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Abstract
The scarce antifungal arsenal, changes in the susceptibility profile of fungal agents, and lack of adherence to treatment have 
contributed to the increase of cases of dermatomycoses. In this context, new antimicrobial substances have gained importance. 
Chalcones are precursors of the flavonoid family that have multiple biological activities, have high tolerability by humans, 
and easy synthesis. In this study, we evaluated the in vitro antifungal activity, alone and in combination with conventional 
antifungal drugs, of the VS02–4′ethyl chalcone-derived compound against dermatophytes and Candida spp. Susceptibility 
testing was carried out by broth microdilution. Experiments for determination of the target of the compound on the fungal 
cell, time-kill kinetics, and toxicity tests in Galleria mellonella model were also performed. Combinatory effects were evalu-
ated by the checkerboard method. Results showed high activity of the compound VS02–4′ethyl against dermatophytes (MIC 
of 7.81–31.25 μg/ml). The compound targeted the cell membrane, and the time-kill test showed the compound continues to 
exert gradual activity after 5 days on dermatophytes, but no significant activity on Candida. Low toxicity was observed at 
250 mg/kg. Excellent results were observed in the combinatory test, where VS02–4′ethyl showed synergistic interactions 
with itraconazole, fluconazole, terbinafine, and griseofulvin, against all isolates tested. Although further investigation is 
needed, these results revealed the great potential of chalcone-derived compounds against fungal infections for which treat-
ments are long and laborious.
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Introduction

Dermatomycoses affect 20–25% of the world population 
(Baghi et al. 2016; Zhan and Liu 2017; Appelt et al. 2021). 
They are caused by fungi that can invade the stratum cor-
neum the skin, the intrafollicular keratinized portion of the 
hair, or nail plate (Corralo et al. 2014). The main etiologi-
cal agents are dermatophyte fungi, especially Trichophyton 
rubrum, T. mentagrophytes, Epidermophyton floccosum, and 
Microsporum canis; and Candida spp. (Monod and Méhul 
2019; Sylla et al. 2019). The scarce antifungal arsenal and 
change in the susceptibility profile of the etiological agents 
have contributed to the perpetuation of these mycoses in 
the population. Furthermore, patients often fail to adhere 
to long-term treatments (Gupta and Stec 2019; Lindsø 
Andersen et al. 2020; Gupta et al. 2021).
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In the search of new antimicrobial molecules, plant 
metabolites are being increasingly studied due to their ben-
eficial biological properties (Dos Santos Ramos et al. 2016). 
In this context, chalcones, precursors of the flavonoid family, 
have great potential for exploration. They can interact with 
multiple biological targets, have high tolerability by humans, 
and the synthesis of its derivatives is simple (León-González 
et al. 2015). It has been reported many chemotherapeutic 
activities, including anticancer (Letafat et al. 2013; Ket-
abforoosh et al. 2014), antibacterial (Nowakowska 2007; 
Mahapatra et al. 2015; Marques et al. 2020), antiviral (Duran 
et al. 2021; Mothana et al. 2022; Valipour 2022; Nematollahi 
et al. 2023), antiparasitic (González et al. 2020; Nematollahi 
et al. 2023), and antifungal (Wang et al. 2016; Marques et al. 
2020; Mirzaei et al. 2020; Gładkowski et al. 2023).

Currently, the main challenge in treating infectious 
diseases is the development of drug-resistant microorgan-
isms. This resistance can emerge due to mutations, genetic 
changes, and phenotypic modifications. As a result, treat-
ments that were once effective may no longer work, leading 
to unsuccessful disease management, a higher risk of trans-
mission, and increased mortality rates. Therefore, devel-
oping new antimicrobial drugs is essential (Dhingra et al. 
2020). Researchers are increasingly focusing on chalcones 
due to their proven antimicrobial properties against viruses, 
bacteria, fungi, and protozoa (Nematollahi et al. 2023).

