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Abstract
Can we anticipate the emergence of the next pandemic antibiotic-resistant bacterial clone? Addressing such an ambitious 
question relies on our ability to comprehensively understand the ecological and epidemiological factors fostering the evolu-
tion of high-risk clones. Among these factors, the ability to persistently colonize and thrive in the human gut is crucial for 
most high-risk clones. Nonetheless, the causes and mechanisms facilitating successful gut colonization remain obscure. Here, 
we review recent evidence that suggests that bacterial metabolism plays a pivotal role in determining the ability of high-
risk clones to colonize the human gut. Subsequently, we outline novel approaches that enable the exploration of microbial 
metabolism at an unprecedented scale and level of detail. A thorough understanding of the constraints and opportunities of 
bacterial metabolism in gut colonization will foster our ability to predict the emergence of high-risk clones and take appro-
priate containment strategies.
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Antimicrobial resistance

 Antimicrobial resistance (AR) poses a grave threat to mod-
ern medicine and jeopardizes the effectiveness of global 
public health responses to infectious diseases (O’Neill 2016; 
World Health Organization 2017; Centers for Disease Con-
trol and Prevention (U.S.) 2019; European Centre for Dis-
ease Prevention and Control. 2019; Murray et al. 2022). The 
overuse and misuse of antibiotics have led to a significant 
increase in the prevalence of antibiotic-resistant bacteria. 
As a result, many people now die each year from infections 
that were previously treatable (O’Neill 2016; Murray et al. 

2022). Current estimations predict that AR is responsible for 
700,000 deaths annually and that, by 2050, AR infections 
could become the leading cause of death worldwide, causing 
up to 10 million deaths per year (O’Neill 2016; Murray et al. 
2022). The magnitude of the AR crisis has been recognized 
by health authorities, such as the European and American 
Centers for Disease Prevention and Control (ECDC, CDC) 
(Centers for Disease Control and Prevention (U.S.) 2019; 
European Centre for Disease Prevention and Control. 2019). 
In addition, the quadripartite World Health Organization 
(WHO)-Food and Agriculture Organization of the United 
Nations (FAO)-World Organization for Animal Health 
(OIE)-United Nations Environmental Programme (UNEP) 
recognizes that critical efforts are required to reverse cur-
rent dynamics and regain control over antibiotic-resistant 
bacteria (United Nations Environment Programme 2023; 
World Health Organization (WHO), Food and Agriculture 
Organization (FAO), World Organisation for Animal Health 
(WOAH), UN Environment Programme (UNEP) 2022).

Arguably, one of the main drivers of this significant 
health problem is the emergence and global dissemination 
of epidemiologically successful drug-resistant clones. These 
high-risk clones have acquired adaptive traits that increase 
their pathogenicity and survival, including the acquisi-
tion of AR. Due to their unique combination of virulence, 
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metabolic, and AR genes, these clones pose a significant 
risk to human health, spreading uncontrollably in the com-
munity and hospital settings and different One Health sec-
tors. Additionally, they contribute to the global spread of 
AR by transmitting genetic platforms such as transposons or 
plasmids to unrelated bacteria via horizontal gene transfer 
(Woodford et al. 2011).

