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Abstract
Metarhizium spp. have emerged as an alternative to chemical pesticides for protecting crops from insect pest. Here, we 
investigated midgut microbial community and metabolites of Spodoptera litura at three different timepoints after infec-
tion with Metarhizium flavoviride. The innate immune system of S. litura was activated with levels of polyphenol oxidase, 
carboxylesterase, multifunctional oxidase, and glutathione S-transferase activity significantly increasing. Exposure to the 
fungal pathogen also altered bacterial abundance and diversity in host’s midgut, and these changes varied depending on 
the time elapsed since exposure. We identified more operational taxonomic units in the treated samples as compared to 
the control samples at all tested time points. A total of 372 metabolites were identified, and 88, 149, and 142 differentially 
accumulated metabolites (DAMs) were identified between the treatment and control groups at 3 timepoints after treatment, 
respectively. Based on the changes of DAMs in response to M. flavoviride infection at different timepoints and significantly 
enriched KEGG pathways, we speculated that “tyrosine metabolism,” “galactose metabolism,” “ATP-binding cassette trans-
porters,” “neuroactive ligand-receptor interaction,” “purine metabolism,” “arginine and proline metabolism,” “beta-alanine 
metabolism,” “lysosome,” and “carbon metabolism” may participate in the metabolic-level defense response. An integrated 
pathway-level analysis of the 16S-rDNA and metabolomic data illustrated the connections and interdependencies between 
the metabolic responses of S. litura and the midgut microorganisms to M. flavoviride infection. This work emphasizes the 
value of integrated analyses of insect-pathogen interactions, provides a framework for future studies of critical microorgan-
isms and metabolic determinants of these interactions, establishes a theoretical basis for the sustainable use of M. flavoviride.
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Introduction

Insect intestinal environments are symbiotic systems con-
taining various microorganisms, including bacteria, fungi, 
viruses, and endophytic fungi (Hussa and Goodrich-Blair 
2013). These microorganisms could have a mutually ben-
eficial relationship with their insect host (Stouthamer et al. 
1999; Hurst and Jiggins 2000; Oliver et al. 2003; Baumann 
2005; Wu et al. 2006; Popa et al. 2012; Mercado et al. 2014) 
by providing a sanctuary for the microorganisms, which 
may in turn act as regulators of various life activities of the 

host (Shi et al. 2010). The symbiotic microbiome affects 
host physiology and evolution by participating in metabolic 
processes related to the anabolism of sterols, sugars, amino 
acids, digestive enzymes, and detoxifying enzymes (Crotti 
et al. 2010). Symbiotic microbial communities also help the 
host to detoxify harmful foreign substances and prevent the 
invasion of predators, parasites, and pathogens (Engel and 
Moran 2013; Kaltenpoth and Engl 2014). For example, the 
symbiotic bacteria of Acyrthosiphon pisum defend the insect 
host against pathogens, compensating for the host’s lack of 
relevant immune genes (Gerardo et al. 2010). Similarly, the 
infection rate of Metarhizium flavoviride ARSEF1764 in 
populations lacking Arsenophonus was significantly higher 
than in the carrying population (Chen 2013). In addition, 
gut fluids from monoassociated insects inhibited the germi-
nation of Metarhizium anisopliae conidia, while gut fluids 
from germ-free desert locusts (Schistocerca gregaria) did 
not (Dillon and Charnley 1995). However, gut populations 
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of Wolbachia did not improve the resistance of Drosophila 
melanogaster to pathogenic bacteria; Wolbachia abundances 
associated with expression of key detoxifying genes, and 
correlated with insecticide susceptibility levels of Nilapa-
rvata lugens (Zhang et al. 2021). Finally, symbiotic bac-
teria in Dendroctonus frontalis synthesize anti-pathogen 
substances, upregulate genes in specific defense pathways, 
and reduce the sensitivity of the host to pathogens (Oh 
et al. 2009). In insects, antioxidant enzyme activity reflects 
metabolic and stress-resistance activity; antioxidant enzyme 
activity is also an important index of the host’s pathological 
state (Ouedraogo et al. 2003; Boguś et al. 2007). Internal 
protective enzymes, such as superoxide dismutase (SOD), 
catalase (CAT), and other antioxidant enzymes, are activated 
by exogenous stress and could restore free-radical homeosta-
sis and protect the host from threats (Liochev and Fridovich 
2007).

In a recent revision of Metarhizium, Kepler (2014) 
expanded the definition of this genus to include most spe-
cies previously assigned to the Metacordyceps, as well as 
the green-spored Nomuraea species and species in the more 
recently described genus Chamaeleomyces. Metarhizium 
spp. penetrate the insect cuticle and exoskeleton, consume 
host nutrients in the hemolymph, interfere with the host 
metabolism, and secrete destruxin toxins, which are insecti-
cidal secondary metabolites isolated from Metarhizium spp. 
that alter cell morphology and destroy tissues, even at low 
doses (Fan et al. 2013). Therefore, Metarhizium spp. exert a 
remarkable effect on the pest host (Douglas 1998). Spodop-
tera litura is distributed worldwide and can severely dam-
age more than 290 plant species belonging to 99 families 
(Xue et al. 2010; Koo et al. 2018). While most of the insect 
pests targeting various crops have previously been man-
aged using pesticides, long-term pesticide use not only pol-
lutes the environment and negatively affects human health, 
but also leads to the development of pesticide resistance. 
Metarhizium spp. have emerged as an alternative to chemical 
pesticides for protecting crops from S. litura. The infection 
rate of Metarhizium spp. is relatively slow and spends long 
time effecting, which are usually showing high selectivity 
against target pests, non-toxic to warm blood animals and 
have very fast degradation time in the air and light (Noor 
et al. 2019). Since host invasion by a fungus can be accom-
panied by changes in the host microbiome (Kikuchia et al. 
2012), it is important to understand the effects of parasiti-
zation by M. flavoviride on S. litura, so that the use of M. 
flavoviride as a microbial control agent can be optimized. 
When penetrating the cuticle of S. litura, M. flavoviride 
causes trauma to the host and competes with the host for 
nutrients (Sánchez-Rodríguez et al. 2016). Hosts provide 
nutrition to symbiotes, which then use metabolic wastes to 
synthesize nutrients needed by the host, thus participating 
in the host metabolism (Douglas et al. 2001). Symbiotic 