Combining natural compounds, particularly chalcones, 
with antimicrobial drugs holds significant promise for 
improving the treatment of infectious diseases. By combin-
ing chalcones with existing antimicrobial drugs, it is pos-
sible to enhance the efficacy of treatments, especially in 

cases of resistance (Pereira et al. 2022; Chai et al. 2023). 
This synergy between traditional medicines and natural 
compounds, such as chalcones, carvacrol, gallic acid, epi-
gallocatechin gallate, and essential oils, has already been 
reported in studies, reinforcing not only the expansion of the 
spectrum of antimicrobial activity but also opening the door 
to more effective therapeutic strategies for combating infec-
tious diseases (Ayaz et al. 2019; Hellewell and Bhakta 2020; 
Brescini et al. 2021; Dos Santos et al. 2023; Sun et al. 2023).

In this study, we report the activity of a chalcone-derived 
compound, including determination of the target on the 
fungal cell, time-kill and toxicity analyses, and synergistic 
activity with conventional antifungals, against dermato-
phytes and Candida spp.

Material and methods

Fungal isolates

The list of clinical isolates and reference strains used in this 
study is in Table 1. In accordance with the Brazilian regula-
tion, the isolates are registered in the SisGen (National Sys-
tem for the Management of Genetic Heritage and Associated 
Traditional Knowledge) – protocol number A2B1006.

Synthesis of the compound

The chalcone-derived compound was provided by the Labo-
ratory of Antibiotics and Chemotherapy (LAQ) at the São 
Paulo State University (Unesp), Campus São José do Rio 

Table 1  Dermatophytes and 
Candida isolates included in 
this study, the identification 
code, culture collection, and 
origin of isolation

ATCC  American Type Culture Collection, CBS Centraalbureau voor Schimmelcultures, FAMERP Facul-
dade de Medicina de São José do Rio Preto; (-), unknown

Isolate code Species Culture collection Origin

TRCBS T. rubrum CBS2266 -
TR7984 T. rubrum FAMERP Foot skin
TR6284 T. rubrum FAMERP Toenail
TMATCC T. mentagrophytes ATCC 18748 Mild dermatophytosis
TM6007 T. mentagrophytes FAMERP Foot skin
TM6085 T. mentagrophytes FAMERP Toenail
MCATCC M. canis ATCC 11621 Clinical dermatophytosis
MC8168 M. canis FAMERP Scalp
MC8295 M. canis FAMERP Scalp
EF6050 E. floccosum FAMERP Toenail
EF6069 E. floccosum FAMERP Toenail
EF8233 E. floccosum FAMERP Toenail
CGA TCC C. glabrata ATCC 2001 Feces
CG6930 C. glabrata FAMERP Urine
CAUCBS C. auris CBS -
CAU491 C. auris FAMERP -
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Preto, Brazil. It was synthesized by Claisen–Schmidt aldol 
condensation reaction (Dos Santos et al. 2017, 2019). The 
components (aminoacetophenones and aldehydes) were 
dissolved in ethanol, and sodium hydroxide in ethanol was 
added as catalyst solution. The reaction product was kept 
under stirring for 2–6 h at RT and then poured into ice and 
filtered or extracted with ethyl acetate. The organic phases 
were combined and washed with aqueous NaHSO solution 
and dried over  MgSO4. Filtration occurred under reduced 
pressure. After chromatographic separation and purification, 
the chalcone compounds were obtained in a yield of around 
40%. Characterization of compounds included determina-
tion of melting points, structure, and spectral analyses. The 
compound used in this study was the VS02–4′ethyl, where 
an ethyl group was inserted at the fourth carbon position of 
the first aromatic ring (Fig. 1). For the in vitro assays, the 
compound was solubilized in 10% DMSO (LabSynth®).

