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Abstract
The intestinal microbiota plays significant role in the physiology and functioning of host organisms. However, there is limited 
knowledge of the composition and evolution of microbiota-host relationships from wild ancestors to modern domesticated 
species. In this study, the 16S rRNA gene V3–V4 in the intestinal contents of different pig breeds was analyzed and was 
compared using high-throughput sequencing. This identified 18 323 amplicon sequence variants, of which the Firmicutes 
and Actinobacteria phyla and Bifidobacterium and Allobaculum genera were most prevalent in wild pigs (WP). In contrast, 
Proteobacteria and Firmicutes predominated in Chinese Shanxi Black pigs (CSB), while Firmicutes were the most prevalent 
phylum in Large White pigs (LW) and Iberian pigs (IB), followed by Bacteroidetes in IB and Proteobacteria in LW. At the 
genus level, Shigella and Lactobacillus were most prevalent in CSB and LW, while Actinobacillus and Sarcina predominated 
in IB. Differential gene expression together with phylogenetic and functional analyses indicated significant differences in 
the relative abundance of microbial taxa between different pig breeds. Although many microbial taxa were common to both 
wild and domestic pigs, significant diversification was observed in bacterial genes that potentially influence host phenotypic 
traits. Overall, these findings suggested that both the composition and functions of the microbiota were closely associated 
with domestication and the evolutionary changes in the host. The members of the microbial communities were vertically 
transmitted in pigs, with evidence of co-evolution of both the hosts and their intestinal microbial communities. These results 
enhance our understanding and appreciation of the complex interactions between intestinal microbes and hosts and highlight 
the importance of applying this knowledge in agricultural and microbiological research.
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Introduction

The gut microbiota plays a major role in the overall health 
of mammals (Brestoff and Artis 2013). Domestic pigs 
(Sus scrofa) diverged from their wild ancestors in Eurasia 

approximately 10,000 years ago, and the selection of specific 
traits has resulted in significant phenotypic changes (Larson 
et al. 2005; Rubin et al. 2012). Pigs are used extensively as 
model animals in research on human diseases, development, 
and responses to infection (Lunney et al. 2021). The pig is 
also useful for investigating the evolution of the gut micro-
biota in a species as both the wild ancestor and a variety of 
domesticated breeds can be used for comparison (Ushida 
et al. 2016).

There have been a variety of recent investigations into 
the gut microbiota of the pig, many concerned with agricul-
tural traits and applications (Crespo-Piazuelo et al. 2018; 
Gao et al. 2019; Kelly et al. 2017; Xiao et al. 2018; Yang 
et al. 2016; Zhao et al. 2015), such as weight gain (Mach 
et al. 2015; Ramayo-Caldas et al. 2016) and food intake and 
conversion (Camarinha-Silva et al. 2017; McCormack et al. 
2017; Quan et al. 2018, 2019; Yang et al. 2017). Several 
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studies have also reported on microbial composition in dif-
ferent intestinal regions. These studies have mostly been 
restricted to specific pig breeds, including the Large White 
(Zhao et al. 2015), Laiwu (Yang et al. 2016), Gloucestershire 
Old Spot (Kelly et al. 2017), Iberian pigs (Crespo-Piazuelo 
et al. 2018), Jinhua and Landrace (Xiao et al. 2018), and 
Shanxi Black breeds (Gao et al. 2019). Generally, verte-
brate species show distinct variations in their gut microbiota 
that correlate with phylogenetic changes in the host (Brooks 
et al. 2016; Gaulke et al. 2017; Groussin et al. 2017; Ley 
et al. 2008). Evidence also suggests that specific microbial 
signatures are heritable (Koskella et al. 2017). These close 
relationships suggest the co-evolution of host and gut micro-
biota (Brooks et al. 2016; Gaulke et al. 2017; Groussin et al. 
2017; Moeller et al. 2016). The compositions and evolution 
of the microbiota in the digestive tracts of wild pigs have 
been investigated (Yang et al. 2020). In addition, host genet-
ics may be closely involved in structuring the gut micro-
bial communities in different species, as shown by studies 
in humans (Wang et al. 2021), mice (Kemis et al. 2019; 
Suzuki et al. 2019), and pigs (Yang et al. 2022). However, 
relatively little is known about the relationship between the 
microbial compositions and functions in specific intestinal 
segments and their association with the genetics and evolu-
tionary characteristics of pigs.

The present study investigated the microbial communities 
in four pig breeds (Crespo-Piazuelo et al. 2018; Gao et al. 
2019; Yang et al. 2020). After collection of the contents of 
different intestinal regions, a high-throughput sequencing 
analysis of the 16S rRNA gene V3–V4 region was under-
taken to determine gut microbial composition variations. 
The phylogenetic relationships between the hosts and gut 
microbiota were then analyzed and functional analysis of 
the microbiota was conducted to assess the differences in 
metabolic spatial structures and pathways in the different 
pig breeds and how they may have influenced the phenotype 
and adaptation of the hosts. These results will provide the 
theoretical basis for the composition and evolutionary of gut 
microbial communities in pigs.