Among these high-risk clones, multidrug-resistant patho-
genic Escherichia coli has been categorized as an “urgent 
threat” by the CDC and a “critical priority” by the WHO. E. 
coli is a Gram-negative commensal in the human gastroin-
testinal tract and, simultaneously, one of the most frequent 
pathogens. Indeed, E. coli is the most common cause of 
extra-intestinal infections, such as urinary tract infections 
and bloodstream infections (Pitout 2012). Extra-intestinal 
E. coli (ExPEC) high-risk clones mainly belong to the phy-
logenetic group B2 and, to a lesser extent, phylogenetic 
group D (Le Gall et al. 2007; Massot et al. 2016; Nowrouz-
ian et al. 2019). B2 isolates exhibit considerable genome 
diversity, with 10 subgroups from B2-I to B2-X, and are 
overrepresented by specific sequence-type complexes that 
show a higher ability to persist and colonize the human gut 
(Mansouri et al. 2022). For instance, E. coli belonging to 
the sequence-type complex ST131 accounts for up to 30% of 
all infections caused by ExPEC globally and is responsible 
for 60–90% of the fluoroquinolone-resistant and 40–80% of 
extended-spectrum β-lactamase-producing ExPEC infec-
tions (Nicolas-Chanoine et al. 2007). Recently, new clini-
cally relevant clonal complexes have been identified. For 
example, ST410 emerged as a significant global concern, 
becoming increasingly common in Chinese hospitals since 
2017 (Ba et al. 2024).

The ability of these worrisome clonal complexes (and 
those of other species) to colonize the human gut is key 
to their ecological and epidemiological success. Therefore, 
understanding how they colonize and thrive within the intri-
cate environment of the gastrointestinal tract is crucial to 
predict, anticipate, and mitigate their dissemination. In the 
following sections, we will outline the factors that facilitate 
bacterial colonization of the human gut and discuss experi-
mental approaches to identify these factors.

Ecological interactions driving a successful 
gut colonization

The gut microbiota is the largest bacterial population 
cohabiting with humans. It functions as a dynamic bio-
logical factory that evolves and adapts with the host, 
significantly affecting health and influencing various dis-
eases (Minagar et al. 2023). The beneficial impact of gut 
microbiota on human metabolic health is extensively docu-
mented in the literature (Fan and Pedersen 2021; Liu et al. 

2022). For example, the microbiota plays a crucial role 
in the digestion and absorption of dietary lipids, proteins, 
and peptides (Fan et al. 2015; Martinez-Guryn et al. 2018). 
However, the mechanisms employed by high-risk clones to 
invade and colonize the healthy microbiota remain poorly 
understood.

While many microbial species are regularly consumed 
through food ingestion, only a small proportion will suc-
cessfully establish a long-lasting population in the gut 
(Powell et al. 2016). Successful colonization depends on 
several factors, including the complex ecological interac-
tions between the resident gut microbiota and the potential 
colonizer bacteria (Schluter and Foster 2012; Coyte and 
Rakoff-Nahoum 2019). These interactions can be dynamic, 
ranging from resource competition to cooperative partner-
ships. For example, high-risk clones actively secrete toxic 
products such as bacteriocins, colicins, or microcins that 
inhibit the growth of the resident microbiota, illustrating 
the fierce competition that takes place within the gut micro-
biota (Micenková et al. 2016) (Fig. 1A). Other pathogenic 
bacteria outcompete gut commensals by using carbon 
sources that are unavailable to them. For instance, Salmo-
nella enterica metabolizes propionate, ethanolamine, and 
ascorbate. These carbon sources are typically inaccessible 
to commensal bacteria, allowing S. enterica to colonize the 
gut (Asten and Dijk 2005; Harvey et al. 2011). Similarly, 
multidrug-resistant E. coli strains able to use a broad range 
of carbohydrates displace commensal E. coli from the gut, 
highlighting the importance of resource competition in 
colonization (Connor et al. 2023). In other cases, potential 
colonizers do not compete but can benefit from the exist-
ing microbiota. For instance, S. enterica serovar Typhimu-
rium uses lactate produced by fermentative bacteria as a 
carbon source. In this way, S. Typhimurium engages in a 
commensalism relationship with resident bacteria, where 
fermenters provide a valuable resource for S. Typhimurium 
colonization (Taylor and Winter 2020) (Fig. 1B).

