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Abstract
Microorganisms have become more resistant to pesticides, which increases their ability to invade and infect crops resulting in 
decreased crop productivity. The rhizosphere plays a crucial role in protecting plants from harmful invaders. The purpose of 
the study was to investigate the antagonistic efficiency of indigenous rhizospheric fungal isolates against phytopathogens of 
M. uniflorum plants so that they could be further used as potent Biocontrol agents. Thirty rhizospheric fungal isolates were 
collected from the roots of the Macrotyloma uniflorum plant and initially described morphologically for the present study. 
Further, in vitro tests were conducted to evaluate the antifungal activity of these strains against four myco-phytopathogens 
namely Macrophamina phaseolina, Phomopsis sp. PhSFX-1, Nigrospora oryzae, and Boeremia exigua. These pathogens are 
known to infect the same crop plant, M. uniflorum, and cause declines in crop productivity. Fifteen fungal strains out of the 
thirty fungal isolates showed some partial antagonistic activity against the myco-phytopathogens. The potent fungal isolates 
were further identified using molecular techniques, specifically based on the internal transcribed spacer (ITS) region sequenc-
ing. Penicillium mallochii, Cladosporium pseudocladosporioides, Aspergillus chevalieri, Epicoccum nigrum, Metarhizium 
anisopliae, and Mucor irregularis were among the strains that were identified. These potent fungal strains showed effective 
antagonistic activity against harmful phytopathogens. Current findings suggest that these strains may be taken into consid-
eration as synthetic fungicides which are frequently employed to manage plant diseases alternatives.
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Introduction

Horse gram (Macrotyloma uniflorum) is an underuti-
lized and unexplored crop plant belonging to Legumi-
naceae family. This crop is reported to be resistant to 

many abiotic stresses like heavy metal stress and drought 
stress. This crop is used to treat kidney stones, edema, 
menstrual pains, piles, renal stones, healing wounds, 
and many more medicinal purposes (Rawat et al. 2023a, 
2023b). Microorganisms are present in almost every 
habitat of our planet including extreme hot and cold 
environments. They are responsible for various func-
tions inside the living body and also help in recycling 
minerals as decomposers. They live together with mixed 
communities and form a complex microenvironment 
termed a microbiome (Li et al. 2021). The microbiome 
includes different microbial communities coexisting in 
a particular environment. The rhizosphere microbiome 
is responsible for plant growth and health and somehow 
the microbes residing around the roots of plants help 
them to grow properly by avoiding the invasion of harm-
ful pathogens inside plant roots either by secreting some 
chemicals, siderophores, etc. (Rawat et  al. 2020). A 
plant’s rhizosphere, or root system, affects its resistivity 
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because it draws in beneficial bacteria and drives off 
undesirable ones. The myco-phytopathogens, like Mac-
rophamina phaseolina, Nigrospora oryzae, Boeremia 
exigua, Phomopsis sp. PhSFX-1, are the most common 
phytopathogens infecting not only this legume plant but 
also commercially important crop plants like tomato, 
pepper, chickpea, mungbean, maize, and rice (Wang 
et al. 2017; Udayanga et al. 2011; Lan and Duan 2022). 
These pathogens affect the quality and quantity of crops 
resulting in a decline in production (Banaras et al. 2020; 
Khan and Javaid 2020). Synthetic pesticides are used for 
attaining a high yield of production but they come with 
greater risk to human health and the environment.

