those transcripts
with significant similarity with RNAs in Rfam (Gardner et al.
2009), RNAdb (Pang et al. 2007), and lncRNAdb (Amaral
et al. 2011). Finally, we identified 9674 lincRNAs after re-
moving those transcripts that are located within 1 kb from
any known protein-coding genes (Supplemental file 3).

Previous studies in mammals have shown that lncRNAs are
shorter, less conserved, and expressed at significantly lower level
comparedwith protein-coding genes (Guttman et al. 2010; Cabili
et al. 2011). To determine whether rainbow trout lincRNAs have
similar features, we characterized the basic features of the iden-
tified lincRNAs by comparing them with protein-coding genes.
We found that rainbow trout lincRNAs are on average about 1 s
of the length of protein-coding genes (mean length of 705 nt for
lincRNAs vs. 1635 nt for protein-coding transcripts) (Fig. 2a).
Moreover, lincRNAs had fewer exons (on average, 1.3 exons for
lincRNAs vs. 6.9 exons for protein-coding genes) (Fig. 2b).
Notably, the mean length and average exon number of rainbow
trout lincRNAs are shorter/smaller than those of human
(∼1000 nt and 2.9 exons) (Cabili et al. 2011) and zebrafish
(∼1000 nt and 2.8 exons). This could be due to the underestima-
tion of the length and exon number of rainbow trout lincRNAs
resulting from their lower abundance and lower sequencing
depth (incomplete assembly). Furthermore, the expression levels
of lincRNAs are on average about tenfold lower than those of
protein-coding genes across 15 tissues (Fig. 3), which is consis-
tent with the findings in human, mouse, and zebrafish (Cabili
et al. 2011; Pauli et al. 2012; Guttman et al. 2010). Thus, the
predicted rainbow trout lincRNAs share similar genomic features
with lincRNAs from other species, suggesting that they are bona
fide rainbow trout lincRNAs.

Analysis of Tissue-Specific Expression of Rainbow Trout
lincRNAs

Recent studies have shown that lincRNAs are expressed in a
more tissue-specific manner than protein-coding genes. We
analyzed the expression pattern for each of the lincRNA tran-
scripts. Of the 9674 potential lincRNAs, 8545 were expressed
in more than one tissue (Fig. 4a, b; Supplemental file 4). The
remaining 1129 lincRNAs displayed tissue-specific expres-
sion (Fig. 4d). Among the 15 tissues, the brain expressed the
most number of tissue-specific lincRNAs (161), which is con-
sistent with the result from a previous study in zebrafish
(Kaushik et al. 2013). The skin, white muscle, and liver had
relatively lower numbers of tissue-specific lincRNAs
(Fig. 4c). The tissue specificity score for each lincRNA was
calculated using an entropy-based metric that relies on Jensen-
Shannon (JS) divergence (Cabili et al. 2011). Results showed
that 46 % of rainbow trout lincRNAs were tissue-specific,
relative to only 18 % of protein-coding genes (p< 10−16,
Fisher exact test) (Fig. 5). Thus, rainbow trout lincRNAs ex-
hibited more tissue specificity than protein-coding genes,
which is in agreement with data from other species
(Guttman et al. 2010; Cabili et al. 2011; Pauli et al. 2012).

Tissue-specific expression of lincRNAs determined by
computational analysis was validated by RT-PCR analysis.
A total of 10 lincRNAs were selected for validation of their
expression in 15 tissues. They include seven linRNAs specif-
ically expressed in a particular tissue (Linc-OM9284 in the
brain, Linc-OM8822 in the red muscle, Linc-OM8901 in the
intestine, Linc-OM3900 in the stomach, Linc-OM8614 in the
testis, Linc-OM8334 in fat, Linc-OM8318 in the kidney), two
lincRNAs expressed in two tissues (Linc-OM8912 in oocyte
and the skin, Linc-OM9283 in the skin and the liver), and one

Table 1 Summary of samples
and RNA-Seq data Tissue Reads Clean reads Mapped reads Mapping ratio (%)