Beyond interbacterial ecological relationships, gut bac-
teria engage in a dynamic interplay with the host. Success-
ful colonization often depends on adhering to the intestinal 
epithelium. This attachment can be facilitated by bacterial 
specialized surface structures, such as the O-antigen or E. 
coli’s type 1 fimbria, which increases interaction with the 
mannosylated receptors on the epithelial mucosa (Fig. 1C) 
(Krogfelt et al. 1990; Hölzer et al. 2009; Powell et al. 2016). 
Other factors, such as flagella expression, also aid in suc-
cessful colonization since bacteria require flagellar mobility 
to cross the mucus layer and reach the surface of the epithe-
lium (Sevrin et al. 2020).

Gut colonization also requires evading or tolerating host 
immune defenses. Some bacteria, like Helicobacter pylori, 
can evade host immune responses by modifying their sur-
face antigens (e.g, lipopolysaccharide and flagellin) or by 
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secreting immunomodulatory factors, such as nitric oxide 
(Fig. 1D, Lina 2014). Besides, bacteria expressing higher 
levels of serum survival protein (iss), a well-recognized 
virulence factor in ExPEC isolates, can avoid the host’s 
immune system. iss gene is necessary for capsule synthesis 
and facilitates avoiding phagocyte recognition (Sarowska 
et al. 2019; Biran et al. 2021).

Metabolism and colonization

Beyond the ecological factors outlined above, bacterial 
metabolism plays a central role in gut colonization (Nogales 
and Garmendia 2022). Indeed, adapting and thriving in a 
chemically complex environment such as the gut microbiota 
requires a set of fine-tuned metabolic traits that translate into 
high bacterial fitness (i.e., competitive ability) (Bernhardt 
et al. 2020).

However, the high microbial diversity of the gut micro-
biome, encompassing a vast array of species, presents 
a significant challenge to understanding its metabolic 
complexity. From obligate aerobes to strict anaerobes, 
commensal bacteria exhibit a wide range of metabolic 
profiles. Further complicating this scenario, some spe-
cies exhibit exceptional metabolic plasticity, adapt-
ing their metabolism to changing environments. For 
instance, Bacillus fragilis, a strictly anaerobic bacterium, 
can metabolize certain carbohydrates in the presence of 
nanomolar oxygen concentrations (such as those found in 
the colon’s crypts) thanks to the expression of the com-
mensal colonization factor (ccf) genes. These genes allow 
B. fragillis to use some polysaccharides otherwise undi-
gestible in microaerobiosis. Crucially, strains lacking ccf 
genes fail to colonize the gut effectively (Lee et al. 2013), 
exemplifying a case in which metabolic plasticity is key 
to colonization.

Fig. 1   Examples of main factors driving successful gut coloniza-
tion. (A) Pathogenic bacteria (depicted as a red cell on the left side) 
compete with established populations by secreting bacteriocins and 
colicins that inhibit the growth of resident microbiota (shown in 
light blue on the right side). (B) Consuming different carbon sources 
allows pathogens to thrive within the rest of the community. Com-
mensal cells use available metabolites and generate residual byprod-
ucts (represented as green and dark blue molecules, respectively) that 

colonizer bacteria can use as carbon sources that otherwise would not 
be used. These populations can also metabolize available nutrients, 
establishing a competitive relationship with the pre-existing popula-
tions. (C) Colonization ability requires contact with the intestinal epi-
thelial cells. Different surface characteristics, such as expressing the 
O-antigen, improve adhesion. (D) Evasion of the host immune sys-
tem responses, such as escaping from phagocyte recognition (purple 
cells), is crucial for successful colonization
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The commensal microbiota can actively prevent gut colo-
nization of harmful bacteria thanks to its own metabolic 
processes. For instance, certain strains can limit the estab-
lishment of vancomycin-resistant Enterococcus (VRE) in 
the gut of mice treated with antibiotics. These protective 
strains reduce the available fructose levels in the gut, a sugar 
that fuels VRE growth in vivo (Djukovic et al. 2022; Isaac 
et al. 2022). Similarly, the commensal Clostridium scind-
ens produces secondary bile acids that directly inhibit the 
growth and colonization of Clostridioides difficile (Buffie 
et al. 2015). Moreover, experimental evidence supports the 
notion that commensal bacteria use a certain degree of meta-
bolic flexibility to outcompete phylogenetically close patho-
gens. For example, when E. coli Nissle 1917 (a probiotic 
non-pathogenic strain) colonizes the mice gut, and no other 
E. coli strains are present in the community, it uses ribose 
as a carbon source. However, when competing with other 
E. coli strains, E. coli Nissle alters its nutrient preferences 
and avoids consuming ribose, highlighting that the presence 
of other microorganisms (and their metabolisms) critically 
affects the colonization capacity of E. coli.