Fungi are the second largest group after insects and 
the key component of tropical ecosystems throughout 
the world and intimately associated with crucial pro-
cesses like the decomposition, recycling, and transpor-
tation of nutrients in different environments (Chander 
2016; Hawksworth and Lücking 2017; Wu et al. 2019). 
Fungi are one of the most diverse groups of Eukarya and 
represent an important functional component of the soil 
microbial communities (Tan et al. 2017), which consti-
tute more of the soil biomass than bacteria, depending 
on soil depth and nutritional conditions (Paulina et al. 
2016). Soil fungi are known to play an important role in 
decomposition via soil nutrient recycling and accumula-
tion of soil organic matter and in plant health and devel-
opment (Bridge and Spooner 2001; Martin et al. 2000). 
Various studies reported the following plant growth-pro-
moting fungi genera Gliocladium, Penicillium, Asper-
gillus, Phoma, Phytophthora, Rhizoctonia, Talaromy-
ces, Trichoderma are used to improve tomato, orange, 
apple, pear, cucumber, carrot, and other plants’ growth 
and further promote the plants’ innate immunity and 
the production of various necessary secondary metabo-
lites by the plants (Khan et al. 2021, Khan and Javaid 
2022a, 2022b; Rawat et al. 2023a, 2023b; Attia et al. 
2022; Kuzin et al. 2020; Cantabella et al. 2020). Plant 
growth-promoting fungi (PGPF) perform the following 
functions in plants: antagonistic or biocontrol potential 
by competing for space and nutrients, growth hormone 
production (Akinola and Babalola 2021), mineral solu-
bilization, mycoparasitic and saprophytic resistance, root 
colonization, and induced systemic resistance (ISR) in 
plants (Shasmita et al. 2022). Aside from the above roles 
mentioned, PGPF suppress the invasion of phytopatho-
gens on tomato plants as well as other crop plants, they 
contribute to the improvement of nutrients in the soil, 
and they produce 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase and other phytohormones to reduce 

the production of ethylene in the plants (Adedayo et al. 
2022). The most common fungi used as potent antago-
nist are genus Trichoderma but it also has some limita-
tions. The present study is designed to isolate, charac-
terize and identify the useful rhizosphere fungi and to 
test their antagonist potential against harmful pathogens 
and their effects on plant growth promotion. This will 
help in exploring more fungi against soil-borne patho-
gens and biopesticide development. Further, the active 
metabolites of potent fungi could be identified through 
metabolomic studies for biological activities like anti-
fungal and anti-cancer.

Materials and methods

Isolation of myco‑phytopathogens

The M. uniflorum plants were planted and collected in 
Bhimtal town of Nainital, Uttarakhand, India, during the 
2019–2020 growing season, from September to November. 
The stem, pod, and leaf samples of M. uniflorum plants 
expressing symptoms of rot disease were collected in sterile 
bags. The samples were surface sterilized using 0.1% sodium 
hypochlorite for 3 min followed by three consecutive wash-
ings with sterilized distilled water (SDW). The samples were 
chopped into small pieces and inoculated in Potato Dextrose 
Agar media (PDA) for fungus isolation. All the PDA Plates 
were incubated at 28 ± 2 °C for 7 days.

Pathogenicity assay

Koch’s Postulates method was used for pathogenicity assay 
(Ross and Woodward 2016). The test was conducted on 
healthy plants at their early stage by injecting fungal spore 
suspension. The soil used for seed sowing was autoclaved 
thrice to kill native microorganisms. The pots were placed 
inside the greenhouse under controlled environment at 
25 ± 2 °C up to 20 days.

Isolation of rhizosphere fungal strains

The M. uniflorum seeds of resistant varieties VG-8 and VG-19 
were obtained from ICAR-Vivekananda Parvatiya Krishi 
Anusandhan Sansthan, Almora, Uttarakhand (33.5651° N, 
73.0169° E) known to be resistant for many fungal rot diseases 
including Anthracnose. Rhizospheric soil samples along with 
healthy roots were collected from the M. uniflorum plants in 
mid-period and 10 days before harvesting plants.
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Antagonistic assay against myco‑phytopathogens

Antagonism assay was performed to check the potential of 
rhizospheric fungal strains in mycelial growth inhibition 
against Macrophamina phaseolina, Phomopsis sp. PhSFX-
1, Nigrospora oryzae, and Boeremia exigua in vitro. A 
seven-day-old culture on potato dextrose agar (PDA) was 
used in this experiment. Briefly, a 5 mm Rhizospheric fun-
gal mycelial disc was kept on one side of PDA plates and 
pathogenic cultures were kept on the other side of the fungal 
plugs at a 2 cm distance. Controls consisted of single cul-
tures of the tested pathogen strains. Fungal antagonism was 
tested in triplicate and plates were incubated at 25 ± 2 °C 
for about 7 days. The antagonistic potential was evaluated 
as inhibition of the mycelial radial growth of pathogens 
against each Rhizospheric fungal strain, where R and r are 
the radii of fungal mycelial growth in control and treatment, 
respectively.

Calculation

The antagonistic index was accessed according to the fol-
lowing formula:

Antagonistic Index:

RM: radius of the pathogen in the control plate.
rm: radius of the pathogen in the dual culture plate.