Materials and methods

Animals and sample collection

The test animals were adult female (four years old) wild 
pigs (WP) (Yang et al. 2020), 150-day-old Large White pigs 
(LW, commercial pigs), Chinese Shanxi Black pigs (CSB, 
indigenous pigs) (Gao et al. 2019), and 120-day-old Ibe-
rian (IB, indigenous pigs) male pigs (Crespo-Piazuelo et al. 
2018). In addition, we selected three unrelated wild pigs 
from populations in Xingyang County in Henan Province, 
China. These pigs were similar genetic backgrounds and had 

been reared under comparable conditions. Animals raised 
under controlled environmental conditions and on similar 
diets would be expected to have less variation in their micro-
biota (Yang et al. 2020). The wild pigs were fed twice daily 
with a controlled diet consisting of corn and soybean and 
supplemented with hay, which would be likely to reduce 
variability in the microbiota relative to pigs living in the 
wild. The animals had free access to water, and all were 
healthy and had not received any antibiotic treatment (Yang 
et al. 2020). The LW and CSB pigs were raised individually 
at the Datong Pig Breeding Farm (Shanxi Province, China) 
on standard diets based on the feeding standard of swine 
(NY/T 65-2004) issued by The Ministry of Agriculture of 
the People’s Republic of China (Gao et al. 2019). The Ibe-
rian pigs were fed ad libitum with a standard feed containing 
maize, wheat, barley, and soybean, with 3320 kcal of digest-
ible energy and 15.6% of crude protein (Crespo-Piazuelo 
et al. 2018). Descriptions of the processes and instructions 
for animal slaughter, sample collection, sample preserva-
tion, DNA extraction, library construction, and sequencing 
are provided in the “References” section (Crespo-Piazuelo 
et al. 2018; Gao et al. 2019; Yang et al. 2020). Samples 
were taken from four to five regions of the intestine, namely, 
the duodenum (DU), jejunum (JE), ileum (IL), cecum CE), 
and colon (CO). The wild pig’s bacterial 16S rRNA V3–V4 
region was amplified using the well-documented primer 
pair: 338F (5′-ACT​CCT​ACG​GGA​GGC​AGC​A-3′) and 806R 
(5′-GGA​CTA​CHVGGG​TWT​CTAAT-3′) (Yang et al. 2020). 
The 341F-CCT​AYG​GGRBGCASCAG and 806R-GGA​CTA​
CNNGGG​TAT​CTAAT primers were used to amplify the 
hypervariable regions (V3 and V4) of 16S rRNA genes in 
Shanxi Black pigs and Large White pigs (Gao et al. 2019). 
The Iberian pig’s bacterial 16S rRNA V3–V4 region gene 
was amplified with two 16 S Amplicon PCR primers: For-
ward, 5′TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​
CAG​CCT​ACGGGNGGC​WGC​AG, and Reverse, 5′GTC​
TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG GAC​
TAC​HVGGG​TAT​CTA​ATC​ (Crespo-Piazuelo et al. 2018). 
The raw data have been uploaded to the NCBI Sequence 
Read Archive (SRA) database under the accession numbers 
PRJNA575288, SRP115844, and SRP136308. In additional, 
the study adhered to the guidelines on animal care of the 
Ministry of Science and Technology of China (Guidelines on 
Ethical Treatment of Experimental Animals (2006) No. 398) 
and the Ethics Committee of Shangqiu Normal University 
approved all the experiments (Shang (2022) No. 24).

Sequence analysis

Bioinformatic analysis of the microbiomes was conducted 
using QIIME2 (Bolyen et al. 2018) with several slight modi-
fications as described in the official tutorials. Briefly, the raw 
sequence data were demultiplexed using the “demux” plugin 
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and cut with primers using the “cutadapt” plugin (Martin. 
2011). The sequences were filtered for quality, denoised, and 
merged, and chimeras were removed using the “DADA2” 
plugin (Callahan et al. 2016). The alpha-diversity metrics 
Chao1 (Chao 1984), Observed species, Shannon (Shan-
non 1948), Simpson (Simpson 1949), Faith’s PD (Faith 
1992), Pielou’s evenness (Pielou 1966), Good’s coverage 
(Good 1953), and beta-diversity metrics were estimated 
with the “diversity” plugin, and samples were rarefied to 
18 321 sequences per sample. The taxonomy of the ASVs 
was assigned with the “classify-sklearn” naïve Bayes tax-
onomy classifier in the “feature-classifier” plugin (Bokulich 
et al. 2018) against the Greengenes Database (13.8 version; 
DeSantis et al. 2006).

Bioinformatics and statistical analysis

Sequences were analyzed using QIIME2 (Bolyen et al. 2018) 
and several R packages (v3.2.0). The alpha diversity indices 
at the ASV level were determined using the ASV table in 
QIIME2 (Bolyen et al. 2018) and were visualized as box 
plots. ASV-level ranked abundance curves were created to 
assess richness and evenness. Jaccard (Jaccard 1908) and 
UniFrac (Lozupone and Knight 2005; Lozuponeet al. 2007) 
metrics were applied to assess structural variations in the 
microbiota, and the results were analyzed using PCoA and 
UPGMA hierarchical clustering (Ramette 2007); the sig-
nificance of differentiation of microbiota structure among 
groups was assessed by PERMANOVA using R pack-
age “vegan.” Taxonomic differences were analyzed with 
MEGAN (Huson et al. 2011), GraPhlAn (Asnicar et al. 
2015), and LEfSe (Segata et al. 2011). The LEfSe algorithm 
used a non-parametric factorial Kruskal-Wallis (KW) rank-
sum test for the identification of significantly different ASVs, 
followed by Wilcoxon tests to examine between-group con-
sistencies. LDA scores were used to estimate the effect sizes 
for differentially abundant taxa. Non-singleton ASVs were 
aligned using mafft (Katoh et al. 2002) and phylogenetic 
trees were constructed with fasttree2 (Price et al. 2009). 
Microbial functions were predicted by PICRUSt2 (Douglas 
et al. 2020) using the MetaCyc and KEGG databases.