Antifungal susceptibility testing

The susceptibility profiles of the fungal isolates against the 
VS02–4′ethyl chalcone compound and conventional antifun-
gal drugs (itraconazole, fluconazole, terbinafine, griseoful-
vin—[Sigma-Aldrich®]) were determined by broth micro-
dilution, according to protocols M38-3rd ed (CLSI 2017) 
and M27-3rd ed (CLSI 2008) of the Clinical Laboratory 
Standard Institute.

In 96-wells plates, the VS02–4′ethyl was serially diluted 
in RPMI–1640 medium (Rosen Park Media Institute—
Sigma-Aldrich®). For dermatophytes, final testing con-
centrations ranged from 250 to 0.48 µg/ml. For yeast, the 
concentrations ranged from 1000 to 1.95 µg/ml. Similarly, 
the antifungals were diluted to reach the following concen-
trations: 256–0.5 µg/ml, for fluconazole; 8–0.015 µg/ml, for 
terbinafine; and 16–0.03 µg/ml, for itraconazole and griseof-
ulvin. Griseofulvin was only tested against dermatophytes.

Dermatophytes were cultured in Potato-dextrose agar 
(Oxoid ®) for 7 days, at 35 °C, and yeast in Sabouraud-dex-
trose agar (SDA, Oxoid ®) for 24 h, at 37 °C. The inocula 
were prepared in 0.9% sterile saline solution to reach final 
concentrations of 0.4 to 5 ×  104 CFU/ml, for dermatophytes, 
and 0.5 to 2.5 ×  103 CFU/ml, for yeast.

After inoculation, the plates were incubated at 35 °C and 
visual readings were carried out after 120 h, for dermato-
phytes, and 48 h, for yeast. Minimum inhibitory concentra-
tions (MIC) were determined as the lowest concentration 
capable of inhibiting 80% of fungal growth, for fluconazole 
and itraconazole, and 100% of fungal growth, for griseoful-
vin, terbinafine, and the VS02–4′ethyl compound.

Minimum fungicidal concentrations (MFC) were deter-
mined by subculturing an aliquot from each well into agar 
plates, and it was considered as the lowest concentration 
capable of inhibiting fungal growth in the culture medium.

Sterility, growth, and solvent controls were added to each 
test. Tests were performed in triplicate.

Sorbitol and ergosterol assays

In addition to the compound susceptibility testing, experi-
ments were performed with two different supplemented 
RPMI–1640 to determine where the VS02–4′ethyl will target 
on the fungal cell. The first supplement to the RPMI–1640 
medium was 0.8 M sorbitol (Sigma-Aldrich®) (De Castro 
et al. 2015). Sorbitol acts as an osmoprotector that allows 
cells to grow in the presence of an inhibitor of a fungal cell 
wall synthesis (Svetaz et al. 2007). Consequently, increases 
in MIC values indicates that the compound targets the cell 
wall. The other supplement was the ergosterol (Sigma-
Aldrich®) at 400 μg/ml (De Castro et  al. 2015). If the 
compound activity is due to ergosterol binding, providing 
exogenous ergosterol would prevent binding to ergosterol 
of the fungal membrane, what would increase MIC values 
(Escalante et al. 2008).

The fungal isolates TRCBS, TMATCC, MCATCC, 
EF6069, CGA TCC , and CAUCBS were selected for these 
assays. Values of MIC were compared with and without 
sorbitol and ergosterol supplementation.

As controls, these isolates were tested against caspo-
fungin (Sigma-Aldrich®) and amphotericin B (Sigma-
Aldrich®) (at final concentration of 16 to 0.03 µg/ml) with 
RPMI–1640 without and with supplementation with sorbitol 
and ergosterol, respectively. Sterility, growth, and solvent 
controls were added to each test. Tests were performed in 
triplicate.

Fig. 1  Chemical structure of 
the chalcone-derived compound 
VS02–4′ethyl
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Time‑kill analysis

Time-kill analysis were carried out according to Klepser 
et al. (1998). The isolates used in this experiment were 
TRCBS, TMATCC, MCATCC, EF6069, CGA TCC , and 
CAUCBS. Fungal inocula were prepared as previously 
described and diluted 1:1 with VS02–4′ethyl. For derma-
tophytes, two concentrations of the compound were tested, 
500 μg/ml and 62.5 μg/ml. For Candida spp., the concentra-
tion of the compound was 4000 μg/ml. Controls included 
10% DMSO solution, without the compound.