Characterization of myco‑phytopathogens 
and rhizosphere fungal strains

Microscopic analysis

Initially, the pathogens and Rhizosphere fungal strains were 
identified based on morphological characteristics. The shape, 
color, and texture of fungal isolate were observed visually on 
PDA plates. The sporangial shape and size of each isolate were 
observed at 200 × magnification under a compound micro-
scope. Further, the pathogenic strains confirmed in pathogenic-
ity assays and potent antagonist Rhizosphere fungal strains 
were then subjected to molecular-based identification.

Molecular characterization

The identification of isolates was carried out at the 
sequencing facility of the National Centre for Microbial 
Resource (NCMR), National Centre for Cell Science, 

RM − rm × 100

RM

Fig. 1  Rot lesion symptoms on leaves, seed pods and stems of Macrotyloma uniflorum plants grown in the field. a–f Symptoms of rot on leaves. 
g Symptoms on the stem. h, i Symptoms on seed pods
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Fig. 2  Rizospheric fungal isolates showing antagonistic activity against phytopathogens Macrophamina phaseolina, Phomopsis sp. PhSFX-1, 
Nigrospora oryzae, and Boeremia exigua, respectively
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Fig. 2  (continued)
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Pune. Genomic DNA was isolated by the standard phenol/
chloroform extraction method, followed by PCR ampli-
fication of the ITS regions using universal primers ITS1 
[5′-TCC GTA GGT GAA CCT GCG G -3′] and ITS4 [5′-
TCC TCC GCT TAT TGA TAT GC-3′]. The amplified 
ITS PCR product was purified by PEG-NaCl precipitation 
and directly sequenced on an ABI® 3730XL automated 
DNA sequencer (Applied Biosystems, Inc., Foster City, 
CA) as per the manufacturer’s instructions. Essentially, 
sequencing was carried out from both ends so that each 
position was read at least twice. Assembly was carried 
out using Lasergene package followed by NCBI BLAST 
against sequences from type material for tentative identi-
fication (Boratyn et al. 2013). All the retrieved and tested 
sequences were aligned using the ClustalW program and 
subjected to phylogenetic analysis. The phylogenetic tree 
was constructed using the neighbor-joining (NJ) method 
in MEGA-X version 10.1.7 with 1000 bootstrap replica-
tions and the evolutionary distances were calculated by 
using the Jukes–Cantor model.

Results and discussion

The present work was carried out on isolated rhizospheric fun-
gal strains and their antagonistic effects on phytopathogens. 
The rhizosphere fungal isolates were Penicillium mallochii, 
Penicillium sp. FKI-4429, Cladosporium pseudocladospori-
oides, Metarhizium anisopliae, Fusarium tricinctum, Clad-
osporium sp. MBC003, Penicillium citrinum, Aspergillus chev-
alieri, Mucor irregularis, Aspergillus versicolor, Epicoccum 
nigrum, Aspergillus udagawae, and Schizophyllum commune. 
They were tested against the phytopathogens Macrophomina 
phaseolina, Nigrospora oryzae, Boeremia exigua, and Pho-
mopsis sp. PhSFX-1. These were identified according to their 
cultural, morphological, microscopical, and genetic charac-
teristics. This study has provided useful information about the 
pathogenic fungi associated with Macrotyloma uniflorum plant 
parts which may affect the plant health, agricultural produc-
tion, and also economic loss. Also, the antagonistic activity of 
potent fungi isolated from the rhizosphere region of Macroty-
loma uniflorum plant against the phytopathogens.

Table 1  Antagonistic Index % of isolates against myco-phytopathogens and the type of inhibition (where (a)—locked at point of contact, (b)—
intermingled, (c)—overlapping, (d)—clear zone between isolate and pathogen)

S. no Fungal isolates Antagonistic Index %

Macrophomina phaseolina 
(type of inhibition)

Nigrospora oryzae (type 
of inhibition)

Boeremia exigua (type 
of inhibition)

Phomopsis sp. 
PhSFX-1 (type of 
inhibition)