Central metabolic pathways are usually highly con-
served, comprising a significant part of the core genome 
(Vieira et al. 2011). Several examples highlight the crucial 
role that central metabolism plays in the gut coloniza-
tion of species like E. coli, the most frequent pathogen 
causing extraintestinal infections. For instance, E. coli 
mutants lacking phosphoglucose isomerase, a key gly-
colytic enzyme encoded by the pgi gene, display a sub-
stantial colonization defect when competing against their 
respective wild-type strain (Chang et al. 2004). Similarly, 
mutants lacking the Entner-Doudoroff pathway are defec-
tive in colonization due to their inability to effectively 
metabolize gluconate, the most abundant carbon source 
in the intestine (Sweeney et al. 1996). Interestingly, the 
oxidative branch of the pentose phosphate pathway is 
dispensable for E. coli colonization in mouse models. 
This suggests that E. coli may obtain the reducing power 
essential for sugar catabolism (i.e., nicotinamide adenine 
dinucleotide phosphate (NADPH)) using an alternative, 
unknown mechanism (Chang et al. 2004).

Altogether, this evidence suggests that efficient bacterial 
colonization of the gut is likely determined by (i) the availabil-
ity of nutrients that bacteria can use (metabolic range), (ii) the 
ability to use these available carbon sources more efficiently 
than the rest of the members in the community (metabolic 
efficiency), and (iii) the ability to adapt their metabolism to 
the rest of the community members (metabolic flexibility). 
Therefore, measuring, understanding, and predicting bacte-
rial metabolism in the gut is crucial to anticipate the evolu-
tionary, ecological, and epidemiological success of high-risk 
antibiotic-resistant bacterial clones.

Novel approaches to understanding the role 
of bacterial metabolism in colonization 
success

The systematic and complete understanding of how bac-
teria use nutrients within natural microbial communities 
is complicated by the cost, technical difficulty, and sen-
sitivity of metabolomic studies to external perturbations 
(Johnson and Gonzalez 2012). Several new approaches 
have recently facilitated the study of microbial metabo-
lism at an unprecedented scale. The following sections will 
delve into these new methods and discuss their potential 
to provide critical insights to combat and anticipate the 
emergence of the next pandemic high-risk clone.

In silico predictive approaches: modeling 
metabolism

The advent of sequencing technologies and a large amount 
of genomic high-throughput data have contributed to a pro-
found understanding of microbial behavior at a systemic 
level (Bordbar et al. 2014). Genome-scale metabolic mod-
els (GEMs) are structured representations of the metabolic 
capabilities of a target organism based on existing bio-
chemical, genetic, and phenotypic knowledge that can be 
used to predict phenotype from genotype (Nielsen 2017). 
In other words, GEMs map all the biochemical reactions 
that occur within a cell and can predict the growth of an 
organism in a given environment (Fig. 2A). GEMs are key 
biotechnology tools that are increasingly used to analyze 
and predict bacterial metabolism under different environ-
mental and clinical conditions (Monk et al. 2014; O’Brien 
et al. 2015). For instance, GEMs of more than 100 E. coli 
strains suggested that the phylogroup B2 share a unique 
set of metabolic features: thanks to the presence of spe-
cific aldolases, B2 strains are more efficient than other E. 
coli phylogroups at metabolizing sugars derived from the 
mucus glycan. This confers a colonization advantage that 
might explain their outstanding gut colonization ability 
and epidemiological success (Fang et al. 2018).

