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Abstract Toll-like receptors (TLRs) are responsible for the
recognition of specific pathogen-associated molecular pat-
terns and consequently activate signal pathways leading to
inflammatory and interferon responses. The region surround-
ing several TLRs was previously found to be associated with
resistance to specific disease. Hence, we determined the
location of 11 TLRs in Japanese flounder (Paralichthys
olivaceus) using polymorphic microsatellite markers. TLR1
and TLR3 were located on linkage group (LG) 21 and 7,
respectively. Membrane TLR5 and soluble TLR5 were
mapped to LG22. TLR7 and TLR8 were mapped to LG3.
TLR9 was found on LG1 and TLR14 and TLR21 were
located on the same linkage group, LG10. TLR22 was found
on LG8. Interestingly, TLR2 was mapped with the previ-
ously reported Poli9-8TUF microsatellite marker which is
tightly associated with lymphocystis virus disease resistance.
Therefore, TLR2 is a candidate gene for resistance to
lymphocystis disease. These results imply that the location
of a TLR associated with a particular disease may be
valuable for the research on the relationship between host
immune response and disease resistance.
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Introduction

Toll-like receptors (TLRs) recognize pathogen-associated
molecular patterns (PAMPs) in the innate immune response
resulting in the production of inflammatory and interferon
responses via the activation of intracellular signal pathways.
They consist of an extracellular leucine-rich repeat (LRR)
domain for ligand recognition, a transmembrane domain,
and an intracellular Toll/interleukin 1 receptor (TIR)
signaling domain (Akira and Takeda 2004; Medzhitov
2001). LRRs recognize conserved microbial features called
PAMPs (Bell et al. 2003; Medzhitov 2001), such as
bacterial cell-surface peptidoglycans, lipoproteins, LPS,
and bacterial flagellin, and single- and double-strand viral
RNA and the unmethylated CpG islands of bacterial and
viral DNA. After PAMPs recognition by LRR, the TIR
domain triggers recruitment of adaptor proteins for signal-
ing which lead to modulation of several aspects of innate
immune responses (Takeda et al. 2003). Therefore, TLRs
play important roles in the immune response to protect the
host against invading pathogens.

To date, 13 TLRs have been identified in mammals
(Akira and Takeda 2004; Medzhitov 2001). In several
teleost fish, however, more than 15 TLRs have been
identified and mapped (Palti et al. 2006, 2010a, b)
including mammalian TLR homologues as well as novel
fish TLRs that have not been reported in mammals such as
TLR5 soluble form (5S), TLR14, TLR20, TLR21, and
TLR22 (Hirono et al. 2004; Hwang et al. 2010a, b; Jault
et al. 2004; Oshiumi et al. 2003; Rebl et al. 2007; Takano
et al. 2010; Tsoi et al. 2006). The regions surrounding
several TLRs are closely linked to susceptibility or
resistance to specific disease infection (Leveque et al.
2003; Sebastiani et al. 2000). These loci might be useful
for genetic selection to improve disease resistance (Hu et
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al. 1997; Leveque et al. 2003; Sebastiani et al. 1998,
2000). Thus, mapping of TLR location will help to better
understand the roles in the host response to pathogens.

Genetic linkage mapping using molecular markers is a
powerful tool for understanding genome evolution, com-
parative genomics, positional cloning of functionally
important gene, and identification of quantitative trait loci
(QTL) (Jaari et al. 2009; Koshimizu et al. 2010). One type
of molecular marker is microsatellites, which consists of
tandem repeats of 1–6 bp that vary in length. These lengths
are useful to determine a particular location with high
polymorphisms in population (Coimbra et al. 2003; Jaari et
al. 2009; Sakamoto et al. 2000). Linkage maps have been
constructed for commercially important aquaculture species,
including channel catfish (Ictalurus punctatus), Japanese
flounder (Paralichthys olivaceus), Pacific abalone (Haliotis
discus hannai), Pacific oyster (Crassostrea gigas), rainbow
trout (Oncorhynchus mykiss), sea bass (Dicentrarchus labrax
L.), tilapia (Oreochromis niloticus), and whiteleg shrimp
(Litopenaeus vannamei) (Castaño-Sánchez et al. 2010;
Chistiakov et al. 2005; Coimbra et al. 2003; Kocher et al.
1998; Lee et al. 2005; Li and Guo 2004; Liu et al. 2003,
2006; McConnell et al. 2000; Meehan et al. 2003; Sakamoto
et al. 2000; Sekino et al. 2006; Waldbieser et al. 2001).
These linkage maps allow for the identification of
markers linked to the objective trait and the genetic
mechanism of complex traits in aquatic animals (Koshimizu et
al. 2010; Liao et al. 2009; Liu et al. 2010). Notably, linkage
maps assist in locating candidate genes and QTL within a
region associated with resistance to a specific disease and
subsequently may improve the control of disease by
selective breeding (Johnson et al. 2008; Lallias et al. 2009).