Results

Data overview

Raw data analyzed was obtained from the NCBI SRA data-
base (Crespo-Piazuelo et al. 2018; Gao et al. 2019; Yang 
et al. 2020). After quality control, the samples were pro-
cessed using QIIME2 into 18 323 ASVs (Table S1). The 
presence of the ASVs was verified in the samples by spe-
cies accumulation and rank-abundance curves. This showed 

similar patterns across the samples, indicating that the 
detectable microbial species were present in most samples 
(Fig. S1 A; Fig. S1 B).

Diversity analysis of the pig gut microbiota

To explore the microbial composition in specific intestinal 
regions in the different pig breeds, we performed an initial 
assessment of the alpha diversity of the microbiota for each 
region. Significant differences in the cecal samples between 
the pig breeds were observed. We calculated the Chao1, 
Faith_PD, Simpson, and Pielou_e indices for assessment 
of richness and evenness. This showed that the Chao1 and 
Faith_PD indices were significantly reduced in IBCE sam-
ples compared with those from LWCE (P < 0.05; Fig. 1), 
while the Good’s coverage diversity index was higher in 
IBCE in comparison with LWCE (P < 0.01). No differences 
were seen between WP or CSB CE samples and LWCE 
and IBCE (P > 0.05; Fig. 1). The Observed species and 
Shannon indices were also applied for the assessment of 
alpha diversity to analyze species numbers and their rela-
tive abundances in the different CE samples. Both indices 
were observed to be significantly higher in CSBCE and 
LWCE samples compared with IBCE samples (P < 0.05; 
Fig. 1). Furthermore, no significant differences were seen 
in the Shannon and Observed species indices in the DU, JE, 
IL, and CO gut segments, respectively (P > 0.05) (Fig. S2; 
Fig. S3; Fig. S4; Fig. S5).

We next investigated the differences and similarities 
within the microbial communities of the pig breeds, using 
analysis of the ASVs by PCoA and UPGMA. This showed 
significant alterations in the gut microbiota compositions in 
the different intestinal regions, with the microbial composi-
tion of the DU, JE, and IL regions differing from those in 
the CE and CO, which resembled each other (Fig. 2A). The 
PERMANOVA test based on the Bray-Curtis distance meas-
ures showed that the bacterial community structure was sig-
nificantly (P < 0.01) different among these clusters grouped 
(Table S2). It was further confirmed that the change in bacte-
rial community structure was significantly correlated with 
pig breeds. UniFrac distance metrics clustering showed that 
the gut microbes tended to cluster into four groups according 
to the pig breed, namely, WP, CSB, LW, and IB. Additional 
subgroups were observed within each of the main groups, 
with the CE (WPCE, CSBCE, LWCE, IBCE) and CO 
samples (WPCO, IBCO) clustering separately from those 
from the IL (WPIL, CSBIL, LWIL, IBIL), DU (WPDU, 
CSBDU, LWDU, IBDU), and JE (WPJE, CSBJE, LWJE, 
IBJE) regions (Fig. 2B; Fig. S6). These findings indicated 
that the microbiota compositions were not uniform along the 
intestine in the different pig breeds, with greater similarities 
seen between the CE and CO samples than between sam-
ples from the DU, JE, and IL regions. As seen in Figs. 2A 
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and B, the gut microbiota from wild pigs clustered together 
separately from those of both commercial and domesticated 
indigenous pigs.

Microbial taxonomic composition analysis of the pig 
gut microbiota

The taxonomic distributions of the most abundant ASVs 
seen in the different intestinal regions and pig breeds were 
then investigated. Firstly, comparing the phyla present in 
specific intestinal regions across the pig breeds (Fig. 3A; 
Table S3), it was found that Firmicutes were most prevalent 
in WP, LW, and IB, followed by Actinobacteria in WP, Bac-
teroidetes in IB, and Proteobacteria in LW. In contrast, Pro-
teobacteria predominated in CSB, followed by Firmicutes 

while Proteobacteria levels in both CSBCE and LWCE sam-
ples were low (3.57% and 3.10%, respectively). In terms of 
intestinal region Firmicutes and Bacteroidetes phyla pre-
dominated and accounted for more than 80% of the bacterial 
phyla in IB, with Firmicutes and Actinobacteria account-
ing for over 80% in WP and Firmicutes and Proteobacteria 
accounting for over 90% in CSB and LW. Comparison of 
the microbial communities in samples from the same intes-
tinal regions showed that these differed significantly with 
the breed of pig. For instance, the IBJE microbiota (70.38%) 
contained the highest abundance of Firmicutes than the JE 
of the WP, CSB, and LW (33.86%, 22.15%, 61.88%, respec-
tively). Overall, the microbial composition differed between 
WP, CSB, LW, and IB for the same intestinal regions. Fur-
thermore, we observed dynamic changes in the proportions 

Fig. 1   The alpha-diversity comparisons for the Wild pig cecum (WPCE), Chinese Shanxi black pig cecum (CSBCE), Large White pig cecum 
(LWCE), Iberian pig cecum (IBCE)
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of Firmicutes, Proteobacteria, Bacteroidetes, and Actino-
bacteria between the different breeds. These findings indi-
cated that microbial communities differed between the dif-
ferent breeds for the same gut regions.

