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Abstract
The microbiome is an important consideration for the conservation of endangered species. Studies provided evidence of 
the effect of behavior and habitat change on the microbiota of wild animals and reported various inferences. It indicates the 
complexity of factors influencing microbiota diversity, including incomplete sampling procedures. Data abnormality may 
arise due to the procedures warranting preliminary analysis, such as rarefaction, before downstream analysis. This present 
study demonstrated the effect of data rarefaction and aggregation on the comparison of wild rusa deer’s gut microbial 
diversity. Eighty-five feces samples were collected from 11 deer populations inhabiting three national parks in Java and Bali 
islands. Using the Illumina Nova-Seq platform, fragments of 16s rRNA gene were sequenced, and raw data of 51,389 reads 
corresponding to 2 domains, 22 phyla, 45 classes, 83 orders, 182 families, and 460 genera of bacteria were obtained. Data 
rarefaction was applied at two different library sizes (minimum and fixed) and aggregation (11 populations into 3 research 
sites) to investigate its effect on the microbial diversity comparison. There are significant differences in alpha diversity 
between populations, but not research sites, at all library sizes of rarefaction. A similar finding is also found in beta diversity. 
Moreover, data rarefaction and aggregation result in different values of the diversity metrics. This present study shows that 
statistical analysis remains a substantial concern in microbiome studies applied to conservation biology. It suggests report-
ing a more detailed data normalization in microbiome studies as an inherent control of suboptimal sampling, particularly 
when involving feces.
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Introduction

The microbiome study of wild animals has received much 
attention in conservation biology. In that field, interactions 
of animal hosts and microbiota are an essential aspect that 

should be considered for conservation measures of endan-
gered species (Bahrndorff et al. 2016; Trevelline et al. 2019; 
Wei et al. 2019; Zhu et al. 2021). Several recent studies pro-
vide evidence of the effect of behavioral adaptation on the 
abundance of the microbiota of wild animals. For exam-
ple, Y. Sun et al. (2020) reported that Firmicutes-rich gut 
microbiota has a beneficial impact on the energy intake of 
the wild Alpine musk deer (Moschus chrysogaster). Tang 
et al. (2020) stated that a diverse microbiota in semi-wild 
Przewalski’s horses (Equus ferus przewalskii) provided a 
higher metabolic potential to utilize the complex plants. 
Yang et al. (2020) suggested adjusting the gut microbial 
community through diet training before individual release 
to increase the survival rates of Yangtze sturgeon (Acipenser 
dabryanus). Meanwhile, other studies showed the effect of 
habitat change and diet availability on the microbiota of 
wild animals. For example, Barelli et al. (2015) reported 
the importance of an undisturbed forest patch for securing 
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healthy microbiota of the Udzungwa red colobus monkey 
(Procolobus gordonorum), an endangered primate species. 
Additionally, Murray et al. (2020) discovered that changes in 
the habitat and the diet of birds modify gut microbial com-
position influencing health and pathogen susceptibility. The 
effect is particularly pronounced on the microbiota diversity 
because environmental perturbations most likely affect alpha 
diversity. Therefore, comparing this diversity represents an 
initial analysis of many microbiome studies (Willis 2019).

Particularly for diversity comparison, several studies 
investigated the gut microbiota in both wild and captive 
environment settings and indicated data analysis issues. 
For illustration, research shows that comparing microbiota 
diversities of captive and wild animals such as black rhi-
nos (Gibson et al. 2019), Pere David’s deer (Sun et al. 
2019), gaurs and mithuns (Prabhu et al. 2020), giant pan-
das (Guo et al. 2019), and other 24 vertebrate species 
(Alberdi et al. 2021) results in various conclusions. The 
variability of the results indicates the complexity of fac-
tors influencing the microbiota diversity of wild animals. 
Despite the natural variation, the sampling procedures 
and data analysis could also contribute to the disparity 
of the results. Particularly for wild animals, the collec-
tion of degraded and contaminated samples is inevitable. 
This practice increases the risk of suboptimal sampling 
procedures, including a low PCR efficacy, resulting in sub-
optimal microbiota sequencing. This suggests that statisti-
cal analysis remains a substantial concern in conservation 
biology studies to decrease the impact of such artefactual 
factors (Zhu et al. 2021).