At predetermined times (initial moment—0 h, 8 h, 24 h, 
48 h, and 120 h), an aliquot of 30 μl was inoculated on SDA 
plates with a Drigalski spatula. After 120 h, for dermato-
phytes, and 48 h, for yeasts, at 35 °C, the colonies were 
counted, and the results adjusted to  Log10 CFU/ml.

Toxicity analysis

The toxicity of the VS02–4′ethyl compound was determined 
by an experimental model of Galleria mellonella larvae, 
according to Ignasiak and Maxwell (2017). The G. mel-
lonella in vitro model has the advantage of the fact that this 
insect immune system is functionally and structurally similar 
to the innate immune system of mammals, along with the 
low cost of the technique and the fast of insect reproduction 
(Browne et al. 2013; Ignasiak and Maxwell 2017). The com-
pound was tested at the following concentrations: 125 μg/
ml, 250 μg/ml, 500 μg/ml, 1000 μg/ml, and 2000 μg/ml). 
For each experiment, five groups of five larvae at the sixth 
stage of development (250 ± 25 mg) were inoculated with 
compound. Five microliters were injected into the last right 
proleg of the larvae using a 10 μl Hamilton model 7000.5KH 
micro syringe. As controls, it was used untouched larvae 
(naïve), larvae inoculated with 99.9% ethanol (mortality 
control), sterile water (negative toxicity control), and 60% 
DMSO.

The larvae were incubated at 37 °C, deprived of food and 
direct lighting. Larvae survival assessments were carried 
out every 24 h for 5 days and pre-pupal formations were 
removed daily to delay their metamorphosis. Survival anal-
ysis was performed using the log-rank (Mantel-Cox) test. 
GraphPad Prism® software version 9.3.0 for Windows (San 
Diego, California, USA) was used for statistical analysis.

Checkerboard assay

The combinatorial effect between the chalcone-derived 
compound and conventional antifungal drugs was evalu-
ated using the checkerboard method (CLSI 2008; Lemes 
et al. 2023).

In 96-wells plates, the VS02–4′ethyl was combined with 
each antifungal. In the assays against dermatophytes, the 

chalcone-derived compound concentration ranged from 125 
to 0.12 μg/ml, and, for Candida spp., ranged from 1000 to 
0.97 μg/ml. The antifungal drugs varied from 128 to 0.5 μg/
ml, for fluconazole; 16 to 0.03, for itraconazole; 64 to 
0.007 μg/ml, for terbinafine; and 4 to 0.06 μg/ml, for griseof-
ulvin. Griseofulvin was only tested against dermatophytes.

The isolates TRCBS, TR7984, CGA TCC , and CAUCBS 
were used in this assay. The inocula were prepared as previ-
ously described. Inoculation, incubation, and readings were 
also performed as previously described.

To evaluate the interaction between the compound and 
the drugs, the fractional inhibitory concentration (FIC) 
index was calculated, following the classification by Kumar 
et al. (2012), where FIC ≤ 0.5 means synergistic interac-
tion; 0.5 < FIC ≤ 1 means additive action; 1 < FIC ≤ 2 means 
indifferent interaction; and FIC > 2 means antagonistic 
interaction.

Results

Antifungal activity of VS02–4′ethyl

The chalcone-derived compound showed high activity 
against dermatophytes, with MIC ranging from 7.81 to 
31.25 μg/ml, and geometric mean (GM) of 14.74 μg/ml. 
For Candida spp., MIC values ranged from 500 to 1000 μg/
ml and GM of 840.90 μg/ml. Regarding MFC, values var-
ied between 31.25 and > 250 μg/ml, for dermatophytes, and 
1000 and > 1000 μg/ml, for Candida spp. (Table 2).