microorganisms and exogenous pathogens compete for nutri-
ents, and the symbiotic microorganisms could produce tox-
ins to eliminate these competing pathogens (Kikuchia et al. 
2012). Therefore, qualitative and quantitative analyses of 
the metabolites produced by the insect host under pathogen 
stress are needed to study the defense response of the insect 
metabolome to exogenous threats and identify useful target 
metabolites. Insect feces contain information about the host, 
the host’s intestinal microorganisms, and interactions among 
these microorganisms. These data could help to further clar-
ify metabolic changes in the host and in the intestinal flora. 
Unlike other methods, fecal analyses are non-invasive and 
reveal changes in the complete metabolic profiles of the flora 
in response to different threats (Li et al. 2021).

Microbiomics and metabolomics are suitable choices 
for studying microbial community structure and metabo-
lite composition since these techniques enable the in-depth 
examination of functional differences among microbial com-
munities (Zhu et al. 2018). In this study, microbiome and 
metabolome analyses were used to explore the effects of M. 
flavoviride exposure on the midgut microbial community 
and metabolites of S. litura.

Materials and methods

Materials

S. litura populations that had not been exposed to any insec-
ticide were collected from lotus plants (Nelumbo nucifera) 
near Wuhan, Hubei province, China, and were reared for 
one generation on lotus leaves (var. Taikong) in our labo-
ratory under the following conditions: air temperature, 
28 ± 2 °C; relative humidity (RH), 85%; and photoperiod, 
14 h light:10 h dark.

M. flavoviride qc1401 cultures provided by the Insti-
tute of Subtropical Forestry, Chinese Academy of Forestry 
(Hangzhou, China), were grown on Petri plates (Diam-
eter = 90 mm) containing potato dextrose agar (PDA) at 
28 ± 2 °C and 93–98% RH for 10 days, after which the cul-
tures had fully sporulated. Conidia were scraped into 10 mL 
of 0.05% Tween-80 to create a stock suspension, vortexed 
for 30 min, and then diluted to determine the solution con-
centration using a hemocytometer (XB. K. 25). The stock 
suspension was adjusted with 0.05% Tween-80 to create 
treatment concentrations of  108 conidia/ml. The control 
suspension contained 0.05% Tween-80 only.

Exposure of S. litura to M. flavoviride

Six sterile 200-mm plastic Petri dishes containing 500 s instar 
larvae of S. litura each (three replicate control and experimen-
tal plates) were uniformly sprayed with 10 mL of either the 
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stock or control suspension using a hand-held sprayer (Choi 
et al. 2020). The larvae were held at 28 ± 2 °C, 60–85% RH, 
and a 14 h light:10 h dark cycle without diet for 24 h, to allow 
germination of conidia then the insects were transferred to new 
dishes with diet to follow the course of the infection. Larvae 
were sampled from each plate at 24 h, 48 h, and 96 h after 
spraying, and the resulting replicate samples were denoted as 
follows: Ck.24 h, Ck.48 h, and Ck.96 h, respectively, from 
the control plates. MF.24 h, MF.48 h, and MF.96 h, respec-
tively, from the experimental plates. Insect feces were col-
lected from each plate at 24 h, 48 h, and 96 h, and the resulting 
replicate samples were denoted as follows: Ck_24h, Ck_48h, 
and Ck_96h, respectively, from the control plates. MF_24h, 
MF_48h, and MF_96h, respectively, from the experimental 
plates.

Scanning electron microscopy

At 96 h after spraying, experimental and control S. litura lar-
vae were fixed in 2.5% glutaraldehyde for 12 h at 4 °C. The 
fixed samples were rinsed four times with phosphate-buffered 
saline (PBS, 0.1 M, pH 7.2) and dehydrated using a graded 
ethanol series (30%, 50%, 70%, 80%, 90%, and 100%, v/v). 
After dehydration, the samples were dried with carbon dioxide 
in a critical point-dryer, mounted on stubs, coated with gold, 
and examined under a scanning electron microscope (JEOL 
JSM-6360 LV, Hitachi, Japan) at 15 kV. The colonization of 
S. litura by M. flavoviride was investigated using SEM to pro-
vide information about the colonization area and mode of the 
pathogenicity.