1. PA 50% (a) 54% (b) 28% (b) 52% (a)
2. PB 45% (b) 50% (b) 45% (d) 30% (a)
3. PC 47% (b) 23% (a) 46% (a) 32% (b)
4. PD 39% (d) 30% (d) 20% (a) 32% (d)
5. PF 40% (d) 35% (d) 60% (d) 50% (d)
6. PG 30% (a) 59% (b) 51% (b) 23% (b)
7. PH 50% (d) 45% (b) 55% (b) 60% (d)
8. PI 29% (d) 25% (b) 37% (a) 28% (d)
9. PJ 37% (a) 45% (b) 56% (b) 30% (a)
10. PK 30% (a) 40% (d) 43% (d) 28% (b)
11. PL 40% (b) 30% (a) 46% (a) 49% (d)
12. PM 55% (b) 35% (b) 30% (b) 57% (a)
13. PN 30% (b) 35% (a) 50% (b) 36% (d)
14. PO 20% (c) 30% (c) 48% (c) 26% (c)
15. PQ 51% (b) 66% (b) 67% (b) 59% (b)
16. PR 48% (a) 50% (a) 52% (a) 54% (a)
17. PT 47% (a) 63% (a) 46% (b) 55% (b)
18. PU 39% (a) 48% (a) 38% (b) 33% (a)
19. PV 40% (b) 50% (b) 53% (a) 53% (b)
20. PX 44% (c) - 43% (c) 48% (c)
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Isolation and pathogenicity assay 
of myco‑phytopathogens

After 15 days of incubation, out of 10 strains, 4 fungal 
strains were observed repeatedly which were named as PP 
101, PP 102, PP 103, and PP 104 and further preceded.

Symptoms of rot diseases in the field were black, brown, and grey-
colored rings. The infected leaves were initially light spotted. Later, 
they were brownish and slightly wrinkled to wither and eventually 
die. The dark patches were present on the infected stems and they 
dried eventually. The seed pods were also infected and seeds were 
less in numbers in the infected pods as compared to the healthy ones. 

On Potato Dextrose Agar media, the morphology of all the isolates 
was different. Purely isolated cultures of IsolatePP101 have macro-
scopic features of grey colonies, filamentous resembling cotton, and 
spreading growths and forming sclerotia. The results of microscopic 
observations showed that isolatePP101 had elliptical-shaped spores, 
and branched and aseptate hyphae. IsolatePP102 has black colonies, 
filamentous like cotton, elliptical spores, and branched and septate 
hyphae. IsolatePP103 has black colonies with powdery and thread-
like structures forming sclerotia and septate hyphae, and isolatePP104 
has white-colored colonies with cottony wavy texture, spherical-
shaped spores, filamentous, and septate hyphae.

All the plants that were injected with isolates for path-
ogenic test were infected with rot diseases (Fig. 1). The 

Fig. 3  Nigrospora oryzae ( 
left to right) infected seed pod; 
3 days old culture, front, back; 
7 days old culture, front, back; 
close view of hyphae; micro-
scopic view of hyphae at 10 × , 
spores at 10 × ; close view of 
spores

Fig. 4  Boeremia exigua (from 
left to right) infected plant leaf; 
3 days old culture, front, back; 
7 days old culture, front, back; 
close view of hyphae; micro-
scopic view of hyphae at 10 × ; 
spores at 10 × ; close view of 
spores
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pathogens recovered from the experimented plants were 
morphologically similar to the isolates. This experiment 
confirmed the pathogenicity of the isolated strains. The 
symptoms of the rot disease with black and brown spots were 
observed on leaves, pods, and stem part of Macrotyloma uni-
florum plant.

Isolation and antagonistic assay of rhizosphere 
fungal strains against myco‑phytopathogens

A total of thirty rhizosphere fungal isolates were recovered among 
which fifteen strains showed potent antagonistic activity against 
the myco-phytopathogens (Fig. 2). The results of the antagonist 
test obtained fifteen isolates that were able to inhibit the isolated 
pathogens PP101, PP102, PP103, and PP104 (Table 1).