Regarding the antifungal drugs, terbinafine showed the 
most potent activity against dermatophytes (Table 2), fol-
lowed by itraconazole and griseofulvin. Fluconazole showed 
the least activity. Against Candida isolates, only itracona-
zole exhibited high activity. Detailed results are shown in 
Table 2.

Sorbitol and ergosterol assays

Comparing of the experiments with and without supplemen-
tation, it was observed that the presence of sorbitol did not 
alter the MIC values. However, the presence of exogenous 
ergosterol in the tests caused the MIC values to increase 
up to 8 times (from 31.25 to 250 μg/ml) (Table 3). That 
indicates that the VS02–4′ethyl targets the cell membrane 
of fungi.

Time‑kill analysis

Data obtained in the time-kill experiments can be seen on 
Fig. 2. For dermatophytes, results show that the compound 
caused a mean of 1.12-log reduction of viability, at 500 µg/
ml, and 0.92-log reduction, at 62.5 µg/ml, after 5 days. The 
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figure shows that the decrease was gradual over time, until 
the end of the analysis. Contrarily, the analyses evidenced 
that the compound does not have high activity against 

the Candida isolates tested, since no reduction could be 
observed after 5 days, even at a higher concentration of the 
compound (4.000 µg/ml) (Fig. 2).

Table 2  Minimum inhibitory 
concentrations (MIC), minimum 
fungicidal concentrations 
(MFC), and geometric mean 
MIC values of the chalcone-
derived compound; and 
MIC values of fluconazole, 
itraconazole, terbinafine, 
and griseofulvin, against 
the isolates of T. rubrum, T. 
mentagrophytes, M. canis, E. 
floccosum, C. glabrata, and C. 
auris included in this study

MIC minimum inhibitory concentration, MFC minimum fungicidal concentration, GM geometrical mean

Isolates VS02–4′ethyl Fluconazole Itraconazole Terbinafine Griseofulvin

MIC (μg/ml) MFC (μg/ml) MIC (μg/ml) MIC (μg/ml) MIC (μg/ml) MIC (μg/ml)

T. rubrum
  TRCBS 15.62 31.25 4 0.5  < 0.015 1
  TR6284 7.81 31.25 32 0.25  < 0.015 1
  TR7984 7.81 31.25 32 0.12  < 0.015 1
  GM 9.84

T. mentagrophytes
  TMATCC 31.25  > 250 4 0.5  < 0.015 0.5
  TM6007 7.81 31.25 128 0.5  < 0.015 0.5
  TM6085 15.62 62.50 128 0.12  < 0.015 1
  GM 15.62

M. canis
  MCATCC 15.62 62.50 16 0.25  < 0.015 0.06
  MC8168 15.62 250 32 0.25  < 0.015 0.25
  MC8295 15.62 250 32 0.12  < 0.015 0.5
  GM 15.62

E. floccosum
  EF6050 31.25 250 8 0.12 0.5 2
  EF6069 15.62 125 32 0.12  < 0.015 0.5
  EF8233 15.62 62,50 32 0.12  < 0.015 2
  GM 19.68

C. glabrata
  CGA TCC 500 1000 32 2 16 -
  CG6930 1000  > 1000 32 2 16 -
  GM 707.11

C. auris
  CAUCBS 1000  > 1000 8 0.06 2 -
  CAU491 1000  > 1000  > 128 0.25  > 16 -
  GM 1000

Table 3  Sorbitol and ergosterol supplementation tests. Minimum 
inhibitory concentration (MIC) values (in µg/ml) of the VS02–4′ethyl 
chalcone-derived compound, caspofungin, and amphotericin B, 

before and after medium supplementation with sorbitol or ergosterol, 
against T. rubrum, T. mentagrophytes, M. canis, E. floccosum, C. 
glabrata, and C. auris isolates