In terms of genera, Bifidobacterium and Allobaculum 
predominated in WP. In addition, Lactobacillus, Prevotella, 
and Clostridiaceae were found in DU samples from WPs, 
while Shigella and Lactobacillus were most abundant in 

CSB and LWP, and Actinobacillus, Sarcina, Streptococcus, 
Prevotella, Anaerovibrio, Anaerovibrio, and Lactobacillus 
predominated in IB (Fig. 3B; Table S4). In terms of distri-
bution, it was found that only two genera (Sarcina and Act-
inobacillus) were absent from the five gut segments in WPs, 
with the lowest average distribution index of each genus seen 
in IL samples, suggesting that the IL microbiome is more 
even than that of other locations. Thus, although numerous 

Fig. 2   The beta-diversity comparisons for the different gut micro-
biota in pigs. A The principal coordinate analysis (PCoA) visualized 
via Bray-Curtis metrics and UniFrac distance metrics. Each symbol 

and color represents each gut location microbiota. B The hierarchical 
clustering analyses were performed by unweighted pair-group method 
with arithmetic means (UPGMA)
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genera were observed in the different regions of the intestine, 
there was a more uniform distribution in the IL (Fig. 3B; 
Table S4). Microbial community compositions in the same 
parts of the intestine also differed between wild and domes-
ticated pigs as shown by PCoA where the domesticated pig 
samples were clustered and distinct from those of the wild 
pigs.

Differential analysis of bacterial taxa in pig gut 
microbiota

An LEfSe analysis was performed to determine the micro-
bial species characteristics of different intestinal regions. 
Using LDA scores > 2, this showed differential abundances 
of 36, 47, 44, 89, and 79 ASVs in DU, JE, IL, CE, and CO 
samples, respectively, in the WP, CSB, LW, and IB groups 
(Fig.  4; Table S5). Differences were observed between 
the microbiomes of WPs and those of the LW, CBS, and 
IB pig breeds, seen at all taxonomic levels from phylum 
to genus (Fig. 4; Table S5). As seen in Fig. 4A, WPDU 
showed a significantly greater abundance in 17 taxa in Fir-
micutes, nine taxa in Actinobacteria, and five taxa each in 
Bacteroidetes and Proteobacteria. In comparison, IBDU 
samples contained greater abundances of 10 taxa in Proteo-
bacteria, 11 in Firmicutes, and five taxa in Actinobacteria, 
while CSBDU showed had nine taxa in Proteobacteria, five 
taxa each in Bacteroidetes and Tenericutes, and four taxa in 
Actinobacteria. Thus, at the phylum level, Actinobacteria 
represented a significant biomarker for the various intes-
tinal segments in WPs compared with IB, CSB, and LW. 
Similarly, Proteobacteria represented a biomarker for the 
DU and IL regions in CSB, in contrast to IB, WP, and LW, 
and was also a biomarker for IBCO compared with WPCO. 
At the genus level, it was found that Bifidobacterium and 
Allobaculum showed the greatest differences in abundance 
in the different intestinal regions of WPs compared with 
IB, WP, and LW. These differences were maintained in the 
order, class, and family levels (Fig. 4; Table S5). In addition, 

Sarcina and Streptococcus were more abundant throughout 
the gut of IB pigs, compared with CSB, WP, and LW, while 
Actinobacteria was more abundant in the DU and JE regions 
in CSB. WP samples showed enrichment of both Bifidobac-
terium and Allobaculum in comparison with domesticated 
pigs, while the latter showed a greater abundance of Shigella 
and Lactobacillus in CSB and LW and Actinobacillus and 
Sarcina in IB. These findings indicate that the domesticated 
pig microbiota has diverged from its ancestral state.

Phylogenetic analysis of the pig gut microbiota

A phylogenetic tree of the microbial ASVs was created 
to investigate the evolutionary relationships between 
the gut microbiota from the different pig breeds, using 
distance matrices calculated from the sequencing analy-
sis. The tree was generated using the most abundant 50 
bacterial genomes represented in the pig microbiome 
(Fig. 5; Fig. S7; Fig. S8; Fig. S9; Fig. S10; Fig. S11). 
This showed that the genomes spanned many microbi-
ota-associated phyla. Each branch of the tree represents 
one gut microbiota. Phylogenetic trees for [Prevotella] 
(ASV39), Prevotella (ASV11), Lactobacillus (ASV3), 
Shigella (ASV2), Bifidobacterium (ASV9), Actinobacil-
lus (ASV22), Clostridium (ASV21), Sarcina (ASV1), 
Streptococcus (ASV5), and Campylobacter (ASV14) 
showed that their microbiomes represent “core” micro-
bial genera that do not cluster together. Interestingly, the 
top 50 most abundant microbiota were located on differ-
ent branches according to their intestinal location with 
related organisms clustered together. Several clusters of 
co-existing bacteria were identified by visual inspection, 
with the 10 most abundant genera indicated in Fig. 5. 
The different clusters tended to be associated with pig 
breeds, for example, clusters 1 (ASV_32, ASV_7, 
ASV_350, ASV_240, ASV_95, ASV_50, ASV_47, 
ASV_56, ASV_15, ASV_164), 2 (ASV_136, ASV_39, 
ASV_131, ASV_373, ASV_126, ASV_132, ASV_11), 

Fig. 3   Community composition of the gut microbiota in different intestinal segments of Wild pigs, Chinese Shanxi black pigs, Large White pigs, 
and Iberian pigs at the phylum (A) and genus (B) levels, respectively
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and 3 (ASV_2, ASV_120, ASV_69, ASV_155, ASV_30) 
are associated with different phyla, Firmicutes, Bacteroi-
detes, and Proteobacteria in different pig breeds. This 
relationship with the host type is suggestive of specific 
interactions between the microbiota and the host. Cluster 
1, for example, while consisting largely of Firmicutes, 
also includes other phyla, while in cluster 3, the constitu-
ents are present in all the breeds but belong to the same 
microbial group. Thus, phylogeny is able to demonstrate 
the evolution of microbiota during the domestication of 
pig.