Calculation

Antagonistic Index %:

RM: radius of the pathogen in the control plate.
rm: radius of the pathogen in the dual culture plate.
The potent antagonistic fungal strains were PA, PB, 

PC, PD, PF, PG, PH, PL, PM, PN, PR, PT, PV, and PX 
which later on were identified as Penicillium mallochii, 
Penicillium sp. FKI-4429, Cladosporium pseudoclad-
osporioides, Metarhizium anisopliae, Fusarium tricinc-
tum, Cladosporium sp. MBC003, Penicillium citrinum, 
Aspergillus chevalieri, Mucor irregularis, Aspergillus 

RM − rm × 100

RM

Fig. 5  Macrophamina pha-
seolina (from left to right) 
infected plant leaf; 3 days old 
culture, front, back; 7 days old 
culture, front, back; close view 
of hyphae; microscopic view of 
hyphae at 10 × ; hyphae at 40 × ; 
sclerotia; picnidiai at 10 × , 40 × 

Fig. 6  Phomopsis sp. PhSFX-1 
(from left to right) infected 
plant leaf; 3 days old culture, 
front, back; 7 days old culture, 
front, back; close view of 
hyphae; microscopic view of 
hyphae at 10 × 
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versicolor, Epicoccum nigrum, Aspergillus udagawae, 
and Schizophyllum commune. The rest of the fungus did 
not show antagonistic activity against the phytopatho-
gens. Among these fungal isolates for Macrophomina 
phaseolina pathogen, isolatePM (55%) showed maximum 
fungal mycelial growth inhibition while isolatePO (20%) 
showed the least inhibition similarly for Nigrospora ory-
zae IsolatePQ (66%) showed maximum growth inhibition 
while IsolatePC (23%) the least inhibition; for Boeremia 
exigua IsolatePF (60%) showed maximum growth inhi-
bition while IsolatePD (20%) showed the least inhibi-
tion, and for Phomopsis sp. PhSFX-1 IsolatePH (60%) 
showed maximum growth inhibition while IsolatePG 
(23%) showed the least inhibition as shown in Table 1. 
Isolates that showed fungal mycelial growth inhibition 
of more than 40% against isolated phytopathogens were 
further selected for molecular identification. The natu-
ral capacity to suppress pathogens has been studied in 
many disease-suppressive soils against the oomycetes 
and fungi Pythium ultimum, Pythium irregulare, Pythium 
aphanidermatum, Phytophthora nicotianae, Phytoph-
thora capsici, Phytophthora cinnamomi, Rhizoctonia 
solani, and Fusarium oxysporum. The understanding 
of disease suppressive mechanisms is a crucial step to 
enhance the suppressive effect by manipulation of the 
soil microbiota. More specifically, the suppressive prop-
erties can be explained through combined antimicrobial 
actions exerted by molecules and microbes or mecha-
nisms of antagonism among microbes and pathogens. 
The biological factors based on disease suppression 
generally include a combination of different actions. 
The mechanisms underlying the suppressive effect are 
primarily associated with the biological activity of soil 
microbiota which interacts with the soil organic matter 
(SOM) as well as the host plant. The most important 
factors are represented by the increased microbial activ-
ity (Melero et al. 2006) and fungistasis (Bonanomi et al. 
2017), enhanced soil structure (Bronick and Lal 2005), 
release of mineral nutrients during SOM decomposi-
tion (Berry et al. 2002), activation of competition for 
space and nutrients (Noble and Coventry 2005), elici-
tation of microbiostasis and hyperparasitism, release 
of diffusible antibiotic-like compounds (Weller et al. 
2002), and activation of systemic disease-resistance in 
the host plant (Bulluck Iii et al. 2002). A direct inhi-
bition on conidial germination and mycelium growth 
of plant pathogens induced by Bacillus, Pseudomonas, 
Streptomyces, Trichoderma, and Penicillium has been 
documented against phytopathogenic fungi using com-
post water extract (El-Masry et  al. 2002; McQuilken 
et al. 1994). Suppression of Fusarium melonis in wilt-
suppressive soils and composted green wastes-amended 
soils has been associated with populations of Aspergillus, Ta
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Streptomyces, and fluorescent Pseudomonas (Cha et al. 
2016; Suàrez-Estrella et al. 2007). Sewage sludge com-
post suppresses F. oxysporum sp. melonis wilt on tomato 
if combined with selected Trichoderma asperellum iso-
lates (Cotxarrera et al. 2002). Other authors instead con-
cluded that species of Penicillium can act as top BCAs 
against Fusarium oxysporum sp. lycopersici of tomato 
(Hussain et al. 2016).