A crucial issue in the statistical analysis of high-
throughput microbiota sequencing is the data sparsity and 
high variation of sequence number (Tsilimigras and Fodor 
2016; Pan 2021), which are typically overcome through 
the application of normalization. The sparsity occurs 
naturally in the microbiota data and is usually indicated 
by the absence or very low abundance of many taxa in 
the samples, in addition to the high abundance of several 
others. The problem of high variation in the number of 
sequences, caused by confounding factors of the natural 
characteristic of the microbiota, sampling procedures, 
and sequencing technique (Paulson et al. 2013), increases 
the complexity of the data analysis. These issues pose a 
problem in statistical modeling as both parametric and 
nonparametric models are unsuitable for analyzing data 
with too many zeros (Xia et al. 2018). Therefore, ignoring 
them may result in biased parameter estimation and false 
inference in the downstream data analysis. Normalization 
is a technique to handle such problems. It is a process in 
which the data is transformed to exclude artifactual biases 
in the original measurement (Weiss et al. 2017).

Furthermore, scaling methods (Paulson et  al. 2013), 
rarefaction (Hughes and Hellmann 2005), and log-ratio 

transformation (Aitchison 1982) are among the popular 
normalization techniques. There is no consensus on which 
method is the most appropriate for all cases, but it depends 
on the data characteristics and objective of the study, includ-
ing the magnitude of data variation (i.e., average library size; 
Weiss et al. (2017)), ecological consideration of original 
microbiota (McKnight et al. 2019), the importance of phy-
logenetic tree in the analysis (Liu et al. 2020), and the impor-
tance of taxa abundance in the study (Lin and Das 2020). 
The first two articles suggested the superiority of rarefaction 
over other methods when microbiota diversity is of concern. 
Meanwhile, the two last proposed log-ratio transformations 
when the difference in microbiota abundance is the focus of 
the study. The normalization process is thorough, involves 
many parameters, and is infrequently reported in detail.

In the present study, data normalization (rarefaction 
technique) was applied to the gut bacterial diversity of 
wild rusa deer (Cervus timorensis) comparison to demon-
strate its importance using empirical data from the field. 
The deer is a protected species in Indonesia that natively 
inhabits Java and Bali islands. At this location, the deer 
are distributed unevenly in several conservation areas, 
including savannas in the Baluran, Bali Barat, and Alas 
Purwo national parks. Baluran and Bali Barat national 
parks are distanced by approximately 30 km and spaced 
by a strait. Meanwhile, the distance between Baluran and 
Alas Purwo national parks is approximately 90 km. Each 
ecosystem of the savannas is unique in terms of vegeta-
tion and abiotic environment. Arundinella setosa, Desmo-
dium laxiflorum, Chromolaena odorata, and Flacourtia 
rukam dominated vegetation in the savanna of Alas Purwo 
National Park. The savanna of Bali Barat National Park 
is dominated by Calamagrostis australis and Borassus 
flabellifer, while Baluran National Park primarily consists 
of Desmodium laxiflorum, Azadirachta indica, Polytrias 
indica, Dichanthium caricosum, Ziziphus mauritiana, 
and Acacia nilotica (Sutomo and van Etten 2021). The 
savanna of Bali Barat is significantly richer in species 
than Baluran and Alas Purwo national parks. Variations 
in precipitation, temperature, altitude, fire regimes, and 
human intervention are likely the potential drivers of the 
uniqueness of the savanna (Whitten et al. 1996). It has 
been hypothesized that these habitat variations cause 
fluctuations in food availability and diet, leading to dif-
ferences in the microbiota diversity of the deer. However, 
in addition to natural variation, suboptimal sample col-
lection and sequencing procedures due to non-invasive 
sampling may also affect the comparison. Our study aims 
to compare the bacterial diversity of several deer popula-
tions residing in three national parks on the Java and Bali 
islands. Through this comparison, we envisage a better 
understanding of the effects of data normalization and 
aggregation on the results.
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Methods

Data collection started with gathering feces of wild rusa 
deer populations, followed by genomic DNA isolation, 
high-throughput sequencing, quality filtering, and anno-
tating of data. Feces samples were collected in the savannas 
of three national parks (research sites), Baluran, Bali Barat, 
and Alas Purwo, located in the eastern part of Java Island 
and Bali Island, as shown in Fig. 1. The recent distribution 
of the deer populations was surveyed within those savannas 
before feces collection. In pre-determined populations, a 
series of circular plots with a 1 m radius were laid every 5 
m along a line transect approximately 10 m apart, covering 

the area. Furthermore, fresh feces (indicated by moist or 
shiny surface) with a similar appearance were collected 
from each circular plot. Ten to twenty pellets of the deer 
feces were preserved in 96% ethanol inside 50-mL conical 
tubes. They were collected early morning (06.00–08.00) to 
minimize DNA degradation from sun exposure. The DNA 
was isolated from the feces within 2 weeks of collection 
using a DNeasy PowerSoil Pro® kit (Qiagen, Hilden, Ger-
many). The extraction was performed following the whole 
manufacture protocol except overnight cell lysis.