VS VS02–4′ethyl chalcone-derived compound, CSP caspofungin, AMB amphotericin B

Isolate Sorbitol supplementation Ergosterol supplementation

MIC Before MIC After MIC Before MIC After

VS CSP VS CSP VS AMB VS AMB

TRCBS 31.25 0.12 31.25 0.5 31.25 0.5 250 2
TMATCC 31.25 0.03 31.25 0.06 31.25 0.25 250 8
MCATCC 7.81 0.12 7.81 0.25 15.62 0.12 125 0,5
EF6050 62.5 0.06 62.5 0.25 31.25 0.25 250 0,5
CGA TCC 500 4 500 8 500 16  > 2.000  > 16
CAUCBS 1.000 16 1.000  > 16 1.000 8  > 2.000  > 16
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Toxicity analysis

The tests with VS02–4′ethyl concentration of 125 and 
250 mg/kg showed low toxicity, with survival rates of 60% 

of the G. mellonella larvae, after 5 days. At 500 mg/kg, 40% 
of the larvae survived after 5 days. Concentrations of 1000 
and 2000 mg/kg of VS02–4′ethyl killed all larvae after three 
and 4 days, respectively (Fig. 3).

Fig. 2  Time-kill kinetics assay. Log10 CFU/ml of isolates of T. rubrum, T. mentagrophytes, M. canis, E. floccosum, C. glabrata, and C. auris 
after 0, 8, 24, 48, and 120 h of exposure to the chalcone-derived compound and in its absence (control)
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Checkerboard assay

When combined, all tests showed MIC reduction of the anti-
fungal drugs and the VS02–4′ethyl compound. Values of 
FICI index varied from 0.1 to 0.5, all in the range of syner-
gistic combinatory effect (Table 4).

Discussion

In this study, we report the antifungal activity of the chal-
cone-derived compound VS02–4′ethyl against the main etio-
logical agents of dermatomycoses. Chalcones are among the 
main secondary metabolites of edible plants. Most chalcones 

are polyhydroxylated aromatic compounds and bioprecur-
sors of open-chain flavonoids and isoflavonoids (Rudrapal 
et al. 2021). They can be obtained from natural or synthetic 
sources, which can form different derivative compounds 
from their main structure (Mirzaei et al. 2020). Modifica-
tion of the structure of chalcones enhances their biological 
activity, reduces toxicity, and increases their pharmacologi-
cal effects (Nawaz et al. 2023).

Some of the well-known natural chalcone containing 
drugs are Butein (anticancer and anti-inflammation), Xan-
thohumol (antibacterial and anti-HIV agent), Isoliquir-
itigenin (anti-cancer, chemoprotective, anti-inflammatory 
and antioxidant), Cardamonin (ATP diphosphohydrolase), 
licochalcone (anti-inflammatory, anti-cancer), Metochalcone 

Fig. 3  Survival rate (%) of Gal-
leria mellonella larvae exposed 
to different concentrations of 
the VS02–4′ethyl chalcone-
derived compound, and distilled 
water, 60% DMSO, 99.9% 
ethanol

Table 4  Checkerboard assays 
results. Minimum inhibitory 
concentration (MIC) values 
(in µg/ml) of the VS02–4′ethyl 
chalcone-derived compound 
and fluconazole, itraconazole, 
griseofulvin, and terbinafine, 
alone and combined, against T. 
rubrum, T. mentagrophytes, C. 
glabrata, and C. auris isolates; 
and fractional inhibitory 
concentration index (FICI), 
which indicates the nature of 
the combinatory effect of the 
compounds

MIC minimum inhibitory concentration, VS VS02–4′ethyl chalcone-derived compound, FCZ fluconazole, 
ITZ itraconazole, TBF terbinafine, GFV griseofulvin, FICI fractional inhibitory concentration index