Based on the analysis of the variety of testing of poten-
tial antagonist isolates against the fungus Macrophomina 
phaseolina, Nigrospora oryzae, Phomopsis sp. PhSFX-1, 
and Boeremia exigua on 7 days after inoculation showed 
that the inoculation of the potential antagonist isolates 
had a significant effect on the percentage of incidence of 
phytopathogens fungal disease in vitro. The following is 
presented about the average percentage of incidence of 
pathogenic fungal disease in vitro in Table 1.

Microscopic and molecular characterization 
of myco‑phytopathogens

The fungi isolated were examined morphologically, and 
their spores and thallus structure were analyzed under 
the compound microscope (Figs. 3, 4, 5, 6). The detailed 

characteristic features of myco-phytopathogens are shown 
in Table 2.

The selected phytopathogens were sent for molecular 
identification based on ITS sequencing. Pathogenic fungi 
PP101, PP102, PP103, and PP104 were closely related to 
Nigrospora oryzae, Boeremia exigua, Macrophamina phase-
olina, and Phomopsis sp. PhSFX-1 and showed 100% iden-
tity similarity with accessions KX219801.1, MH550515.1, 
HQ392782.1, and MH371253.1. These sequences are 
submitted to the Genbank nucleotide database with acces-
sion numbers obtained as OK244648.1, ON791481, 
OK244650.1, and OK244651.1, respectively, as shown in 
Table 2.

The evolutionary relationship of all the sequences was 
determined by constructing a phylogenetic tree (Fig. 7).

These fungi are reported as highly pathogenic strains 
causing huge harm to the crops. There are many reports 
on the pathogenicity of Nigrospora sp. (Jia et al. 2024; 
Raza et al. 2010; Wright et al. 2008; Zhao et al. 2014; 
Dutta et al. 2015), Boeremia exigua (Kadir and Umaerus 
1987; Gorny et al. 2015; Michel et al. 2018; Grinbergs 
and France 2014; Michel et al. 2018; Gao et al. 2019; 
Banerjee and Panja 2020), Macrophomina phaseolina 

 ON791481 Sclerotinia sclerotiorum RPP KU

 MK074848.1 Sclerotinia sclerotiorum

OK244649.1 Boeremia exigua isolate PP 102

 MH550515.1 Phoma sp. strain daef45

OK244651.1 Phomopsis sp. isolate PP104

 MH371253.1 Diaporthe discoidispora voucher RML

OK244648.1 Nigrospora oryzae isolate PP 101

 KX219601.1 Nigrospora sp. Hunan-Rfsb12

 HQ392782.1 Rhizoctonia bataticola clone RB16

OK244650.1 Macrophomina phaseolina isolate PP 103

100

100

100

100

99

100

91

Fig. 7  Phylogenetic tree based on neighbor-joining analysis of the 
rDNA ITS sequences of the pathogenic fungal isolates obtained from 
various tissues of the M. uniflorum plant. The pathogenic fungal iso-
lates along with their obtained accession numbers are highlighted. 

For the closely related species, the taxonomic names are written 
with their respective accession number. Significant bootstrap values 
(> 50%) are indicated at the branching points
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Fig. 8  Rhizospheric fungi isolated from Macrotyloma uniflorum plant
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(Basandrai et al. 2021; de Sousa Linhares et al. 2020; 
Marquez et al. 2021; Teja et al. 2020; Lodha and Mawar 
2020), and Phomopsis sp. PhSFX-1 (Chaisiri et al. 2020; 
Anwar et al. 2017; Asad et al. 2015; Correia et al. 2017; 
Brumer et  al. 2018) on the stem, fruit, leaf, and root 
parts of wheat, potato, lima bean, sugarcane, rice, leg-
umes, sesame, tea, etc. These are very aggressive types 
of fungal phytopathogens infecting plant health, yield, 
and growth promotion. The genus of Nigrospora is a 
widely distributed fungus, which can exist as an endo-
phyte and plays a role as a pathogen to affect plant health 
(Wang et al. 2017; Ebada et al. 2016). The pathogenic 
fungus, Boeremia exigua, infects many other plants 
as their hosts. For example, 11 varieties of B. exigua 
reportedly infect 45 plant species belonging to 31 gen-
era and 19 families (Berner et al. 2015). Macrophomina 
phaseolina is a soil-borne fungal pathogen that incites 
charcoal rot in more than 500 plant species (Marquez 
et al. (2021). Diaporthe/Phomopsis species are widely 
distributed around the world; they are pathogens of many 
important crops and can grow as parasites on humans and 
animals also (Van Warmelo et al. 1970; Udayanga et al. 
2011; Gomes et al. 2013). Pathogenic Diaporthe species 
can grow in plant tissue without causing clearly visible 
symptoms for a long time. But later, they do kill the host 
tissue so they should be categorized as hemibiotrophs 
(Udayanga et al. 2011).