Furthermore, the extracted DNA was quantified using a 
Quantus® Fluorometer (Promega Inc.) and processed further 
for high-throughput sequencing. Before the sequencing, the 
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Fig. 1   Map showing research sites and populations where feces sam-
ples of the rusa deer were collected: Baluran (1, Bama; 2, Bekol; 3, 
Bilik; 4, Merak; 5, Datuk populations), Bali Barat (6, Brumbun; 7, 

Pura Segara; 8, Prapat Agung; 9, Octagon populations), and Alas 
Purwo (10, Plengkung; 11, Sadengan populations) national parks
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feces’ host was confirmed by PCR amplification using spe-
cific primers and Sanger sequencing of subsamples (Iman 
et al. 2024). For high-throughput sequencing, the V3-V4 
regions from the 16s rRNA gene were amplified by PCR 
using a primer couple originally developed by Klindworth 
et al. (2013). PCR conditions were as follows: initial dena-
turation (98 °C, 3 min), followed by 38 cycles of denatura-
tion (98 °C, 30 s), annealing (55 °C, 45 s), extension (72 °C, 
60 s), and final extension (72 °C, 10 min). This PCR was 
followed by a PCR clean-up using HighPrep PCR magnetic 
beads (MagBio Genomics, Gaithersburg, MD) following the 
manufacturer’s protocol. Subsequently, an index PCR with 
Nextera tags allowed us to link each sequence to its cor-
responding sample and a second PCR clean-up followed. 
Resulting libraries were then quantified using Quant-iT™ 
PicoGreen™ on a plate reader following the manufactur-
er’s instructions. Libraries were normalized to 5 nM and 
were finally pooled together and sent to the GIGA sequenc-
ing platform (University of Liège) which performed the 
sequencing on a Nova-Seq 6000 (Illumina) using a 2 × 250 
bp kit. The raw sequences were treated using a modified 
version of the bioinformatical script found in André et al.’s 
(2017) study, consisting of both FASTX-Toolkit (Hannon 
2010) and USEARCH (Edgar 2010) functions. The cluster-
ing was performed using the swarm function (Mahé et al. 
2021) with default parameters. After the filtering, the data 
was annotated using the RDP classifier function (Wang et al. 
2007) and its corresponding database (v 2.13) using a 0.8 
cutoff value.

Following the annotation, further downstream analysis 
was performed to investigate the influence of data normali-
zation on diversity comparison. Samples that had less than 
100 reads were excluded from the analysis. To mitigate the 
issue of incomplete sampling procedures, the occurrence of 
high variation in sequence numbers of each operational taxo-
nomic unit (OTU) was evaluated, and the data were normal-
ized. The evaluation was primarily based on the difference 
in abundance of each OTU among the samples, as suggested 
by Weiss et al. (2017). The significance of the difference 
was tested using one-way ANOVA. Data normalization was 
performed using the rarefaction technique at a minimum 
library size and a fixed (500) sequence read. This fixed read 
was chosen because it captured the most taxonomic tags, 
although eliminating samples with reads less than 500. 
Normalized and unnormalized data were analyzed further 
by observing the differences in alpha and beta diversities. 
Alpha diversity was evaluated through six metrics, including 
Observed, Chao1, ACE, Shannon’s, Simpson’s, and Fisher’s 
diversity indices, and analyzed with the ANOVA test. More-
over, beta diversity was assessed using ordination analyses 
of principal coordinate analysis (PCoA) and non-metric 
multidimensional scaling (NMDS) based on a Bray-Curtis 
dissimilarity matrix. Diversity comparisons were conducted 

at the genus level among populations and aggregated popula-
tions (national parks). Statistical tests were performed under 
an R-statistic environment either independently or embedded 
into a web-based application (MicrobiomeAnalyst; Chong 
et al. (2020)).