In a previous study, a high-density sex-specific linkage
map of Japanese flounder has been constructed. This
linkage map covers 79% of the female genome and 82%
of the male genome. In females and males, the high rate of
recombination was observed in the centromeric and
teleomeric regions, respectively (Castaño-Sánchez et al.
2010). Here, we investigated the location of 11 TLR genes
in the linkage map of Japanese flounder using micro-
satellites and characterized the potential role of TLR in
conferring resistance to specific disease. We envision these
results to later serve as a guide in breeding genetically
improved strains of Japanese flounder resistant to disease.

Materials and Methods

Isolation of Japanese Flounder TLRs from BACs

We have already sequenced 11 TLRs of Japanese flounder,
including TLR1, TLR2 (Hirono et al. 2004), TLR3, TLR5
membrane (5M) (Hwang et al. 2010a), TLR5S (Hwang et

al. 2010a), TLR7, TLR8, TLR9 (Takano et al. 2007),
TLR14 (Hwang et al. 2010b), TLR21, and TLR22 (Hirono
et al. 2004). The TLR genes were isolated from a bacterial
artificial chromosome (BAC) library of Japanese flounder
(Katagiri et al. 2000). Specific probes for each TLR gene
were designed (200–500 bp) and PCR-amplified probes
were labeled with α-32P [CTP] using a random primer kit
(Takara). The BAC membranes were hybridized with the
probes for 2 h at 65°C and membranes were washed three
times at 65°C using saline sodium citrate containing sodium
dodecyl sulfate. The membranes were visualized using a
FLA 9000 image scanner (Fuji Film). The positive BAC
clones of TLR genes were sequenced using an ABI 3130xl
Genetic analyzer (Applied Biosystems).

Identification of Microsatellite Marker

BAC clones that were positive for each TLR gene were
used in constructing the libraries. Plasmid DNA of the
positive BAC clones was digested with Sau3AI and the
fragments (around 2 kb) were eluted from the gel. The
DNA was ligated in pBluescripts SK plasmid vector which
was digested with BamHI. Transformation was performed
using JM 109 Escherichia coli competent cells. The library
was screened for microsatellite repeat sequences by colony
hybridization with a γ-33P [ATP] end-labeled (CA)10 probe.
The positive microsatellite clones were sequenced on an
ABI 3130xl Genetic analyzer (Applied Biosystems). Primers
were designed based on the regions flanking the microsatellite
repeat sequences.

PCR and Linkage Analysis

PCR was carried out with genomic DNA from two parents
and 45 progenies that were previously used to construct a
second generation genetic linkage map for Japanese
flounder (Castaño-Sánchez et al. 2010). PCR was per-
formed in a 12-μl solution containing 0.7 pmol of forward
primer and 0.32 pmol of reverse primer end labeled with
0.02 MBq of γ33-P [ATP], 0.25 U of Taq polymerase,
0.2 mM of each dNTP, 1% BSA, and 50 ng of genomic
DNA. PCR was carried out under the following conditions:
initial denaturation at 95°C for 2 min, 35 cycles of
denaturation at 95°C for 30 s, annealing at corresponding
annealing temperature for 1 min and extension at 72°C for
1 min and final extension at 72°C for 3 min. Amplified
PCR products were electrophoresed on 6% polyacrylamide
(acrylamide/bisacrylamide ratio, 19:1)–8 M urea gels. After
electrophoresis, gels were dried on a standard gel drier for
30 min. Imaging plates were scanned with the FLA-9000
image scanner (Fuji Film). Microsatellites were scored as
dominant markers with the genotype indicated by the
presence or absence of a band. Linkage mapping analysis
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was carried out with Map Manager QT (Manly and Olson
1999). Microsatellites of the log10 of odds >3.0 were
assigned to the same linkage group. The linkage map was
visualized using MapChart version 2.0 (Voorrips 2002).