Functional analysis of the pig gut microbiota

PICRUSt2 was used for metagenomic assessment of the 
identified bacteria, as this may provide insight into meta-
bolic differences in the various intestinal regions of the 
host. The ASVs were assigned to genes using available 
genetic annotations, and the functions of the genes were 
analyzed by KEGG pathway enrichment. This yielded 
7746 genes (Table  S6) associated with 393 pathways 
(Table  S7). Seven pathways were observed to differ 
between the different intestinal regions. The most enriched 

Fig. 4   Bacterial taxa differentially represented in duodenum (A), ileum (B), jejunum (C), cecum (D), and colon (E) gut locations in Wild pigs, 
Chinese Shanxi black pigs, Large White pigs, and Iberian pigs identified by LEFSe using a LDA score threshold of > 2.0
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functional modules in all samples were “human diseases,” 
“organismal systems,” and “metabolism,” while the most 
significant pathways were also similar in the different 
samples. Six of these pathways were related to metabo-
lism (amino acid, biosynthesis, carbohydrate, energy, 
cofactors and vitamins, and lipid), with one pathway 
involved in the processing of environmental information 
(member transport) and two pathways associated with the 
processing of genetic information (translation and repli-
cation, and repair) which were common to all samples 
(Table S7). The associations of these pathways with the 
same intestinal samples from different pig breeds were 
then examined. As seen in Fig. 6, the pathway enrich-
ment differed according to the intestinal region in the 
different breeds with 12 pathways showing significant 
enrichment in the DU, five in the JE, seven in the IL, 26 
in the CE, and 13 in the CO (P < 0.05; Fig. 6; Table S8). 
The enriched pathways in the DU were “fatty acid deg-
radation” (ko00071) in LWDU and “fatty acid biosyn-
thesis” (ko00061) in IBDU. The DU also had a greater 

abundance of microbial genes in the “methane metabo-
lism” (ko00680) and “starch and sucrose metabolism” 
(ko00500) in WPDU. The pathways enriched in JE and IL 
samples were “lysine degradation” (ko00310), “ubiqui-
none and other terpenoid quinone biosynthesis” (ko00130) 
in CSBIL, “fatty acid biosynthesis” (ko00061), “folate 
biosynthesis” (ko00790), and “amino sugar and nucleotide 
sugar metabolism” (ko00520) in IBJE and IBIL, “nicoti-
nate and nicotinamide metabolism” (ko00760), “seleno-
compound metabolism” (ko00450), “ribosome biogen-
esis in eukaryotes” (ko03008), “fatty acid degradation” 
(ko00071), “valine, leucine, and isoleucine biosynthesis” 
(ko00290), and “tryptophan metabolism” (ko00380) in 
WPJE and WPIL. Furthermore, it was found that CSBCE 
samples had highest abundance of microbial genes in 
“zeatin biosynthesis” (ko00908), “drug metabolism 
other enzymes” (ko00983), “other glycan degradation” 
(ko00511), “glycosaminoglycan degradation” (ko00531), 
“citrate cycle TCA cycle” (ko00020), “RNA degradation” 
(ko03018), “beta alanine metabolism” (ko00410), “folate 

Fig. 5   Phylogenetic tree with ASV abundance distribution. Species abundance distribution was aligned to the tree and visualized as boxplots. 
The phylum information was used to color symbolic points on the tree and also species abundance distributions



1001International Microbiology (2024) 27:993–1008	

1 3

biosynthesis” (ko00790), “RNA polymerase” (ko03020), 
and “methane metabolism” (ko00680) in CSB compared 
with WPCE (starch and sucrose metabolism (ko00500), 
biosynthesis of ansamycins (ko01051), streptomycin bio-
synthesis (ko00521), histidine metabolism (ko00340), 
biosynthesis of vancomycin group antibiotics (ko01055), 
ABC transporters (ko02010) and IBCE (phosphonate and 
phosphinate metabolism (ko00440), toluene degradation 
(ko00623), glycerophospholipid metabolism (ko00564), 
and butanoate metabolism (ko00650) in the WP and IB 
breeds. The IBCO microbial genes were related to “fruc-
tose and mannose metabolism” (ko00051) and “toluene 
degradation” (ko00623) which had low abundance in the 
IB samples. In contract, WPCO samples showed greater 
enrichment in “nicotinate and nicotinamide metabolism” 
(ko00760), “seleno-compound metabolism” (ko00450), 
“pentose and glucuronate interconversions” (ko00040), 
“RNA degradation” (ko03018), “histidine metabolism” 
(ko00340), and “lysine biosynthesis” (ko00300). The 
clustered heatmap showed a clear distinction between the 
WP and IB samples and the CSB and LW samples (Fig. 7; 
Table S9). Notably, more microbial genes associated with 
metabolism were found in wild pigs. However, the relative 
abundance of microbial genes related to the metabolism 
of amino acids and carbohydrates, as well as resistance, 
was greater in WPs in comparison with the LW, CSB, and 
IB domesticated pigs, while genes associated with lipid 
metabolism were more abundant in IB pigs compared with 

LW, CSB, and WP pigs. These results suggest that the 
metabolic functions of the microbiota differ according to 
pig breeds, with specific pathways predominating in cer-
tain breeds.