Isolate Single agent MIC In combination MIC FICI Combinatory effect

VS FCZ VS FCZ

TRCBS 31.25 4 0.12 2 0.5 Synergistic
TR7984 15.62 32 0.12 16 0.5 Synergistic
CGA TCC 1000 64 0.97 16 0.2 Synergistic
CAUCBS 1000 32 0.97 16 0.5 Synergistic

VS ITZ VS ITZ
TRCBS 31.25 0.5 0.12 0.12 0.3 Synergistic
TR7984 15.62 0.5 0.12 0.25 0.5 Synergistic
CGA TCC 1000 16 0.97 2 0.1 Synergistic
CAUCBS 1000 0.5 0.97 0.25 0.5 Synergistic

VS TBF VS TBF
TRCBS 31.25 0.007 0.12 0.003 0.4 Synergistic
TR7984 15.62 0.015 0.12 0.007 0.4 Synergistic
CGA TCC 1000 64 250 2 0.2 Synergistic
CAUCBS 1000 64 250 8 0.4 Synergistic

VS GFV VS GFV
TRCBS 31.25 1 0.12 0.5 0.5 Synergistic
TR7984 15.62 1 0.12 0.5 0.5 Synergistic
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(choleretic agent), and Sofalcone (anti-ulcer agent) (Narwal 
et al. 2024). Due to the presence of phenolic groups and 
their property of scavenging radicals, plant extracts rich in 
chalcones have been extensively studied in the search for 
new therapeutic compounds (Ouyang et al. 2021).

Regarding their antimicrobial activity, it has been 
reported that chalcones and other flavonoids are lipophilic, 
which may lead to disruption of the cell membrane and 
leakage of nucleic acids (Thebti et al. 2023), which cor-
roborates the data obtained in the ergosterol experiment of 
this study. Additionally, the activity of a chalcone-derived 
compounds may result from the downregulation of genes 
encoding virulence factors, such as isocitrate lyase, citrate 
synthase and malate synthase (Cantelli et al. 2017), efflux 
pumps (Komoto et al. 2015; Nematollahi et al. 2023), and 
inhibition of fatty acid synthesis (Nematollahi et al. 2023). 
However, chalcones may act differently depending on the 
fungal species or genera (Lahtchev et al. 2008; Mellado et al. 
2020; Morão et al. 2020).

The VS02–4′ethyl compound showed higher activity 
against dermatophytes when compared to Candida isolates, 
with MIC ranging from 7.81 to 31.25 μg/ml for filamentous 
fungi, versus MIC values ranged from 500 to 1000 μg/ml for 
yeast (Table 2). A previous study showed that yeast’s intra-
cellular glutathione and cysteine molecules act as defense 
barriers against chalcones (Lahtchev et al. 2008). These pro-
teins are related to vitality, cellular development, and patho-
genesis (Wangsanut and Pongpom 2022). In a metabolomic 
study by Ciesielska et al. (2021), the authors report that, 
during keratin degradation by dermatophytes, cysteine levels 
increased but glutathione molecules were not detected in 
the experiment. This glutathione deficiency may help eluci-
date why the VS02–4′ethyl presented higher activity against 
dermatophytes.

It is crucial the discovery and development of new treat-
ments for dermatomycoses because of their great incidence 
worldwide. Moreover, treatment failure and antifungal 
resistance are being increasingly reported (Gupta and Ven-
kataraman 2022). Antifungal resistance is often related to 
mutations that modifies the target of the drug or regulation 
of efflux pumps (Ksiezopolska and Gabaldón 2018) and can 
be associated to long term use. A 2-year study demonstrated 
that excessive use of fluconazole promoted resistance in 
Candida species, with approximately 98% of the C. albi-
cans isolates, 93% of C. parapsilosis, 91% of C. tropicalis, 
and 68% of C. glabrata resistant to fluconazole (Beards-
ley et al. 2018). Candida auris, although is not a common 
agent of superficial mycoses, colonizes the skin and it was 
included in this study due to the high incidence of resistance 
to multiple classes of antifungals and growing concern about 
outbreaks (Spivak and Hanson 2018).