Enzyme activity assays

At 24 h, 48 h, and 96 h after spraying, 20 S. litura larvae were 
removed from each plate, ground whole bodies in liquid nitro-
gen., and 1 mL of sodium phosphate buffer (0.1 mol/L) was 
added, the pH values of the polyphenol oxidase (PPO), car-
boxylesterase (CarE), glutathione S-transferase (GST), and 
multifunctional oxidase (MFO) buffers were 7.8, 7.5, 7.0, and 
7.8, respectively. After rapid vortexing and shaking, each mix-
ture was centrifuged at 4 °C and 12,000 rpm for 15 min. Levels 
of PPO, CarE, MFO, and GST activity in the supernatant were 
measured using the corresponding assay kits (Suzhou Grace 
Biotechnology Co., Ltd., China) and following the manufac-
turer’s instructions. Absorbance was assessed using a micro-
plate reader (SpectraMax 190, Molecular Devices, USA).

16S rRNA gene sequencing

Extraction of bacterial DNA

At 24 h, 48 h, and 96 h after spraying, 50 S. litura larvae were 
collected from each plate and dissected to obtain the midgut 

region of each larva. The collected midguts were rinsed with 
sterile water and stored at − 20 °C for DNA extraction. DNA 
was extracted using a bacterial DNA extraction kit (Omega 
Bio-Tek, USA) and dissolved in 200 μL of  ddH2O. DNA 
concentration and purity were measured using 1% agarose 
gel electrophoresis and a nanodrop 1000 spectrophotometer 
(Saveen Werner ApS, Denmark), respectively. Extracted 
DNA was diluted to a concentration of 1 ng/μl and stored 
at − 20 °C. The diluted DNA was used as a template for the 
amplification of bacterial 16S rRNA genes using polymerase 
chain reactions (PCRs) with barcoded primers and Takara 
Ex Taq (Takara Biomedical Technology (Beijing) Co., Ltd.). 
To analyze bacterial diversity, the V3–V4 variable regions of 
the 16S rRNA sequence were amplified using the universal 
primers 343F (5′-TAC GGR AGG CAG CAG-3′) and 798R (5′-
AGG GTA TCT AAT CCT-3′).

Library construction

Amplicon quality was visualized using gel electrophoresis. 
Amplicons were purified using AMPure XP beads (Beckman 
Coulter) and re-amplified using PCR. After re-purification 
with AMPure XP beads, the final amplicons were quantified 
using Qubit dsDNA assay kits (Thermo Fisher). The puri-
fied amplicons were pooled in equal amounts for subsequent 
sequencing.

Bioinformatic analysis

The raw paired-end sequencing reads (in FASTAQ format) 
were preprocessed using Trimmomatic (Bolger et al. 2014) 
to detect and trim ambiguous bases (N) and to remove low-
quality sequences (average quality score < 20) with a sliding-
window trimming approach. After trimming, the paired-end 
reads were assembled using FLASH with the following 
parameters: minimum overlap, 10 bp; maximum overlap, 
200 bp; and maximum mismatch rate, 20%. Sequences were 
further denoised by removing reads shorter than 200 bp, as 
well as ambiguous or homologous sequences. Reads where 
75% of the bases had a quality score > 20 were retained. 
Then, reads with chimeras were detected and removed 
using QIIME (version 1.8.0) (Caporaso et al. 2010). After 
primer sequence removal, clean reads were clustered into 
operational taxonomic units (OTUs) using Vsearch with a 
97% similarity cut-off (Edgar et al. 2011). The representa-
tive sequence for each OTU was selected using QIIME. 
All representative sequences were annotated and blasted 
against the Silva database using the RDP classifier with a 
confidence threshold of 70% (Wang et al. 2007). QIIME was 
used for alpha diversity analysis (Caporaso et al. 2010). The 
microbial diversity in samples was estimated using the alpha 
diversity that include Chao1 index and Shannon index. The 
unweighted Unifrac distance matrix performed by R package 
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was used to analyze the significant differences between dif-
ferent groups using ANOVA/Kruskal–Wallis statistical test.

Metabolomic analysis

Gas chromatography‑mass spectrometry

Fecal matter was collected from both the experimental and 
the control plates at 24 h, 48 h, and 96 h after spraying. We 
then transferred 60 mg of accurately weighed fecal matter 
from each plate to separate 1.5-mL Eppendorf tubes. Two 
small steel balls were added to each tube, along with 20 
μL internal standard (2-chloro-l-phenylalanine in methanol, 
0.3 mg/mL) and 600 μL of methanol/water extraction solvent 
(4/1, v/v). Samples were rapidly frozen at − 80 °C for 2 min 
and then ground to a powder at 60 HZ for 2 min using a 
grinder (Shanghai Jinxin Experimental Technology, China). 
We added 120 μL of chloroform to each sample, followed 
by vigorous vortexing. The vortexed samples were extracted 
at ambient temperature using an ultrasound (Shanghai Han-
nuo Experimental Technology, China) and then transferred 
to 4 °C for 10 min. The samples were then centrifuged at 
12,000 rpm for 10 min at 4 °C. We then transferred 300 
µL of each supernatant to a glass sampling vial; the qual-
ity-control sample was prepared by pooling equivalent ali-
quots of the supernatants of all samples. All samples were 
vacuum-dried at room temperature. After drying, 80 μL of 
methoxyamine hydrochloride (dissolved in pyridine, 15 mg/
mL) was added to each sample, and the resulting mixture 
was vortexed vigorously for 2 min and incubated at 37 °C 
for 90 min. After incubation, 80 μL of N,O-bis (trimethylsi-
lane) trifluoroacetamide (with 1% trimethylchlorosilane) and 
20 μL n-hexane were added to each mixture. The mixtures 
were vortexed vigorously for 2 min and then derivatized at 
70 °C for 60 min. The samples were incubated at ambient 
temperature for 30 min before GC–MS analysis, which was 
performed using an Agilent 7890A-5975C GC–MS system 
(Agilent, USA).