Discussion

The literature contains relatively few studies on the micro-
bial composition and potential functionality of the fecal 
microbiota in wild pigs, domestic indigenous pigs, and com-
mercial pigs (Ushida et al. 2016; Huang et al. 2020). The 
relationships between specific microbial composition and 
evolution have been characterized in wild pigs (Yang et al. 
2020). An analysis of the gut microbiota in the gastrointesti-
nal tracts of wild boar in the karst region of Southwest China 
also demonstrated the importance of environmental adap-
tion (Cao et al. 2022). To date, few studies have specifically 
focused on the effect of domestication on the evolutionary 
of the gut microbiota in pigs, and it has been assumed that 
domestication has resulted in only minor changes in commu-
nity richness. Furthermore, the key to understanding the role 
of disrupted microbiota in pigs is to specifically consider the 
composition and evolution of the microbiota themselves and 
whether inter-group microbial differences can be linked to 
domestication. We, therefore, systematically characterized 
changes in the microbial composition, distribution, phylog-
eny, and potential functionality in specific sections of the 

Fig. 6   Predicted functional differentially of the bacterial genus represented in the duodenum (A), jejunum (B), ileum (C), cecum (D), and colon 
(E) gut locations in different pig breeds identified by LEFSe using a LDA score threshold of > 2.0
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digestive tract in different pig breeds. This showed vast dif-
ferences in microbial composition along the length of the 
gut, and we, furthermore, provide additional insights into the 
composition and evolutionary of the gut microbiota in each 
section and their potential functional consequences in pigs.

At the phylum level, the primary findings centered on 
the structural composition and distribution of the intestinal 
microbiota in WP, LW, CSB, and IB pig breeds (Fig. 3A; 
Table S3). Earlier work has observed the core microbiota 
of domestic pigs to be dominated by Firmicutes and Bacte-
roidetes (Crespo-Piazuelo et al. 2018; Gao et al. 2019; Xiao 
et al. 2018; Yang et al. 2016; Mach et al. 2015; Ramayo-Cal-
das et al. 2016; Quan et al. 2018, 2019; He et al. 2016; Ivars-
son et al. 2014; Kraler et al. 2016; Liu et al. 2012; Slifierz 

et al. 2015). Here, we observed that the four most abundant 
phyla were Firmicutes, Proteobacteria, Bacteroidetes, and 
Actinobacteria. The Bifidobacterium and Allobaculum gen-
era predominated in WPs, while Shigella and Lactobacillus 
genera were most abundant in CSB and LWP and Actino-
bacillus and Sarcina in IB pigs. In contrast, neither Sarcina 
and Actinobacillus were found in any of the gut regions of 
WPs (Fig. 3B; Table S4). These findings indicate that many 
bacterial species are uniformly distributed throughout the 
intestine in same pig breeds. Previous studies have reported 
marked differences in pig microbiota at the genus level. For 
instance, Lactobacillus, Prevotella, and Treponema were 
predominant in Duroc pigs (Yang et al. 2016), while Xiao 
et al. (2017) observed a greater abundance of Prevotella, 

Fig. 7   Heatmap clustered by KEGG pathway showing different enrichments in the different gastrointestinal sites and different pig breeds. The 
vertical columns represent groups, and the horizontal rows depict metabolic pathways. The color coding is based on row z-scores
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Clostridium, SMB53, and Streptococcus in Landrace, and 
Yorkshire and Hampshire pigs. These differences may result 
from differences in feed composition and environment, as 
well as from inherent breed differences. However, it is dif-
ficult to make detailed comparisons of the specific effects of 
diet and environment in the studied populations.

Multiple factors are known to affect the gut microbiota, 
including genetics. Human genetic variation is documented 
to influence the gut microbiota by both environmental 
and host-associated factors (Bonder et al. 2016; Qin et al. 
2022; Lopera-Maya et al. 2022). Genetic variations result 
in phenotypic differences, which are also known to influ-
ence the gut microbiota (Kemis et al. 2019; Suzuki et al. 
2019; Chen et al. 2020; Wang et al. 2021; Yang et al. 2022). 
Chen et al. (2021a) determined the stability and variation 
in human microbiota in response to physiological changes 
in the host. Yang et al. (2022) have shown that, under con-
ditions of significant genetic diversity and environmental 
uniformity, the composition of the microbiota is heritable. 
These results provide strong evidence for the influence of 
host genotype on the abundance of specific bacteria in the 
intestine. Thus, the pig genotype can affect the composi-
tion of the gut microbiota. Differences at the levels of phy-
lum, class, order, family, and genus were apparent in sam-
ples from the same intestinal region in different pig breeds 
(Fig. 4; Table S5). Within-group stability was observed for 
both microbial composition and abundance. We also found 
that the genetic stability of the microbial communities varied 
significantly according to pig breed, with Bifidobacterium 
species showing relatively high within-group stability over 
extended periods in WP populations. Notably, it has been 
found that some Bifidobacterium species colonize wild pig 
populations and subsequently show a high degree of genetic 
stability (Ushida et al. 2016). This supports the observation 
that the microbiota of both indigenous and commercial pigs 
have diversified from their state in ancestral pig populations. 
Martínez and colleagues (2018) reported that each person 
has a unique and stable community of gut microbes that is 
as personal as a “fingerprint.” Studies have shown that an 
individual’s genetics, diet, environment, lifestyle, and physi-
ological state all make small contributions to variations in 
the gut microbiome among individuals. However, less than 
30% of this variation can be explained, and even identical 
twins, who share the same genotype and often diets and life-
style, have distinct gut microbiomes. It is interesting that, 
despite living in varied habitats, wild pigs show remark-
able similarities in their microbiota. More importantly, the 
microbiota of domesticated pigs differed significantly from 
those of their wild ancestors. These findings also suggest 
that different pig breeds may have specific microbial com-
positions that differ from others and may persist for long 
periods of time. The genetic profile of the gut microbiota 
may thus represent a host “marker” that distinguishes the 