The predictive power of individual strain GEMs is 
limited because bacterial strains do not live in isolation. 
Instead, they live in diverse communities where the extent 
of metabolic interactions has traditionally been difficult 
to understand (Ankrah et al. 2021). In this regard, the 
transition from single-taxon to community-scale meta-
bolic models fostered by computational and mathemati-
cal advances has represented a paradigm shift in recent 
years (Harcombe et al. 2014; Zomorrodi and Segrè 2017; 
Dukovski et al. 2021; Woo et al. 2024). Community-scale 
models allow the understanding of complex microbial 
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communities and their interspecies interactions, such as 
mutualism or competition (Lewis et al. 2012; Heinken 
et al. 2013; Ang et al. 2018; Dukovski et al. 2021; Schäfer 
et al. 2023; Ghiotto et al. 2024). Crucially, recent work 
has linked the composition of bacterial communities with 
its function, enabling the accurate prediction of biological 
function at the genetic, organismal, and ecological scales 

(Diaz-Colunga et al. 2023). This advance paves the way 
for a better understanding of gut microbiota ecological 
interactions and potentially engineering bacterial com-
munities as therapeutic alternatives. In summary, (com-
munity-scale) GEMs are potent tools for elucidating the 
metabolism of single and complex systems and represent a 
great platform to study the metabolic capability associated 

Fig. 2   Overview of novel approaches to unravel the role of meta-
bolic traits driving bacterial gut colonization. Wide large-scale com-
putational analyses are followed by more targeted approaches that 
reduce the solution space, increasing the complexity of the resulting 
response. (A) Genome-scale metabolic models (GEMs) are structured 
representations of an organism's metabolic capabilities based on bio-
chemical, genetic, and phenotypic knowledge, providing a map of all 
biochemical reactions within a cell. Comparing different GEM maps 
allows the exploration of potential metabolic candidates responsible 
for enhancing or preventing colonization. (B) Workflow for in  vitro 
validation of the metabolic predictions obtained from GEMs. The fit-
ness effect of any given mutant can be tracked using high-throughput 
genome sequencing techniques such as CRISPRi or Tn-Seq, which 
facilitate the validation process. Constructing arrayed libraries allows 

genome-wide metabolic interrogation and by comparing initial and 
final mutants’ abundance, factors associated with under-represented 
populations can be highlighted as metabolic targets. (C) Follow-
ing phenotype confirmation, models that simulate the conditions of 
the gastrointestinal tract can be used to elucidate the role of meta-
bolic traits in gut colonization. Non-classical animal models such as 
zebrafish or Galleria mellonella, together with mice models, consti-
tute an approximation to test the targets’ performance in vivo but still 
miss some human gut inherent characteristics. Gastrointestinal simu-
lators may overcome these drawbacks, mimicking intestinal condi-
tions in different compartments and representing the different human 
intestinal sections to address the colonization capacity of the different 
species
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with gut colonization of high-risk clones within the intri-
cate environment of the gut microbiome (Heinken et al. 
2023).

In vitro arrayed perturbation experiments

Modeling helps to understand and predict the role of meta-
bolic traits on gut colonization, yet experimental validation 
is crucial to confirm these predictions (Fig. 2B). Validating 
computational metabolic predictions may seem challeng-
ing, considering that GEMs generate extensive amounts of 
data. However, recent approaches offer accessible solutions. 
One such strategy involves the construction of genome-wide 
single-gene knockout mutant libraries, such as the KEIO 
collection for E. coli (Baba et al. 2006). This collection 
contains strains with mutations in each individual gene, 
allowing researchers to systematically assess the impact 
of each gene on a specific function. The use of the KEIO 
collection allowed the identification of 45 E. coli genes 
key for the inhibition of P. aeruginosa gut colonization in 
a nutrient-dependent manner (Christofi et al. 2019). This 
study highlights the power of genome-wide mutant libraries 
to uncover the ecological and evolutionary aspects that rule 
colonization.