Regarding dermatophytes, it is estimated that 19% of 
infections are caused by azole-resistant strains (Ghannoum 

2016). Although resistance to azoles is more likely, resist-
ance to terbinafine has also been reported in Microsporum 
spp. and Trichophyton spp., and is associated with muta-
tions in genes encoding the enzyme squalene epoxidase 
(Lindsø Andersen et al. 2020; Gupta et al. 2021). Failures 
in treatment may still be associated with insufficient dose 
and duration regimes, in addition to low patient adherence 
(Gupta and Venkataraman 2022).

In this study, we highlight the antifungal activity of the 
VS02–4′ethyl chalcone-derived compound in association 
with the conventional antifungal drugs (Table 4). Syner-
gistic interaction occurred in all experiments (FIC values 
less than or equal to 0.5), causing a significant decrease 
of MIC values for both antifungal, with reductions of up 
to five-fold in MIC value, and the compound itself, with 
reductions of up to ten-fold. This may be incredibly ben-
eficial, especially against C. glabrata and C. auris, which 
presented elevated MIC values for the compound and the 
antifungals alone.

The best performance of the compound was observed 
against the C. glabrata strain in synergistic action with itra-
conazole. Individually, the MIC value of the compound was 
1000 µg/mL, while that of itraconazole was 16 µg/mL. How-
ever, when combined, there was a significant reduction in the 
MIC values to 0.97 and 2 µg/mL, respectively. Considering 
the high resistance rates of C. glabrata to itraconazole and 
other azoles (Kaan et al. 2021; Frías-De-León et al. 2021; 
Dunaiski et al. 2024), these results indicate a potent syn-
ergistic interaction of the compound VS02–4′ethyl, which 
enhances the action of itraconazole, providing a promising 
approach for the treatment of resistant infections.

Synergistic interactions can improve drug pharmacoki-
netics, slow down their metabolism and elimination by the 
body, and decrease toxicity effects (Ahmad et al. 2017). 
Different possible mechanisms for synergy activities have 
already been proposed: one compound may act alone and 
the second bind to the target, facilitating the binding of the 
first compound; two compounds may reach different loca-
tions or biological pathways and exert a collective effect; or 
two compounds can act on the same biological pathway at 
two different stages, increasing activity (Ahmad et al. 2017; 
Spitzer et al. 2017).

Synergistic interactions between chalcone-derived com-
pounds and fluconazole have already been reported. Ahmad 
et al. (2017) investigation indicated that the chalcone–flu-
conazole interaction reversed fluconazole resistance causing 
a downregulation of the ERG11 gene, which is important in 
the ergosterol biosynthesis pathway and is crucial for flucon-
azole resistance. Nonetheless, this may not be the only mode 
of action, since the VS02–4′ethyl also showed synergy with 
griseofulvin, which acts in the process of fungal mitosis by 
interacting with microtubules, disrupting the mitotic spindle 
(Yesudian et al. 2021). Unfortunately, most data available 
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on the interaction of antifungal drugs and chalcone-derived 
compounds reference fluconazole.

In conclusion, the main finding of this study was the 
highly synergistic activity of VS02–4′ethyl chalcone-derived 
compound with conventional antifungal drugs against der-
matophytes and Candida spp. The VS02–4′ethyl in concen-
tration equal to or less than 250 mg/kg showed low toxicity, 
study report that some chalcones can be toxic at high con-
centrations, leading to cytotoxicity, genotoxicity, and other 
harmful effects. However, chalcones are generally consid-
ered safe at lower doses (Jesus et al. 2022). Further investi-
gations are needed to elucidate the mode of action and the 
synergistic interaction of the VS02–4′ethyl with the different 
classes of antifungals. In addition, further studies should 
reveal the best administration route and the in vivo effects 
of the compound. Nevertheless, these results revealed the 
great potential of chalcone-derived compounds against fun-
gal infections for which treatments are long and laborious.
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