Raw MS data analysis

We used the Analysis Base File Converter (v2.74) to convert 
the raw MS data (in D format) to abf format. The abf files 
were imported into MD-DIAL for processing as follows: 
first, metabolites were annotated against the LUG data-
base, which is an untargeted GC–MS database (Lumingbio, 
China). Second, data were aligned using the Statistic Com-
pare module and converted into a text file containing a three-
dimensional data array that included sample information, 
peak names (or retention time and m/z), and peak intensities. 
All internal standards and any known pseudo-positive peaks 
(caused by background noise, column bleed, or the BSTFA 
derivatization procedure) were removed from the data array. 

After interior labels with RSD values > 0.3 had been deleted, 
the strength (or area) of each peak was calculated by normal-
izing the multiple interior labels based on retention time and 
partition period.

Multivariate analysis

Data were log10 transformed, and the resulting data matrix 
was analyzed using the ropls R package as follows: after 
mean centering and unit variance scaling, principal compo-
nent analysis (PCA), and (orthogonal) partial least-squares-
discriminant analysis [(O)PLS-DA] were performed to 
visualize the metabolic differences between experimental 
groups. For both analyses, Hotelling’s T2 region, which is 
shown as an ellipse in score plots of the models and which 
defines the 95% confidence interval of the modeled variation, 
was calculated. We discriminated among groups using the 
variable importance in the projection (VIP) method, which 
ranks the overall contribution of each variable to the OPLS-
DA model; variables with VIP > 1 are considered relevant 
for group discrimination. We used the default 7-round cross-
validation, in which 1/7th of the samples were excluded from 
the mathematical model in each round to guard against over-
fitting. Metabolites that significantly differed between the 
experimental and control groups were identified based on 
both the VIP value in the OPLS-DA model and the p value 
of the difference between the normalized peak areas of the 
two groups, as calculated using two-tailed Student’s t tests. 
Metabolites with VIP value > 1.0 and p value < 0.05 were 
considered significantly different between the experimental 
and control groups.

Identification of differentially accumulated metabolites

Both multivariate and univariate statistical significance 
thresholds (VIP > 1.0 and P < 0.05) were used to identify 
metabolites that significantly differed with respect to accu-
mulation between the groups. Metabolites were identified 
and annotated with ChromaTOF using several databases, 
including the NIST 11 standard MS databases, the Fiehn 
databases, and databases of reference standards available in 
our laboratory; metabolites were considered identified when 
similarity between the obtained mass spectrum and the spec-
trum of the reference standard was at least 70%.

Integration of the metabolomic and microbiomic 
(16S rDNA) data

The differentially accumulated metabolites and OTUs 
(P < 0.05) were selected and combined with the metabo-
lite response data and the relative abundances of the 
OTUs. Then, Pearson correlations were used to determine 
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the relationship between metabolite abundance and OTU 
abundance.

Results

Infection of S. litura by M. flavoviride conidia

Both spores and mycelia of M. flavoviride were present on 
the S. litura epidermis after treatment with the M. flavoviride 
suspension. The invasive behavior of M. flavoviride differed 
on different areas of the host epidermis. Infection always 
began on the host abdomen, possibly because the folds in 
the epidermis on the abdomen made invasion easier. After 
colonization of the abdomen, the fungus slowly spread to the 
folds and depressions on the host’s back, gradually infected 
the smooth part of the back, and surrounded the host body 
with mycelium (Fig. 1).

Enzyme activity in infected and uninfected S. litura

PPO and GST activity levels in the treatment groups were 
significantly higher than those in the control groups at 24, 
48, and 96 h after spraying (Fig. 2A, 2B; TableS1, S2). 
CarE activity levels were also significantly greater in the 
treatment groups compared to the control groups at 24 

and 48 h after spraying; there was no significant differ-
ence in CarE activity between the control and treatment 
groups at 96 h (Fig. 2C; Table S3). MFO activity levels 
in the treatment groups were significantly higher than that 
in the control group at 96 h after spraying only; at 24 and 
48 h, there were no significant differences in MFO activity 
levels between the control and treatment groups (Fig. 2D; 
Table S4).

16S rDNA sequencing results

Gut bacterial diversity

Across all midgut samples, Good’s coverage index was 
0.99 (Table 1), indicating that the sequencing results were 
representative of the bacterial population. In general, 
Chao1 indices were greater for the treatment groups than 
the control groups, while the Shannon index varied little 
among groups (Table 1). The Shannon index fluctuated 
among groups, with the lowest value calculated for the 
CK.48 h group (4.95 ± 1.09) and the highest value calcu-
lated for the CK.24 h group (6.96 ± 0.94, Table 1). The 
observed species index was lowest for the CK.48 h group, 
followed by the CK.96 h group; this index was highest for 
the MF.96 h group (1538.88 ± 192.06).