Results and Discussion

TLRs play important roles in the immune response against
invading pathogens. Eleven TLRs have been identified in
Japanese flounder. In this study, we identified micro-
satellites from BACs containing each TLR and carried out
linkage analysis of the TLRs using a previously reported
sex-specific linkage map of Japanese flounder (Castaño-
Sánchez et al. 2010). The 11 TLRs were located on
different linkage group.

Japanese flounder TLR1 was located on linkage group
(LG) 21. The female parent was heterozygous for TLR1,

while the male parent was homozygous at that locus and we
were unable to determine it (Fig. 1).

Mammalian TLR2 recognizes a broad range of ligands,
including bacterial cell wall components and unidentified
DNA viral surface components, and subsequently induces
an inflammatory response (Morrison 2004; Aravalli et al.
2005; Sørensen et al. 2008). Japanese flounder TLR2
mapped with the Poli9-8TUF microsatellite marker on
LG15 (Fig. 1), which is tightly associated with the
lymphocystis-virus-disease-resistant locus (Fuji et al.
2006). Marker-assisted breeding using Poli9-8TUF micro-
satellite led to a strain in which there was no incidence of
lymphocystis virus disease (Fuji et al. 2007). Thus,
Japanese flounder TLR2 is a candidate gene for resistance
to lymphocystis virus disease. The host genetic factor of
TLR genes and other immune-related genes in pathogen-
resistant locus has strongly affected the ability of the host to
respond to invasion of pathogens (Hu et al. 1997; Leveque
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Fig. 1 Linkage maps of the TLRs in female (female sign) and male (male sign) Japanese flounder. Japanese flounder TLRs are indicated by
underline. Marker distances are shown in centimorgans
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et al. 2003; Sebastiani et al. 1998, 2000). Single nucleotide
polymorphisms, especially in the coding region of LRRs,
reduce the ability to recognize PAMPs and interfere with
the innate immune response (Leveque et al. 2003).
Therefore, further studies on host genetic variation of
TLR2 between resistant and susceptible lines may improve
genetic selection for resistance to lymphocystis virus
disease.

TLR3 was mapped to LG7 (Fig. 1). TLR3 was clustered
with Poli112TUF, Poli16-77TUF, and Poli171TUF in both
sexes. Comparing the location of Japanese flounder TLR3
with zebrafish, TLR2 and TLR3 of Japanese flounder were
mapped to the different linkage groups while TLR3 of

zebrafish was located with TLR2 on the same chromosome
(Table 2). The difference appears to be related to genome
rearrangements during teleost evolution.

Unlike mammalian TLR5, teleost fish have two types of
TLR5, such as TLR5M and TLR5S. TLR5M, like other
TLRs, consists of an LRR domain, a transmembrane
domain and a TIR domain (Hwang et al. 2010a; Tsujita et
al. 2004). On the other hand, TLR5S appeared through the
duplication of the LRR domain of TLR5M and it lacked
both a transmembrane domain and an intracellular TIR
domain (Roach et al. 2005). TLR5M was mapped to LG22
in both sexes, while TLR5S was mapped to LG22 only in
the female because the male was homozygous (Fig. 1). The

Table 1 Characterization of microsatellite markers used for making TLRs map in Japanese flounder

TLR gene Repeat motif Primer sequence Ta (°C) Female Male LG

TLR1 (CA)6GA(CA)5GA(CA)5 ACGGTTCGAACTGATTGTCTCC 55 Homo Hetero 21
AAGGCTGTCTCTGTTCCTGGAC

TLR2 (CA)23 GGAACTCTCCCCGAACACTTTA 55 Hetero Hetero 15
CGTGGTAACTGAAAGGACGTTG

TLR3 (CA)45 GCCTGTAAAGCATATTGATCCTG 55 Hetero Hetero 7
TCATGCCCAAAGTGTAGGTGAG

TLR5M (CA)2 CT(CA)8 GGCTGCTTTTTAAGATGCTTGTCTCG 62 Hetero Hetero 22
GTACCGAATATCCCTGATGGCTGT

TLR5S (CA)10 CCAATTAGAGGAGCCTGCACA 58 Hetero Homo 22
CCGGTTTGGAGCGTAATAAGAC

TLR7 and 8 (TG)15(CA)1(TG)6 AATGGTGGTGGGAGATGAGTGT 55 Hetero Hetero 3
CTCAACCCTTCCCTGCTTTCT (Same hetero pattern in both sexes)