However, genome-wide mutant libraries are only avail-
able for model bacteria and, therefore, are unsuitable for 
non-model species in the microbiota. Molecular biology 
has made significant progress in the dynamical engineering 
of cellular metabolism, especially with the development of 
CRISPR/Cas9 gene editing technology (Wang et al. 2016). 
Recent advances focus on using a catalytically dead version 
of Cas9 (dCas9) that cannot cleave DNA but retains a strong 
DNA binding activity. The binding of dCas9 to promoters 
and open reading frames efficiently prevents the expression 
of targeted genes by blocking transcription ⁠. Hence, dCas9, 
combined with a single-guide RNA (sgRNA) targeting the 
chosen gene, can bind and repress targeted genes strongly 
and specifically (Bikard et  al. 2013; Call and Andrews 
2022). This system is called CRISPRi (for CRISPR inter-
ference) and has been validated under several experimental 
conditions and bacterial species (Bikard et al. 2013; Rous-
set and Bikard 2020; Call and Andrews 2022) ⁠. By generat-
ing large sgRNA libraries redundantly targeting the whole 
genome of target bacteria, CRISPRi can be used to inter-
rogate bacterial phenotypes in a high-throughput manner 
(Rousset and Bikard 2020), allowing the study of complex 
bacterial traits, such as colonization capacity, at an unprece-
dented resolution⁠. This technology enables the decryption of 
metabolic interactions by genetically engineering non-model 
bacterial species. For example, CRISPRi was used in the 
non-model probiotic strain Eubacterium limosum to study 
the role in gut colonization of several genes in the Wood-
Ljungdahl pathway and the fructose-phosphotransferase 

system, paving the way for future metabolic studies in a 
non-traditionally studied bacteria (Shin et al. 2019; Call and 
Andrews 2022).

Transposon insertion sequencing (Tn-seq) offers another 
useful approach to uncovering complex metabolic inter-
actions. This technique combines high-throughput DNA 
sequencing with transposon genome-wide mutagenesis. 
When a transposon is inserted in a gene, its function will be 
disrupted, hence revealing critical aspects of gene function-
alities (Van Opijnen et al. 2009). Tn-seq requires generating 
a transposon library containing mutants with insertions in 
every non-essential gene. After growth in a given environ-
ment, the abundance of each specific insertion is retrieved 
by deep sequencing. Comparing each mutant’s abundance 
before and after growth provides quantitative information 
correlating phenotype with genotype (Van Opijnen et al. 
2009; Burby et al. 2017). For instance, the analysis of nearly 
all Vibrio cholerae genes through Tn-seq revealed that bac-
teria lacking vgrG3 gene, displayed a reduced coloniza-
tion capacity. VgrG3 is part of the Type 6 secretion system 
(T6SS), a major virulence mechanism in Gram-negatives, 
and therefore, a deficiency in this secretion system will result 
in a compromised ability to compete with commensal bac-
teria (Fu et al. 2013).

In summary, high-throughput genomic disruption and 
interaction experiments hold great potential to decode host-
microbiome associations, improve functional profiling of 
microbial genomes, and tackle complex biological pathways 
that underlie the colonization success of bacterial pathogens.

In vivo and simulated environments

While the above-mentioned in silico and in vitro techniques 
provide a huge amount of information, they offer a limited 
view of gut colonization due to their static and simplified 
nature. In silico and in vitro techniques cannot fully replicate 
the dynamic interplay between the gut’s changing environ-
ment (pH, temperature, bile salts, etc.) and the complex bio-
chemical processes and microbiota interactions within the 
human gastrointestinal tract (Morelli 2000).