Fig. 1  Invasion behavior of 
Metarhizium flavoviride on the 
epidermis of the host (Spodop-
tera litura). A S. litura 96 h 
after treatment with 10-mL 
0.05% Tween 80 (control). B 
S. litura 96 h after treatment 
with 10-mL M. flavoviride  (108 
conidia/ml). Arrow indicates M. 
flavoviride mycelia. C Scanning 
electron microscope (SEM) 
image showing the cuticle of 
S. litura 96 h after treatment 
with 10-mL 0.05% Tween 80 
(control). D SEM image show-
ing the cuticle of S. litura 96 h 
after treatment with 10-mL M. 
flavoviride  (108 conidia/mL). 
Arrow indicates M. flavoviride 
conidia
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Bacterial OTUs and taxonomic analysis

We identified 1136, 594, 834, 1335, 1260, and 1444 bacte-
rial OTUs in groups CK.24 h, CK.48 h, CK.96 h, MF.24 h, 
MF.48 h, and MF.96 h, respectively (Fig. 3A). The number 
of OTUs shared between CK.24 h and MF.24 h was 178; 
the number shared between CK.48 h and MF.48 h was 133, 
and the number shared between CK.96 h and MF.96 h was 
187 (Fig. 3B). In total, 93 OTUs were shared across all six 

groups. More OTUs were identified in all three treatment 
groups than in the corresponding controls, suggesting that 
the diversity of the midgut microbial community of S. litura 
could increase in response to treatment with M. flavoviride.

Across all six groups, bacteria from more than 30 classes 
were taxonomically annotated. The Gammaproteobacteria, 
Bacteroidia, and Clostridia had the highest relative abun-
dance. The relative abundance of Gammaproteobacteria 
in the control group at 48 h after spraying (CK.48 h) was 

Fig. 2  The activity levels of four enzymes in the treatment and con-
trol Spodoptera litura groups. Data in the figure are means ± SD; “*” 
and “**” above the bars indicate significant differences (P < 0.05) and 
extremely significant differences (P < 0.01), respectively, in enzyme 
activity levels between the two groups (Student’s t test). CK, control 

(suspension containing 0.05% Tween-80 only); MF, treatment (sus-
pension containing  108  M. flavoviride conidia/ml). PPO, polyphe-
nol oxidase; CarE, carboxylesterase; GST, glutathione S-transferase; 
MFO, multifunctional oxidase

Table 1  Species richness and diversity estimations for the gut bacteria of Spodoptera litura after treatment with Metarhizium flavoviride, as 
determined using 16S ribosomal RNA gene libraries produced by next-generation sequencing

Sample ID Valid-tags Observed species Simpson Chao1 Shannon Good’s coverage

CK.24 h (45,437.83 ± 1152.50) (1231.77 ± 214.16) (0.96 ± 0.02) (1574.35 ± 222.25) (6.96 ± 0.94) 0.99
CK.48 h (46,362.17 ± 737.32) (688.80 ± 257.39) (0.93 ± 0.02) (1126.07 ± 206.06) (4.95 ± 1.09) 0.99
CK.96 h (45,427.50 ± 1637.87) (921.72 ± 278.18) (0.92 ± 0.04) (1269.05 ± 225.74) (5.56 ± 1.42) 0.99
MF.24 h (44,526.33 ± 1754.88) (1183.92 ± 320.43) (0.94 ± 0.03) (1662.19 ± 391.68) (5.73 ± 1.00) 0.99
MF.48 h (44,388.50 ± 1161.66) (1348.68 ± 261.64) (0.96 ± 0.02) (1920.97 ± 154.70) (6.18 ± 0.87) 0.99
MF.96 h (44,242.83 ± 1305.45) (1538.88 ± 192.06) (0.96 ± 0.02) (2025.76 ± 113.69) (6.61 ± 0.67) 0.99
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74.99%, which was greater than the relative abundance of 
this taxon in any of the other control and treatment groups 
(CK.24 h: 40.00%, CK.96 h: 63.71%, MF.24 h: 55.50%, 
MF.48 h: 52.36%, and MF.96 h: 43.54%).

The composition of bacterial species differed between 
the control and treatment groups at all time points exam-
ined (Fig. 4). However, of the 10 most common species in 
each group, six were shared between CK.24 h and MF.24 h; 
seven were shared between CK.48 h and MF.48 h, and eight 
were shared between CK.96 h and MF.96 h (Fig. 4). The 
total abundance of the 10 most abundant species compared 
to the total abundance of all species identified also differed 
between the control and treatment groups at each time 
point: the total relative abundance of the top 10 species was 
6.23% and 11.17% in groups Ck.24 h and MF.24 h, respec-
tively; 9.15% and 3.10% in groups Ck.48 h and MF.48 h, 
respectively; and 9.01% and 3.11% in Ck.96 h and MF.96 h, 
respectively. As such, the total relative abundance of the top 
10 species in the treatment group sharply decreased between 
48 and 96 h after spraying but increased in the control group. 
Sphingobacterium multivorum was the most abundant bac-
terial species in both the control and treatment groups: S. 
multivorum abundance was 2.75%, 7.56%, and 6.23% in the 
control groups at 24, 48, and 96 h after spraying, respec-
tively, but was 5.02%, 0.76%, and 1.17%, respectively, in 
the treatment groups.

Metabolomic analysis

Overview of metabolomic data corresponding to S. litura 
response to M. flavovirid

After the removal of unvalued peaks and the combina-
tion of peaks from the same metabolite, 372 metabolites 

remained. This analysis recovered the biological repli-
cates of each group in tight clusters in the same hemi-
sphere of each graph, suggesting high reproducibility. The 
treatment and control groups were separated along the 
predictive component of the OPLS-DA plot at each tested 
time point (Fig. 5), indicating that metabolite profiles 
substantially differed between the treatment and control 
groups.