Brain 84,816,430 72,852,798 58,713,834 80.6

Fat 93,546,068 77,569,466 64,131,248 82.7

Gill 92,670,670 77,800,922 62,957,778 80.9

Head kidney 92,168,818 77,800,922 62,957,778 80.9

Intestine 91,613,688 65,824,376 54,975,550 83.5

Kidney 89,642,288 73,508,012 60,173,822 81.9

Liver 85,281,910 67,792,890 55,075,712 81.2

Oocyte 90,135,204 73,938,296 60,609,542 82.0

Red muscle 93,064,168 70,234,780 56,954,940 81.1

Skin 87,743,778 65,230,154 55,286,532 84.8

Spleen 93,532,200 74,312,778 57,535,030 77.4

Stomach 91,231,186 77,577,260 64,002,482 82.5

White muscle 86,643,770 72,910,820 56,083,986 76.9

Pineal 78,802,668 76,591,074 63,895,584 83.4

Testis 85,389,746 66,567,414 57,260,414 86.0

Total 1,336,282,592 1,087,497,866 894,601,592 82.3
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lincRNA ubiquitously expressed in all tissues (Linc-
OM9274). As shown in Fig. 6, the RT-PCR result matches
perfectly with the expression profiles estimated from deep
sequencing data.

Co-expression of lincRNAs with Neighboring Coding
Genes

The occurrence of pairs of neighboring lincRNA, protein-
coding genes within expression clusters, suggests that such

organization may be important for the regulatory function of
lincRNAs (Cabili et al. 2011). Recent studies indicated that
some lincRNAs may act in cis and regulate the expression of
genes in their chromosomal neighborhood (Orom et al. 2010;
Ponjavic et al. 2007; Luo et al. 2013; Cabili et al. 2011; Zhang
et al. 2014). One expectation of the cis hypothesis is that the
expression of lincRNAs and their neighboring genes would be
correlated across all tissue samples. Therefore, we analyzed the
expression patterns of 1146 (12 %) of identified lincRNAs that
are located within 10 kb from a coding gene. We observed a
more correlated expression pattern of lincRNAs and their neigh-
boring coding genes (mean correlation: 0.211) compared to ran-
dom coding gene pairs (mean correlation 0.042) [p<2×10−16,
Kolmogorov-Smirnov (KS) test] (Fig. 7). Meanwhile,
lincRNAs: coding gene pairs also exhibited a modestly higher
correlative expression pattern than coding gene pairs (mean cor-
relation: 0.115) (p<2.2×10−16, KS test). On the other hand,
there is also a significant difference between neighboring coding
gene pairs and random coding gene pairs (p<7.9×10−13, KS
test). This observation suggests that the correlation between
lincRNAs and their neighbor coding genes are higher than both
neighboring coding gene pairs and random coding gene pairs.

Functional Prediction of lincRNAs Based
on Co-expression Network

The comprehensive lincRNA catalog allows us to investigate
the potential functions of these novel transcripts in rainbow
trout. Here, we built a co-expression network to associate
lincRNAs with mRNAs by performing weighted gene co-
expression network analysis (WGCNA) (Langfelder and

Fig. 2 Structural characteristics
of lincRNAs in comparison to
protein-coding genes. a
Cumulative distribution of
transcript length for lincRNAs
(red line) and protein-coding
genes (blue line). Protein-coding
genes larger than 8 kb were
removed in the analysis. b
Distribution of exon number for
lincRNAs (red bars) and protein-
coding genes (blue bars). Protein-
coding genes with more than 20
exons were not included in the
analysis

Fig. 3 Comparison of expression levels of lincRNAs and protein-coding
genes. Maximal expression abundance (log2-normalized FPKM counts
estimated by Cufflinks) of each lincRNA (red solid line) and protein-
coding gene (green broken line)
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Horvath 2008) and inferred the putative lincRNA functions
based on Bguilty-by-association^ analysis. By clustering cor-
related genes together, we identified 34 co-expression gene
modules containing 2963 lincRNAs and 10,321 protein-
coding genes in total (Supplemental files 5 and 6). Notably,
6 of 34 modules are related to immune response, muscle dif-
ferentiation, and neural development based on the enriched
GO terms associated with their modules (Fig. 8).

The functional annotations enriched in four modules (blue,
grey60, tan, and green) are functionally related to immune

responses (Fig. 8b and Supplemental file 7). In each of these
four modules, we observed many lincRNAs that are highly
expressed in the spleen, gill, and intestine (Fig. 8a), suggesting
that these lincRNAs might be involved in immune-related
processes. In the blue module, many genes were enriched in
T cell receptor signaling and PI3K/AKT/mTOR signaling
pathways (Supplemental file 8). The lincRNAs that are co-
expressed with tyrosine-protein kinase (ITK), which phos-
phorylates PLCγ1 in T cell signaling (Andreotti et al. 2010),
may play important roles in T cell signaling and function.