specific host from others. Overall, these results demonstrate 
that both the composition and functional influence of the 
microbiota may be closely linked with the genotype of the 
host. Gut microbes are vertically transmitted in pigs, and 
thus, there is a symbiotic relationship between the hosts and 
their associated microbial communities. Therefore, it is not 
surprising that the effects of these factors were greater in 
modern pig breeds. The aim of the study was not to demon-
strate that domestication and the development of the mod-
ern breeds are the most critical factors affecting the pig gut 
microbiota. Instead, we investigated and confirmed that pig 
domestication resulted in a specific shift in the composi-
tion of the pig microbiome. Moreover, we argue that the 
transition from ancestral wild pigs to modern pig breeds is 
masked to some extent by the influence of genotype, which 
may independently drive changes in the microbiome.

Phylogenetic analysis showed that pig genotypes were 
associated with a variety of microbiota phyla (Fig. 5). Each 
branch on the tree represents one gut microbiota. Phyloge-
netic trees for Prevotella (ASV11), Lactobacillus (ASV3), 
Shigella (ASV2), Bifidobacterium (ASV9), Sarcina (ASV1), 
and Streptococcus (ASV5) showed the presence of “core” 
microbial species in different groups. Interestingly, the phy-
logenetic trees showed that the top 50 most abundant gut 
microbes from different intestinal locations were located 
on different branches in different pig populations and were 
clustered according to the taxonomy of the microorgan-
isms. Several clusters of bacteria were visible after cluster-
ing, as shown in Fig. 5. These bacteria belonged to a vari-
ety of species, usually belonging to the same order. PCoA 
and UPGMA analyses showed a lack of uniformity in the 
gut microbiota along the intestine among the different pig 
breeds, while within the same breed, there tended to be 
clustering of the microbiota species. Specifically, the gut 
microbial clusters from WPs were distinct from those of 
the domesticated CSB, IB, and LW (Fig. 3A and B). Sharp-
ton has described mechanisms through which gut microbes 
in vertebrates affect the physiology and fitness of the hosts 
(Sharpton 2018). Wibowo et al. (2021) performed a large-
scale de novo assembly of microbial genomes from pal-
aeofeces, establishing that palaeofeces with well-preserved 
DNA are abundant sources of microbial genomes, including 
previously undescribed microbial species, which may eluci-
date the evolutionary histories of human microbiomes. The 
phylogenetic analysis showed significant correspondences 
between the gut microbes and their hosts, strongly sugges-
tive of co-evolution. This also suggests that the adaptation 
is to the host genotype, as this had a significant effect on 
the composition of the microbial communities. Thus, phy-
logenetic analysis can be used to investigate the evolution 
of microbiota during the change from wild to domesticated 
conditions. In all, the findings suggest that the composition 
and functional influence of the microbiota are closely linked 
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with the evolutionary adaptation of the host, suggestive of 
the co-evolution of pigs and their microbiota.

In the final section, we performed a metagenomic analysis 
of the functional influence of the microbiota in the differ-
ent pig breeds. A total of 7746 genes (Table S6) associated 
with 393 pathways (Table S7) were identified by KEGG. 
As shown in Fig. 6, the five intestinal regions differed in the 
functions of their microbiota among the four pig populations 
(P < 0.05; Fig. 6; Table S8). The clustered heatmap shows a 
clear distinction between WP and IB samples and CSB and 
LW samples (Fig. 7; Table S8). Specifically, the microbiota 
from WPs contained greater numbers of metabolism-related 
genes. Different abundances were seen in approximately half 
of the bacterial species and pathways, together with within-
group differences in microbial genotypes. Genes associated 
with amino acid and carbohydrate metabolism, as well as 
resistance, were more abundant in WPs compared with LW, 
CSB, and IB, while genes associated with lipid metabolism 
were more common in IB pigs than in LW, CSB, and WP 
pigs. These four types of pigs differ in their lipid content: 
CSB and IB pigs have higher fat deposition with lower pro-
portions of meat compared with the leaner LW and WP 
pigs. Gao et al. (2019) observed that Prevotella was more 
abundant in CSB pigs compared with their LW counter-
parts, suggesting that CSB pigs may be more efficient in 
their absorption of nutrients than LW pigs. Crespo-Piazuelo 
et al. (2018) reported that energy pathways associated with 
the gut microbiota varied along the intestine in IB pigs, sug-
gesting an explanation for the influence of the microbiota on 
lipid metabolism. Anaerobic bacteria compete for the degra-
dation of plant polysaccharides and fatty acid production in 
the colon. Prevotella is usually abundant in pig feces (Yang 
et al. 2016; Kim et al. 2017) and is known to be involved in 
polysaccharide degradation and amino acid metabolism to 
influence the level of intramuscular fat in pigs (Fang et al. 
2017). Chen et al. (2021b) suggested that Prevotella copri 
in the intestines of pigs fed on commercial diets influences 
chronic inflammatory responses in the host, mediated by 
TLR4 and mTOR signaling to increase fat deposition in the 
host. Thus, differences in the lipid content of the host may 
be caused by microbes such as Prevotella spp. Further inves-
tigation is necessary to verify these possible relationships. 
Furthermore, we observed that Actinobacteria predomi-
nated in the intestines of WPs, whereas Bacteroidetes were 
more abundant in domesticated pigs. Bacteroidetes are able 
to degrade bacterial exopolysaccharides in the animal gut 
(Lammerts van Bueren et al. 2015), while Actinobacteria 
produce various compounds that influence immunity and 
metabolism and are vital to host health (Matsui et al. 2012). 
The change from dominance by Actinobacteria in wild pigs 
to Bacteroidetes in domesticated pigs may be the result of a 
variety of influences, including genetics, evolution, environ-
mental change, and the type of food. Actinobacteria are also 