Differentially accumulated metabolites

The metabolites that were differentially accumulated 
between the feces of the control and treatment groups also 
differed among the three tested time points. We identified 
88 differentially abundant metabolites between the experi-
mental and control feces at 24 h after spraying, 149 differ-
entially abundant metabolites between the experimental and 
control feces at 48 h after spraying, and 142 differentially 
accumulated metabolites between the experimental and 
control feces at 96 h after spraying (Fig. 6). At 24 h post-
spraying, the differentially accumulated metabolites were 
primarily benzene and substituted derivatives, organooxygen 
compounds, carboxylic acids, and derivatives. Twelve differ-
entially accumulated metabolites were carboxylic acids and 
derivatives (Fig. 6A). At 48 h post-spraying, 14 differentially 
accumulated metabolites were carboxylic acids and deriva-
tives, while 16 differentially accumulated metabolites were 
organooxygen compounds (Fig. 6B). At 96 h post-spraying, 
the differentially accumulated metabolites were organic 
acids and derivatives, lipids and lipid-like molecules, ben-
zenoids, organic oxygen compounds, phenylpropanoids, 
and polyketides; 32 differentially accumulated metabolites 
were organic acids and derivatives (Fig. 6C). The number of 

Fig. 3  Venn diagram analysis of shared and unique bacterial OTUs across samples
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Fig. 4  The 10 most abundant 
species of intestinal bacte-
ria identified in Spodoptera 
litura at 24 h, 48 h, and 96 h 
after exposure to Metarhizium 
flavoviride conidia. CK, control 
(suspension containing 0.05% 
Tween-80 only); MF, treatment 
(suspension containing 10.8 M. 
flavoviride conidia/ml)
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Fig. 5  Orthogonal projections 
to latent structures-discriminant 
analysis (OPLS-DA) and per-
mutation tests of the OPLS-DA 
results, showing differences 
in metabolites between the 
treatment and control groups 
at A 24 h, B 48 h, and C 96 h 
after treatment. CK, control 
(suspension containing 0.05% 
Tween-80 only); MF, treatment 
(suspension containing 10.8 M. 
flavoviride conidia/ml)
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Fig. 6  Heatmap of metabolites 
that differed between the feces 
of control Spodoptera litura 
and the feces of S. litura treated 
with Metarhizium flavoviride at 
different time. A 24 h after M. 
flavoviride treatment, B 48 h 
after M. flavoviride treatment, 
and C 96 h after M. flavoviride 
treatment, a tree showing the 
sample clustering pattern is 
shown above each heatmap, 
and metabolite groups are 
shown along the y-axis. Red-
der cells correspond to more 
accumulated metabolites, while 
bluer cells correspond to fewer 
accumulated metabolites. CK, 
control (suspension containing 
0.05% Tween-80 only); MF, 
treatment (suspension contain-
ing 10.8 M. flavoviride conidia/
ml)
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Fig. 7  The 10 KEGG pathways 
most significantly enriched 
in the differentially abundant 
metabolites at A 24-h post-
spraying, B 48-h post-spraying, 
and C 96-h post-spraying. P 
values in the metabolic path-
ways correspond to the signifi-
cance of the enrichment of that 
pathway. Red lines indicate a p 
value of 0.01, while blue lines 
indicate a p value of 0.05. A bar 
above the blue line indicates 
that the signaling pathway is 
significant
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differentially accumulated metabolites between the control 
and treatment groups increased with the length of time after 
spraying. However, the species of metabolites differentially 
accumulated between the control and treatment groups were 
similar in the 24 h and 48 h treatment groups.

Pathways enriched in the differentially abundant 
metabolites

KEGG metabolic pathway analysis indicated that differ-
entially accumulated metabolites between the control and 
experimental groups at 24, 48, and 96 h post-spraying were 
enriched in 17, 18, and 26 metabolic pathways, respectively. 
The 10 pathways most significantly enriched in the differ-
entially abundant metabolites were the tyrosine metabolism, 
the galactose metabolism, the ABC transporters, and neu-
roactive ligand-receptor interactions at 24 h post-spraying 
(P < 0.05); the purine metabolism, the ABC transporters, 
and neuroactive ligand–receptor interactions at 48-h post-
spraying (P < 0.05); and the ABC transporters, the arginine 
and proline metabolism, the purine metabolism, the beta-
alanine metabolism, lysosome, and the carbon metabolism 
at 96-h post-spraying (P < 0.05; Fig. 7).

Combined metabolomic and 16S analysis

Across the three time points tested, there were no strong 
correlations among the 20 most differentially accumulated 
metabolites and the 20 most differentially abundant gut 
microbes (Fig. 8). For example, melezitose and galactose 
were among the 20 most differentially abundant metabo-
lites both 24 h and 48 h post-spraying, but were corre-
lated with different microorganisms at the two time points. 