Fig. 4 Tissue-wise distribution of predicted lincRNAs. a Distribution of
9674 potential lincRNAs across 15 tissues. b Venn diagram representing
7783 lincRNAs in the gill (blue), intestine (yellow), kidney (orange),
spleen (green), and stomach (pink). c Distribution of tissue-specific

lincRNAs across 15 tissues. d Heatmap of 1129 tissue-specific
lincRNAs across 15 tissues. Each column represents the expression
levels of 1129 lincRNAs in the parent tissue vs. other tissues based on
FPKM values
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PI3K and mTOR signaling pathways are important in regulat-
ing immune cell activation in neutrophils and mast cells and
type I interferon production (Weichhart and Saemann 2008).
Those lincRNAs that are co-expressed with PI3K or mTOR
pathway genes are likely involved in these immune processes
(Supplemental file 8). In grey60 module, the lincRNAs that
are co-expressed with integrin, which mediates immune cells
to penetrate into tissues (Evans et al. 2009), may play critical
roles in immune cell migration and cell-cell interactions that
occur during the course of an immune response. In the tan
module, the lincRNAs that are co-expressed with Rab20, a
key player in phagosome maturation (Pei et al. 2014), may
function in phagocytosis. Likewise, lincRNAs in green mod-
ule are co-expressed with MHC class I genes (Neefjes et al.

2011), indicating that they might be involved in processing
and presenting antigen to T cells.

Genes in cyan module contains transcripts (165 protein-
coding genes and 15 lincRNAs) that are highly expressed in
muscle (Fig. 8). Most of the enriched genes in this module are
related to functions or development of muscle (Supplemental
file 7). Notably, the lincRNAs that are co-expressed with myo-
blast determination protein 2 (MyoD2) may play roles in reg-
ulating muscle differentiation. A previous study has demon-
strated the role of a specific lncRNA in controlling muscle
differentiation (Cesana et al. 2011).

Fig. 5 Tissue specificity of lincRNAs and protein-coding genes.
Distribution of maximal tissue specificity scores calculated for each
lincRNA (red solid line) or protein-coding transcript (green broken line)
across all tissues

Fig. 6 Validation of expression
specificity of lincRNAs by RT-
PCR analysis. Expression of ten
selected lincRNAs was analyzed
by RT-PCR in rainbow trout
tissues including the brain (Br),
oocyte (Oo), white muscle (Wm),
pineal (Pi), fat (Fa), gill (Gi), skin
(Sk), head kidney (Hk), testis (Te),
spleen (Sp), stomach (St), liver
(Li), red muscle (Rm), intestine
(In), and kidney (Ki). 18S rRNA
was used as a control for RNA
quality

Fig. 7 Correlation of expression patterns between pairs of neighboring
genes. Shown are distributions of Pearson correlation coefficients in
expression levels across the tissues between 1146 pairs of lincRNAs
and their neighboring coding genes (green solid line), 9363 pairs of
coding gene neighbors (blue broken line), and 8000 random pairs of
protein-coding gene (red dotted line)
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Recent studies have shown that many lncRNAs are
brain-specific, indicating their indispensable roles in brain
development (Ng et al. 2012; Clark and Blackshaw 2014).
This study also found that brain has the most tissue-
specific lincRNAs (Fig. 4c). The lincRNAs in light

yellow module are co-expressed with genes important
for neural differentiation and development, such as
dihydropyrimidinase-related protein (DRP) and Draxin
precursor, indicating that they may function as important
regulators of neurogenesis.

Fig. 8 Functional prediction of rainbow trout lincRNAs. a Upper panel,
heatmaps showing expression patterns of all genes in each co-expression
gene modules across 15 tissues. Middle panel, bar plots showing the
corresponding module eigengene expression value. Lower panel, pie

charts showing ratio of mRNAs and lincRNAs in each module. b
Functional enrichment in each module. The length of bars indicates the
significance (−log10 transferred FDR)
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Collectively, the functional prediction analysis revealed
that tissue-specific lincRNAs and protein-coding genes are
enriched for processes specific to that tissue and essential in
maintaining each tissue’s identity and functionality.

Conclusions

In this report, we provided the first comprehensive annotation
of rainbow trout lincRNAs based on whole transcriptome se-
quencing of multiple tissues and identified 9674 novel
lincRNA transcripts. These lincRNAs tend to be expressed
in tissue-specific manner and share many characteristics with
those in mammalian species. Co-expression network analysis
suggested that many rainbow trout lincRNAs are associated
with immune response, muscle differentiation, and neural de-
velopment. The study lays the groundwork for future func-
tional characterization of lincRNAs in rainbow trout.
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