Complex environments that mimic natural conditions 
should be employed to further validate insights identified 
through in silico and in vitro assays (Fig. 2C). Mice are argu-
ably the most common animal model to study host-pathogen 
interactions (Wilk and Schughart 2012; Smith et al. 2022); 
however, ethical and cost-related issues preclude their use in 
many laboratories. Alternative model systems are progres-
sively gaining importance. For instance, Galleria mellonella 
has been increasingly used as a model to study bacterial 
infection (Ménard et al. 2021), particularly by multi-resistant 
bacteria (Krezdorn et al. 2014). This invertebrate presents an 
immune system similar to mammals, and the research find-
ings in G. mellonella often correlate with mammal results. 
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In addition, the handling of the specimens is more straight-
forward than that of other invertebrate models. Vertebrate 
alternatives, such as Zebrafish (Danio rerio), also serve as 
models for studying host-microbiome interactions (Yang 
et al. 2022; Kaszab et al. 2023). Nevertheless, even the ani-
mal models listed above may not accurately capture some 
aspects of the complex interactions of the human gut.

Motivated by the complex, costly, and ethically regu-
lated process associated with animal models (Dupont et al. 
2019), novel approaches simulating intricate gut microbiota 
environments have emerged as promising alternatives. For 
example, human-associated gut microbiota microcosms 
are scalable and easy to manipulate in the laboratory while 
offering an ex vivo model of the human gut microbiota that 
partially preserves its natural diversity. In this model, anaer-
obic microcosms are filled with a fresh human fecal slurry 
that includes the resident microbial community. Human gut 
microbiota microcosms have been used to study coloniza-
tion by high-risk clones (Benz et al. 2021) and horizontal 
gene transfer of antibiotic resistance genes (Baumgartner 
et al. 2020).

A more realistic yet complex model system is the gas-
trointestinal simulator. This in vitro platform dynamically 
mimics the human digestive processes (Dupont et al. 2019). 
Gastrointestinal simulators typically consist of a series of 
compartments that mimic the physiological conditions found 
in different gastrointestinal tract regions, such as the stom-
ach, small intestine, and colon. Gastrointestinal simulators 
allow to experimentally dissect how digestion and nutrient 
availability along the gut influence human health and disease 
by simulating the complex interactions between food com-
ponents, gut microbiota, and host cells. The efficacy of this 
approach has been demonstrated in studies investigating the 
potential survival and activity of probiotics in the gastroin-
testinal tract (Thuenemann 2015; Lambrecht et al. 2019; Liu 
et al. 2020). The use of gastrointestinal simulators provides a 
valuable and robust platform to inform in vivo experiments, 
reducing costs and animal use and aligning with recent 
European Directives promoting non-animal approaches for 
research (European Commission 2024). Remarkably, using 
human fecal samples to seed the simulator may help to study 
the metabolic ability and colonization capacity of high-risk 
clones in a real-life complex environment.

Conclusions

While the gut microbiota composition varies significantly 
between individuals, recent findings suggest a functional 
convergence that transcends specific bacterial species 
(Diaz-Colunga et al. 2023). This implies that the metabolic 
capabilities of the gut microbiota, rather than its exact 
composition, play a critical role in enabling successful 

colonization by high-risk clones. Consequently, the future 
of gut microbiome research is moving beyond a species-
centric view towards a functional understanding of the 
metabolic landscape. This shift will not only enhance 
our ability to combat antibiotic resistance but will also 
pave the way for developing novel therapeutic interven-
tions and personalized medicine approaches based on an 
individual’s unique gut metabolic profile. In this regard, 
novel techniques like GEMs, CRISPRi, and Tn-Seq, com-
bined with new in vitro and in vivo models that mimic 
gut conditions, will help to dissect the intricate metabolic 
interplay within the gut microbiome. Identifying the meta-
bolic strengths and weaknesses of high-risk clones will be 
crucial to establishing targeted strategies to disrupt their 
colonization ability and predict the emergence of antibi-
otic-resistant threats.
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