That is, at 24 h post-spraying, melezitose was positively 
correlated with the microbes Bacteroides fragilis, uncul-
tured Alistipes sp., uncultured gamma proteobacterium, 
and uncultured beta proteobacterium (Fig. 8A); at 48 h 
post-spraying, melezitose was negatively correlated with 
Weissella confusa and bacterium enrichment culture clone 
BBMC-5 (Fig. 8B). Two metabolites appeared at both 
24 and 96 h post-spraying (catechin and glycerol-alpha-
phosphate), while six metabolites were present at both 
48 and 96 h post-spraying (UDP-glucuronic acid, oxamic 
acid, urea, 4',5-dihydroxy-7-glucosyloxyflavanone, meth-
ylamine, and 5-methyluridine). However, these shared 
differentially abundant metabolites were correlated with 
different microbes at each time point. S. multivorum, the 
most abundant bacterium in both the control and treat-
ment groups (Fig. 6), was negatively correlated with most 
of the 20 most differentially abundant metabolites except 
for chenodeoxycholic acid, methylamine, and galactose at 
48 h post-spraying. This bacterium was negatively corre-
lated with all differential metabolites at 96 h post-spraying.

Discussion

The intestine possesses the largest mucosal surface in the 
insect body; the intestinal mucosa digests and absorbs 
nutrients into the haemocoel (Moor 2018; Haber 2017). 
Intestinal microorganisms participate in insect digestive 
processes by synthesizing digestive enzymes; producing 
mucins, hormones, and antimicrobial molecules; assist-
ing in the degradation of toxic substances (Zheng et al. 
2018), improving host defense and building a physical and 
chemical barrier that protects the host against pathogenic 

Fig. 8  Pairwise correlations between the 20 most abundant intestinal microbes and the 20 most differentially abundant metabolites at different 
timepoints. A 24-h post-spraying, B 48-h post-spraying, and C 96-h post-spraying
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microbes. Metabolomic analyses found that the honey-
bee gut flora produces organic acids and metabolizes 
flavonoids and pollen exine (Kesnerova et al. 2017). In 
addition, honeybees degrade plant polymers with assis-
tance of the intestinal flora, which also metabolize amino 
acids and vitamins for the host (Zheng et al. 2017). In D. 
melanogaster, previous studies have shown that several 
metabolic pathways (including amino acid metabolism, 
glycolysis, purine metabolism, pyrimidine metabolism, 
and lipid metabolism) changed after permethrin treat-
ment, and tryptophan catabolism played an important role 
in the formation of host insecticide resistance (Brinzer 
et  al. 2015). Many previous studies have shown that 
the intestinal microbiota can independently metabolize 
compounds in the intestine, we concluded that the host 
metabolic process would be altered after the disruption of 
the host intestinal microbiota during the stress-resistance 
response. This study explores changes in the microbial 
community structure of the midgut, metabolite abun-
dance, and activated metabolic pathways in S. litura in 
response to M. flavoviride stress.

The insect immune defense system metabolizes foreign 
toxic substances. For example, multifunctional oxidases and 
glutathione transferases decompose fat-soluble and toxic 
pesticides before further metabolism occurs (Grant and 
Matsumura 1989). The metabolic resistance of insect results 
from the increased metabolic activity of these enzymes 
(Adeyi et al. 2015). CarE, a member of the esterase super-
gene family, enhances the metabolic activity of pesticides 
through the upregulation and point mutation of carboxy-
lesterase genes. These genes are crucial in the metabolism 
of organophosphorus and carbamate pesticides (Zhang et al. 
2010). In this study, CarE activity significantly increased 
in response to M. flavoviride treatment, suggesting that 
infection by pathogenic fungi activated a similar immune 
system response to that triggered by exposure to chemical 
insecticides. Polyphenol oxidase (PPO) could induce mel-
anization under pathogen stress (Zhao et al. 2007; Cerenius 
et al. 2010), and the PPO cascade affects the resistance of 
the mosquito to Beauveria bassiana (Yassine et al. 2012; 
Ashida et al. 1990). PPO activity in the treatment group was 
significantly higher than in the control group at 24, 48, and 
96 h after infection, indicating that PPO plays a role in the 
resistance of S. litura to M. flavoviride.

In this study, exposure to M. flavoviride altered the 
abundance and diversity of the bacterial microorganisms 
in the midgut of S. litura, and these changes differed with 
time post-exposure. In general, exposure to M. flavoviride 
increased bacterial abundance in the host midgut, but alpha 
diversity fluctuated across time points. Microbial symbi-
ont assemblages with consistent relative abundance and 
diversity indicate a stable community or ecosystem (Glasl 
et al. 2016). The overall increases in bacterial abundance 

and diversity in the midgut of S. litura after M. flavoviride 
treatment suggested that M. flavoviride infection destabi-
lized the microecological environment of the host. After 
treatment with M. flavoviride, bacterial species composi-
tion in the midgut of S. litura was altered, suggesting that 
this fungal infection affected bacterial community structure. 
In particular, the dominant bacterial species in the S. litura 
midgut shifted after treatment, with substantial decreases in 
the abundances of W. confusa and S. multivorum. Indeed, the 
relative total abundance of the 10 most abundant species in 
the midgut decreased significantly between 24 and 48 h, 96 h 
post-spraying. The high relative abundance of W. confuse 
at 24 h after spraying was likely associated with the host 
immune system response to pathogen stress, as this species 
colonizes the human and animal intestinal tract (Jeong et al. 
2007; Harlan et al. 2011), plays a prebiotic role in regulat-
ing the balance of the intestinal flora (Zhang et al. 2011), 
inhibits Helicobacter pylori (Nam et al. 2002), and synthe-
sizes exopolysaccharides with potential pharmacological 
properties, including anti-inflammatory, anti-tumor, and 
immunosuppressive effects (Wang et al. 2022). The further 
colonization of the pathogen modulated the host gut biome 
and which made the relative abundance of Weissella confuse 
decreased between 24 and 48, 96 h after spraying.