Microscopic and morphological characterization 
of rhizospheric fungi

The rhizospheric isolates are given in Fig. 8.

Molecular characterization of selected potent 
antagonist rhizospheric fungi

Among all the tested fungal strains, 15 strains showed 
some sort of antagonism against the phytopathogens in 
dual culture assay on PDA media. The fungal isolates 
that showed partial antagonistic activity against the phy-
topathogens were sent for molecular identification based 
on ITS sequencing. The sequences are submitted to the 
Genbank Nucleotide database with accession numbers 
given in Table 3. Phylogenetic trees constructed from 16S 
rRNA sequences (Fig. 9). The phylogenetic tree indicated 
that isolatePA, PB, PC, PD, PF, PG, PH, PL, PM, PN, 
PR, PT, PV, and PX were closely related to Penicillium 
mallochii, Penicillium sp. FKI-4429, Cladosporium pseu-
docladosporioides, Metarhizium anisopliae, Fusarium 
tricinctum, Cladosporium sp. MBC003, Penicillium cit-
rinum, Aspergillus chevalieri, Mucor irregularis, Asper-
gillus versicolor, Penicillium citrinum, Epicoccum nigrum, 
Aspergillus udagawae, and Schizophyllum commune and 
showed 99–100% identity with accessions MN944416.1, 
AB548364.1, MT582794.1, MN710409.1, MN594466.1, 

Table 3  Molecular 
characterization of rhizospheric 
fungal isolates

Isolates Identified as Accessions % Similarity Accessions 
obtained from 
NCBI

PA Penicillium mallochii MN944416.1 100% ON791482
PB Penicillium sp. FKI-4429 AB548364.1 100% ON791483
PC Cladosporium pseudocladosporioides MT582794.1 100% ON791484
PD Metarhizium anisopliae MN710409.1 100% ON791485
PF Fusarium tricinctum MN594466.1 100% ON791486
PG Cladosporium sp. MBC003 JQ885448.1 99.81% ON791487
PH Penicillium citrinum MG748682.1 100% ON791488
PL Aspergillus chevalieri MT316337.1 100% ON791489
PM Mucor irregularis MZ423089.1 100% ON791490
PN Aspergillus versicolor MN547369.1 100% ON791491
PR Penicillium citrinum MT558921.1 100% ON791492
PT Epicoccum nigrum MT166336.1 100% ON791493
PV Aspergillus udagawae MN882827.1 100% ON791494
PX Schizophyllum commune MK647986.1 100% ON791495
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JQ885448.1, MG748682.1, MT316337.1, MZ423089.1, 
MN547369.1, MT558921.1, MT166336.1, MN882827.1, 
and MK647986.1, respectively (Table 3).

Conclusion

The present investigation concludes that out of thirty fungal 
strains, fifteen strains efficiently suppressed the mycelial 
growth of pathogenic Macrophomina phaseolina, Nigros-
pora oryzae, Boeremia exigua, and Phomopsis sp. PhSFX-1 
fungi in direct interactions-assays in vitro. The ITS sequence 
analysis of rhizospheric fungal strains showed 98 to 100% 
identity with close relatives belonging to Penicillium mal-
lochii, Penicillium sp. FKI-4429, Cladosporium pseudocla-
dosporioides, Metarhizium anisopliae, Fusarium tricinctum, 
Cladosporium sp. MBC003, Penicillium citrinum, Asper-
gillus chevalieri, Mucor irregularis, Aspergillus versicolor, 
Epicoccum nigrum, Aspergillus udagawae, and Schizo-
phyllum commune. These fungi have antagonistic potential 
against pathogenic fungi. These fungal isolates should fur-
ther be analyzed for metabolomics study to study their active 
constituents. These results confirmed the significant role of 
native rhizospheric fungi for the control of soil-borne fungal 
pathogens and the potential use of identified isolates in bio-
fertilizers and bio-fungicides development.
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