Result

Bacterial DNA at 16S rRNA gene was successfully 
sequenced and identified from the 85 deer feces collected 
from populations in Baluran (Bama, n = 4; Bekol, n = 
4; Bilik, n = 2; Datuk, n = 2; Merak, n = 6), Bali Barat 
(Brumbun, n = 2; Octagon, n = 6; Prapat Agung, n = 6; 
Pura Segara, n = 7), and Alas Purwo (Plengkung, n = 10; 
Sadengan, n = 14) national parks. The raw data of 51,389 
reads corresponding to 2 domains, 22 phyla, 45 classes, 
83 orders, 182 families, and 460 genera of bacteria were 
obtained. Removing extremely low-depth sequences (< 100 
reads) did not affect the statistics but eliminated 32 reads 
and a whole data set of a feces sample. The data showed a 
sparsity of 0.83 and singletons of 105 (22.8%) reads. Con-
sidering these values, there is a concern about data sparsity 
and high variation in sequence numbers. Initial observation 
indicates a wide variety of library sizes per sample, ranging 
from 338 to 1345 reads.

Further analysis presents a significant difference in the 
abundance of each OTU among the samples (ANOVA test; 
p < 0.05). This showed a probability of incomplete sampling 
procedures and suggested data normalization. Rarefaction 
at minimum library size (338 reads) preserved the sam-
ple size (84 feces samples) but reduced the total number 
of sequences (28,392 reads) and corresponding OTU (295 
genera). Meanwhile, at a maximum of 500 sequence reads 
per sample, it resulted in the highest taxonomic tags at the 
expense of a substantial decrease in sequence reads and the 
removal of 22 samples. Subsequently, there were 31,500 
sequence reads corresponding to 367 genera.

Except for the Simpson Diversity Index, there is a sig-
nificant difference in alpha diversity among populations 
as measured by all metrics (p < 0.05; Fig. 2). Consistent 
conclusions were obtained from the three data sets: such 
as no rarefaction, rarefied at 338, and 500 sequences read/
samples. The rarefactions tend to decrease the values of 
richness-influenced indices according to the number of 
OTUs and narrow the data distribution (except the Simpson 
Index), as presented in Fig. 2. In that figure, it was noticed 
that the Prapat Agung population showed the highest diver-
sity index and variations in all metrics except the Simpson 
Index. However, it did not affect the statistical inferences of 
the comparisons.

Different inferences were found when aggregating the 
samples into each research site of origin (national park) 
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and evaluating their diversity. There was no significant 
difference in the alpha diversity of bacteria from the Balu-
ran, Bali Barat, and Alas Purwo national parks (p > 0.05; 
Fig. 3). Similar to the previous result, the rarefactions tend to 
decrease indices. However, a clear pattern of the association 
between data distribution and rarefactions was not observed.

The beta diversity analysis showed distinctive ordinations 
of bacterial communities from 11 rusa deer populations. 
Furthermore, PCoA and NMDS analysis showed significant 
differences (p < 0.05) with some overlap (R2 = 0.39–0.46 
for PCoA and R = 0.43–0.60 for NMDS). The application 
of rarefactions did not affect these results but changed the 
values of both R- and R2-statistics and variants of dissimi-
larity as shown by the elliptical area in Fig. 4. Rarefaction 

at a fixed library size (500 reads) showed a consistent result 
in both PCoA and NMDS analysis. The result revealed that 
Prapat Agung has the largest variance of dissimilarity, fol-
lowed by Sadengan and Pura Segara populations. It corre-
sponded to alpha diversity metrics as shown by the length 
of boxplots in Fig. 2c. Meanwhile, other rarefaction applica-
tions did not yield consistent variance of beta diversity. It 
indicated that the rarefaction at fixed library size effectively 
removes bias introduced by sampling and sequencing tech-
niques and reflects better the nature of microbiota variation.

The group of bacterial communities was also significantly 
identified when the populations were aggregated into three 
research sites. Despite the R-value being smaller than among 
the population level of analysis, PCoA and NMDS analysis 
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Fig. 2   Boxplots showing the comparison of bacterial diversity by 
six metrics among 11 populations of rusa deer at three rarefactions: 
a no rarefaction, b rarefaction at minimum library size (338 reads), 

and c rarefaction at fixed library size (500 reads). The p-value of the 
ANOVA test is provided below the plot
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showed distinctive ordinations (p < 0.05; Fig. 5). Furthermore, 
unlike the population level of analysis, this research sites anal-
ysis showed insensitiveness of the rarefaction and ordination 
techniques to the variance of dissimilarity. Bali Barat constantly 
has the largest variance followed by Baluran and Alas Purwo.