S. multivorum is associated with the degradation of pesti-
cides, especially nicotine, imidacloprid, and pentachlorophe-
nol (Ye et al. 2006). In Wuhan, where the S. litura population 
used in this study was collected, S. litura populations are 
14–229-fold more resistant to organophosphates and 12–227-
fold more resistant to pyrethroids compared with a suscep-
tible Lab-BJ strain (Hong et al. 2013). Whether the high 
relative abundance of S. multivorum at 24 h after spraying is 
consistent with the ability of this bacterium to degrade pes-
ticides needs to be further. However, with the further coloni-
zation of the host by the pathogen, the relative abundance of 
S. multivorum decreased, and S. multivorum was negatively 
correlated with almost all metabolites. ABC transporters use 
the energy generated by ATP hydrolysis to transport various 
bound substances, such as alkanes, amino acids, and anti-
biotics (Lane et al. 2016). ABC transporters play important 
physiological roles in prokaryotes as well as higher animals 
and plants (Kathawala et al. 2015; Ponte 2007). In this study, 
we found that the ABC transporter pathway was significantly 
enriched in metabolites that were differentially abundant 
in the S. litura population after M. flavoviride treatment, 
suggesting an increased nutrient demand in the part of the 
host, possibly for immune defense. In this study, as the time 
post-spraying increased, the number of differentially abun-
dant metabolites between the control and treatment groups 
increased. Several metabolic pathways related to anabolism 
(e.g., the galactose metabolism, the purine metabolism, the 
beta-alanine metabolism, and the carbon metabolism) were 
also significant enriched in the differentially accumulated 
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metabolites. Further study is necessary to identify signifi-
cantly enriched metabolites associated with improvements 
in host immunity or resistance to M. flavoviride.

Neuroactive ligand receptors participate in the intracel-
lular and extracellular signal pathways on the plasma mem-
brane (Lauss et al. 2007). Several exogenous substances 
downregulate multiple receptor genes (e.g., chrm3, DRD5, 
and HTR1B) in these pathways, affecting the host’s physi-
ological rhythms and endocrine system (Zhuang et al. 1999; 
Svob et al. 2008). The changes in the expression levels of 
related genes in response to pathogen stress might lead to 
the enrichment of neuroactive ligand receptors in the differ-
entially abundant metabolites at 24 and 48 h after spraying.

The enrichment of the tyrosine metabolism pathway in the 
significantly differentially abundant metabolites in the feces at 
48 h after spraying may not only have been related to host nutri-
tional requirements, but could also berelated to host immune 
defense against M. flavoviride. The tyrosine metabolism path-
way serves as a starting point for the production of various 
structurally diverse natural compounds, such as tocopherols, 
plastoquinone, ubiquinone, betalains, salidroside, and ben-
zylisoquinoline alkaloids (Schenck and Maeda 2018). Some 
of these, including tyrosine-derived metabolites, tocopherols, 
plastoquinone, and ubiquinone, are essential for survival (Xu 
et al. 2019). Hydroxylation of tyrosine at the 3-position leads to 
the formation of 3,4-dihydroxy-l-phenylalanine (l-DOPA); this 
reaction can be catalyzed by the tyrosinase (EC1.14.18.1) activ-
ity of PPOs, which play important roles in insect development, 
wound healing, and immunity (Tran et al. 2012). In a previous 
study, recolonization of the gut biome by Klebsiella michigan-
ensis removed Bactrocera dorsalis, significantly upregulated 
the arginine and proline metabolic pathway (10- to 13-fold), 
maintained the structure and function of mitochondria, and 
improved host resistance to stress (Muhammad et al. 2020). 
Thus, enrichment of the arginine and proline metabolism path-
way in the significantly differentially abundant metabolites in 
S. litura feces at 96 h after spraying could have been related to 
the stress resistance function of this pathway. Further studies 
are needed to detect intestinal flora related to the upregulation 
of the arginine and proline metabolic pathway.

Lysosomes are essential intracellular digestive stations 
that are indispensable for energy and metabolic homeostasis 
(Safig and Klumperman 2009). Lysosomes are also involved 
in signal transduction, organelle recycling (Lawrence and 
Zoncu 2019), and other physiological and pathological 
processes (Ravikumar. 2010; Saxton and Sabatini 2017). 
Lysosome dysfunction may contribute to lysosomal storage 
diseases as well as the progression of certain types of neu-
rodegenerative disorders (Platt et al. 2018; Zhu et al. 2021). 
The significant enrichment of the lysosomal metabolic path-
way in the differentially accumulated metabolites in the S. 
litura gut at 96 h after spraying was probably also related to 
the response of host immune system to pathogenic fungus.

The results showed that the structure of the intestinal 
flora, the metabolic pathways, and the metabolites of S. 
litura were altered in response to M. flavoviride challenge. 
The evidence gathered in this study indicated that the ulti-
mate purpose of such changes is to protect the host by com-
peting for nutrients and even killing invaders. The using of 
M. flavoviride as a substitute for chemical pesticides may 
also brings the risk of developing resistance in the field. 
Further research is needed to confirm the roles of highly 
abundant strains, significantly enriched metabolic pathways, 
and significantly differentially abundant metabolites in host 
immune defense, in order to provide a theoretical basis for 
the sustainable use of M. flavoviride in pest control.
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