TLR9 (CA)9TA(CA)11TA(CA)3 CCCCTCTGAACTAAAATGAGAAGACC 55 Hetero Hetero 1
AGAGCGTGGTGGGTATGTGG

TLR14 (CA)11 TGACCGTAACACACCGTTCCAA 62 Hetero Hetero 10
GTGGTTCCATAGAGTCGGGCA

TLR21 (CT)14 CATGCAGCAAGCAGCTAAATCT 60 Hetero Hetero 10
TCTTAACTTGCTCTGTGCGTGT

TLR22 (GT)12 TCGTGTCCCTGATCCTGTATTG 58 Homo Hetero 8
CCAGTGGCTAAAACACTGCTCT

Ta is optimal annealing temperature, LG is linkage group

TLR gene Japanese flounder Tetraodon Rainbow trout Zebrafish Human

TLR1 LG 21 Chr. 1 Chr. 14 Chr. 14 Chr. 4

TLR2 LG 15 Scaf. 7488 N/A Chr. 1 Chr. 4

TLR3 LG 7 Chr. 18 Chr. 10 Chr. 1 Chr. 4

TLR5M LG 22 Scaf. 13541 N/A Chr. 20 Chr. 1

TLR5S LG 22 Chr. 14 N/A – –

TLR7 and 8 LG 3 Chr. 2 Chr. 3 Chr. 21 Chr. X

TLR9 LG 1 Chr. 9 N/A Chr. 8 Chr. 3

TLR14 or 18 LG 10 N/A N/A Chr. 16 –

TLR21 LG 10 N/A Chr. 2 Chr. 16 –

TLR22 LG 8 Chr. 6 Chr. 11 Chr. 21 –

Table 2 Comparison of the
locations of TLR genes in
Japanese flounder, tetraodon,
rainbow trout, zebrafish, and
human

LG linkage group, Chr chromo-
some, Scaf scaffold, N/A not
applicable, – not yet reported
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distance between TLR5M and TLR5S was found to be
17.9 cM on the female map of LG22. Although both
TLR5M and TLR5S in female flounder were located on the
same linkage group, we could not rule out their syntenic
relationships between teleost fish due to shortage of data
available (Table 2).

In human, zebrafish, rainbow trout, and tetraodon, TLR7
and TLR8 are located adjacent to each other on the same
chromosome by tandem duplication (Du et al. 2000; Palti et
al. 2010a) (Table 2). A similar genomic organization was
also observed in Japanese flounder, in which TLR7 and
TLR8 are closely located to each other on the same BAC
clone. This confirms that synteny between these TLR genes
reveals high conservation from mammal to fish. The
microsatellite of TLR7 and TLR8 in Japanese flounder
was identified from a BAC clone containing both TLRs
(Table 1). However, PCR results revealed that both parents
were detected as the same heterozygous genotype pattern
and their progeny have three genotypes, such as two types
homozygous and one type heterozygous. Thus, we deter-
mined the location of TLR7 and TLR8 by analyzing the
homozygous genotype pattern in the progeny and these
genes were mapped to LG3 (Fig. 1).

TLR9 was located on LG1 (Fig. 1). TLR9 was
commonly clustered with Poli6TUF microsatellite marker
in both sexes. TLR14 and TLR21, which have not been
identified from mammals, were mapped to LG10 (Fig. 1).
Since TLR18 (corresponding to other fish TLR14) and
TLR21 of zebrafish are located on the same chromosome
(http://www.ensembl.org/index.html), the locations of the
fish-specific TLR14 and TLR21 revealed that syntenic
relationship between two genes are highly conserved in
teleost line. In the male map, TLR14 and TLR21 are
separated by 2.2 cM, while in the female map, they are
located in the same cluster. These events are demonstrated
by sex-specific difference in recombination of the micro-
satellites used for mapping of TLR14 and TLR21.

TLR22 was mapped to LG8 in the male and clustered
with the Poli206 TUF microsatellite marker (Fig. 1).
TLR22 and TLR9 of zebrafish were observed in the same
chromosome, but these genes in Japanese flounder and
tetraodon were mapped in different locations as TLR2 and
TLR3 of Japanese flounder (Table 2).

In this study, we determined the location of 11
Japanese flounder TLRs in linkage group. TLR2 is
especially interesting because it was found to be tightly
linked to lymphocystis virus disease resistance locus, and
is thus a candidate gene for disease resistance. Therefore,
TLRs mapping might provide valuable information for
future studies on the relationship between immune
response and specific disease resistance. Furthermore, it
can also serve as a guide for future genetic improvements
to counter disease infection.
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