associated with resistance against infection and higher levels 
of this phylum in wild pigs may be associated with increased 
infection resistance in contrast to domesticated pigs. Thus, 
it is apparent that domestication has resulted in a shift in the 
composition of the microbiota, and although there are clear 
similarities between wild and domesticated animals in terms 
of microbial dominance, there are clear differences between 
the two populations.

The Bifidobacterium and Allobaculum genera predomi-
nated in most of the WP samples (Fig. 3B; Table S4). Bifi-
dobacteria are found in the digestive tracts of both mam-
mals and insects (Ventura et al. 2012) and, together with 
Allobaculum, are classified as probiotic bacteria as they 
protect the mucosal barrier of the intestine (Furusawa et al. 
2013). These bacteria contain numerous genes encoding 
enzymes responsible for the breakdown of complex car-
bohydrates (Milani et al. 2014). Bifidobacterium degrade 
the hexose sugars through a specific pathway, the “bifid 
shunt.” dependent on the fructose-6-phosphate phos-
phoketolase enzyme (Pokusaeva et al. 2011). The end-
products of this pathway are ATP and short-chain fatty 
acids that protect the mucosal barrier against pathogenic 
infection (Sánchez et al. 2010); an example is acetate pro-
duced by Bifidobacterium which has been shown to pro-
tect epithelial cells from infection (Fukuda et al. 2011). 
Bifidobacterium has also been found to protect against 
rotaviral enteritis (Rigo-Adrover et al. 2017) and necrotiz-
ing enterocolitis in newborn rats (Satoh et al. 2016; Wu 
et al. 2013) and to enhance inflammation and the immune 
response in colitis-affected rats during weaning (Izumi 
et al. 2015). Similarly, one of the most abundant genera 
observed in wild pigs was Allobaculum, a member of the 
Erysipelotrichaceae family and about which relatively lit-
tle is known. The first reported member of the genus is 
Allobaculum stercoricanis from dog feces (Greetham et al. 
2004). Allobaculum is also negatively associated with adi-
posity in mice (Baldwin et al. 2016) and has been found 
to utilize glucose and produce both lactate and butyrate 
(Herrmann et al. 2017). Allobaculum species have also 
been linked to inflammation in mice (Cox et al. 2014), 
while Miyauchi et al. (2020) observed a causative associa-
tion between an Allobaculum strain and a predisposition 
to autoimmune encephalitis. Van Muijlwijk et al. (2021) 
observed that A. mucolyticum secreted numerous O-glycan 
carbohydrate-degrading enzymes, resulting in an ability to 
degrade intestinal mucins, resulting in effective coloniza-
tion and degradation of the intestinal mucus layer. Thus, it 
is possible that the high proportion of Bifidobacterium and 
Allobaculum in the microbiome may enhance both nutrient 
absorption and resistance to disease in wild pigs. However, 
Tsuchida et al. (2017) observed that intestinal bacteria 
from wild pigs contained fiber-degrading enzymes while 
domestic pigs expressed genes associated with tetracycline 
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resistance. It is possible that the latter may be linked to 
the routine use of antibiotics during the rearing of domes-
tic pigs. Overall, these reports suggest that throughout 
porcine evolution and domestication, alterations in both 
the environment and nutrient source, as well as artificial 
selection, have led to divergence in the composition of the 
intestinal microbiome, with modern domestic pigs having 
microbiota associated with fast growth but reduced disease 
resistance compared with wild pigs (Yang et al. 2020). 
The metagenomic results suggest that the microbiota have 
distinct spatial and functional attributes that enhance the 
degradation and utilization of nutrients as well as main-
taining gut homeostasis. We have also demonstrated a pos-
sible causal association between microbial, metabolites, 
and the host phenotype. There is the potential to expand 
knowledge of how physical damage to the gastrointestinal 
tract alters microbial content. An environmental applica-
tion of the pig gastrointestinal model could evaluate the 
effects of climate change on the microbiome and gut health 
(Lunney et al. 2021). Our future studies will focus on the 
microbial strain, investigating genetics and evolution by 
metagenomic sequencing or whole genome sequencing, 
as well as the potential therapeutic effects of diet on the 
gut microbiome.

Conclusion

Significant differences in microbial compositions and 
functions were found in the same intestinal regions of dif-
ferent pig breeds. The results suggest that the evolution of 
these aspects of the microbiota is strongly linked to both 
the domestication and genetics of the pig. Microbiota were 
found to be genetically stable and specific, with vertical 
transmission in the host, suggesting co-evolution of the 
host and its microbiome. The gut microbiota influences 
the host, with signaling pathways affecting the phenotype 
of the host. Nevertheless, the influence of the highly vari-
able microbial genomes on the metabolism of the host 
remains to be explored. These findings provide insight 
into the complexity of microbial-host relationships and 
highlight the significance of applying this knowledge in 
agricultural practice.
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