Discussion

Interest in rarefaction analyses, sample 
aggregation, and diversity comparisons

This study provides evidence of a significant difference 
in alpha and beta diversity comparisons in most sample 

diversity metrics and aggregations, disregarding the rarefac-
tion applications. There is a possibility that when the natural 
variation of bacterial community is high, as in this case, rar-
efaction does not affect the comparisons. It aligns with Hong 
et al. (2022) notion that rarefaction might not affect statis-
tical inference much as long as the underlying biological 
variation in microbial composition is large enough among 
samples. Furthermore, the metrics commonly used for meas-
uring alpha diversity behave similarly across rarefactions 
and sample aggregations, except for the Simpson Index. We 
provide evidence that diversity indices tend to decrease as 
the number of OTUs diminishes because of rarefactions. The 
number of OTUs is directly proportional to richness which 
strongly influences the diversity index. It was observed that 
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the Simpson Index has no significant difference in bacterial 
diversity populations or sites. Due to sensitivity to even-
ness rather than richness and insensitivity to the contribution 
of rare taxa (DeJong 1975), the insignificant differences in 
the index indicate that all data sets similarly have several 
taxa with high abundance. Additionally, the beta diversity 
analysis shows consistent significant ordination regardless 
of adjustments in rarefactions and sample aggregations. This 
result is identical to previous research evidencing the insen-
sitiveness of beta diversity to environmental variations (Guo 
et al. 2019; Sun et al. 2019; Gibson et al. 2019; Prabhu et al. 
2020). It is worth noting that although rarefaction applica-
tions do not affect inferences, they influence data variance.

Unlike beta, alpha diversity of microbiota is considered 
to be sensitive to environmental variation thus emphasiz-
ing the importance of sample representativeness. Our 

results show an insignificant difference in alpha, but 
not beta, diversity when aggregating 11 samples into 3 
research sites. The aggregation weakens the variation of 
bacterial diversity. The rusa deer gut microbiota is sup-
posed to reflect the population’s microhabitat conditions. 
Therefore, aggregating samples at the landscape level 
(research sites) may not appropriately represent natural 
differences and mask the high bacterial community vari-
ation among populations. It illustrates the concern of the 
unrepresentativeness of sampling. The same concern, but 
in a different situation, is also shown in the results of sev-
eral studies reporting insignificant alpha diversity when 
comparing the microbiota of wild and captive animals. 
Gibson et al. (2019) compared the diversity of captive 
(n = 17) and wild populations (n = 8; opportunistically 
sampled from the wild) of black rhinos and found no 

Fig. 4   Chart showing ordina-
tions of rusa deer’s bacterial 
diversity using PCoA (left) 
and NMDS (right) techniques 
among 11 populations at three 
rarefactions: a no rarefaction, b 
rarefaction at minimum library 
size (338 reads), and c rarefac-
tion at fixed library size (500 
reads). Ellipses represented 
a 95% confidence limit. The 
p-value of the test is provided 
below the plot
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significant difference in alpha diversity. A similar result 
was obtained from the wild (n = 10) and captive gaur 
(n = 10) populations (Prabhu et al. 2020). Additionally, 
involving six samples of wild and seven samples of cap-
tive Père David’s deer, C. Sun et al. (2019) also reported 
a non-significant difference in alpha diversity of the 
deer’s microbiota. Likely, the small sample size may not 
adequately represent the microbiota diversity of the ani-
mals living in those microhabitats, as proposed by West 
et al. (2019). Meanwhile, involving a large and widely 
distributed sample size (wild = 81 samples; captive = 49 
samples), Guo et al. (2019) reported a significant differ-
ence in alpha diversity in the microbiota of giant pandas. 
The discrepancy suggests the importance of matching the 
variation between microbiota and habitat when conducting 
alpha diversity comparisons.

An impact of habitats on the deer microbiota

Appropriate data analysis results in a better understanding 
of the interactions between the habitat of wild animals, gut 
microbiota community, and fitness which is important for 
conservation biology. In this present study, it was discovered 
that alpha and beta diversities were significantly different 
among populations. Variation in the ecological condition of 
the deer habitats causes differences in its microbiota com-
munity. At the research site level (among national parks), 
a positive association between the variation of habitat and 
gut bacteria of rusa deer was speculated after rarefactions at 
a fixed library size. Sutomo and van Etten (2021) reported 
that the diversity index of Shannon-Wiener of plant spe-
cies in the savanna of Alas Purwo, Bali Barat, and Baluran 
national parks was 2.6, 5.0, and 3.10 respectively, while the 

Fig. 5   Chart showing ordina-
tions of rusa deer’s bacterial 
diversity using PCoA (left) 
and NMDS (right) techniques 
between three research sites at 
three rarefactions: a no rarefac-
tion, b rarefaction at minimum 
library size (338 reads), and c 
rarefaction at fixed library size 
(500 reads). The p-value of the 
test is provided below the plot

PCoA NMDS

PERMANOVA R2=0.09; p=0.001 ANOSIM R=0.23; p<0.001

PERMANOVA R2=0.07; p=0.001 ANOSIM R=0.15; p<0.001

PERMANOVA R2=0.08; p=0.01 ANOSIM R=0.19; p<0.001
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Shannon Index of deer’s microbiota was 2.49, 2.55, and 
2.51 (Fig. 3c). Although association analysis at this level is 
not robust, however, this pattern advises further studies on 
the association between microbiota and the habitat of the 
deer. Additionally, it provides preliminary evidence of the 
effectiveness of data normalization in revealing true interac-
tions. Several studies have reported a possible association 
between habitat and microbiota diversity of wildlife. Amato 
et al. (2013) reported an association between the composi-
tion of the gut microbiota and habitat variation of the black 
howler monkey in a degraded forest. A similar finding was 
also reported in the red colobus monkey (Barelli et al. 2015). 
Besides, in the wild-captive habitat setting, Borbón-García 
et al. (2017) showed a correlation between the decreased 
microbiota diversity of Andean bears and captive habitat 
conditions, particularly due to a low variation of diet. How-
ever, the possibility of incomplete sampling procedures and 
the sample size is rarely discussed as an important contribu-
tor to the variation of the result. It hinders the disentan-
glement of the effect of natural differences and sampling 
procedures on the statistical inferences from comparing 
microbiota diversity. Finally, any result divergence from the 
understanding prompts an evaluation of sampling procedures 
and an explanation.

Moreover, our study supports Zhu et al. (2021), which 
emphasizes the importance of in-depth data analysis for the 
application of microbiome study in conservation biology. In 
this field, there is a need to implement non-invasive genetic 
sampling for wild animal studies (Zemanova 2019). However, 
as the scheme unavoidably involves degraded samples, particu-
larly in tropical areas (Goossens and Salgado-lynn 2013), the 
implementation should consider the involvement of field control 
samples as recommended by Cando-Dumancela et al. (2021) 
and be complemented by comprehensive data analysis to avoid 
biased inferences. The control samples may include soil near 
the place where the samples were collected. This would allow 
the separation of the true microbiota from the environmental 
bacterial contaminations. Moreover, specific bacterial groups 
are only found in the intestines and not in the environment. 
Especially when studying the microbiota of wild animals using 
high-throughput sequencing, there is a risk that difference in 
sample quality causes a large variation in microbes that can be 
sequenced. It results in data sparsity and high variation of library 
size between samples, suggesting normalization before any sta-
tistical analysis. Despite not significantly affecting the compari-
son inference, rarefactions alter the measurement and coefficient 
determination (R2) of alpha and beta diversities, respectively. We 
suggest that data normalization has to be reported in more detail 
in the microbiome study of wild animals as an inherent control 
of suboptimal sampling, particularly when using non-invasive 
samples. This would ensure that published data has been evalu-
ated for comprehensive analysis, including the possibility of 
biased inference due to incomplete sampling.

Conclusions

The alpha diversity of the microbiota exhibits significant dif-
ferences across 11 populations of rusa deer, but not research 
sites, throughout all library sizes of rarefaction. This ten-
dency is similarly reflected in beta diversity. Furthermore, 
data rarefaction and aggregation result in different values of 
the diversity metrics. As a consequence, it is imperative to 
accurately normalize the data for meaningful comparisons 
of microbiota diversity, especially when dealing with wild 
animals and an incomplete sampling approach. We highly 
recommend conducting a thorough analysis of microbiota 
data and careful data normalization before downstream sta-
tistical analysis to avoid spurious outcomes.
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