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Abstract
Infections with carbapenemase-producing Gram-negative bacteria are related to increased morbidity and mortality, yet little 
is known regarding infections caused by non-beta-lactamase mediated carbapenem-resistant bacteria. Our objective was 
to identify risk factors for, and the clinical impact of infections caused by carbapenem-resistant carbapenemase-negative 
Enterobacterales and Pseudomonas aeruginosa. This retrospective matched case-control study was performed at the 
University Hospital of Basel, Switzerland, in 2016. We focused on other resistance mechanisms by excluding laboratory-
confirmed carbapenemase-positive cases. Carbapenem resistance was set as the primary endpoint, and important risk factors 
were investigated by conditional logistic regression. The clinical impact of carbapenem resistance was estimated using 
regression models containing the resistance indicator as explanatory factor and adjusting for potential confounders. Seventy-
five cases of infections with carbapenem-resistant, carbapenemase-negative bacteria were identified and matched with 
75 controls with carbapenem-susceptible infections. The matched data set was well-balanced regarding age, gender, and 
comorbidity. Duration of prior carbapenem treatment (OR 1.15, [1.01, 1.31]) correlated with resistance to carbapenems. 
Our study showed that patients with carbapenem-resistant bacteria stayed 1.59 times (CI [0.81, 3.14]) longer in an ICU. The 
analyzed dataset did not provide evidence for strong clinical implications of resistance to carbapenems or increased mortality. 
The duration of prior carbapenem treatment seems to be a strong risk factor for the development of carbapenem resistance. 
The higher risk for a longer ICU stay could be a consequence of a carbapenem resistance. In contrast to carbapenemase-
producers, the clinical impact of carbapenamase-negative, carbapenem-resistant strains may be limited. Trial registration: 
The study design was prospectively approved by the local Ethics Commission on 10.08.2017 (EKNZ BASEC 2017-00222).
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Introduction

Carbapenems are important beta–lactam antibiotics due to 
their broad spectrum of action. This allows the treatment 
against a wide range of antimicrobial resistant bacteria, includ-
ing leading pathogens of hospital-acquired infections such as 
extended-spectrum beta-lactamase (ESBL)- (Paterson 2000) 
or AmpC-producing Enterobacterales (Metsini et al. 2018), 
and non-fermenting Gram-negative bacteria including Pseu-
domonas aeruginosa (Lautenbach et al. 2010). Carbapenem 
resistance has been associated with increased mortality rates, 
prolonged hospital stays, and higher hospitalization costs 
(Adams et al. 2020; Correa et al. 2013). Therefore, resistance 
against carbapenems is critical for treatment and patient man-
agement (Ferstl et al. 2017; Schwaber et al. 2008).

Several studies have examined risk factors for the develop-
ment of carbapenem resistance. They suggest that the previous 
use of antibiotics and in particular of carbapenems prior to hospi-
tal stay, admission to the intensive care unit (ICU), required assis-
tance in activities of daily living, and usage of central catheters 
favor the acquisition or selection of resistant strains (Correa et al. 
2013; Jeon et al. 2008; Schwaber et al. 2008; Wang et al. 2016).

Four mechanisms of carbapenem resistance are recog-
nized: production of carbapenem-hydrolyzing β-lactamases, 
expression of efflux pumps, mutations that influence penicil-
lin-binding proteins (PBPs), and change of functional porins 
(Papp-Wallace et al. 2011). Most of the clinical studies focus 
on plasmid-acquired carbapenemases. Although it has been 
shown that deletions or single nucleotide polymorphisms cause 
changes in the aminoacid sequence and subsequent structure of 
the porin protein (Sanbongi et al. 2009), the clinical aspects of 
porin loss are not well investigated. The OprD porin protein of 
P. aeruginosa is strongly linked with carbapenem resistance 
(Sanbongi et al. 2009; Yoneyama and Nakae 1993). Additional 
studies further reported the importance of variations in porin 
expression in Enterobacterales (Doumith et al. 2009; Lavi-
gne et al. 2013). Further mechanisms may evolve subsequently 
under the ongoing selective pressure induced by the broad use 
of carbapenems (Li et al. 2012).

The objective of this study was to identify the clinical deter-
minants of carbapenemase-negative, carbapenem-resistant 
Enterobacterales as well as P. aeruginosa, and to explore the 
clinical implications of these resistances in a low-endemic set-
ting of carbapenemases.

Methods

Design, setting, and ethics

The University Hospital Basel (USB) in Switzerland is 
a tertiary care hospital with a capacity of 855 beds and 

approximately 38,000 admissions per year. In Switzerland, 
carbapenemases in Enterobacterales are rare on a stable 
low level and constitute 142 isolates during 2016 in the 
whole country (Federal Office of Public Health and Fed-
eral Food Safety and Veterinary Office 2018). The study 
design was approved by the local Ethics Commission 
(EKNZ BASEC 2017-00222).

In this retrospective case-control study, we included as 
potential cases all hospitalized adult patients at the USB in 
2016, who received antimicrobial susceptibility testing for 
Enterobacterales or P. aeruginosa. The Enterobacterales 
group included the following species: Citrobacter freundii 
group, Enterobacter cloacae group, Klebsiella aerogenes, 
Escherichia coli, Serratia marcescens, and Klebsiella 
pneumoniae group. Furthermore, species with resistances 
to the carbapenems ertapenem, imipinem, or meropenem 
were selected for further analysis. Due to weak activity 
of ertapenem against P. aeruginosa (Papp-Wallace et al. 
2011), the susceptibility testing of P. aeruginosa was per-
formed on imipenem and meropenem. Cases with a pheno- 
or genotypically confirmed carbapenemase-positive isolate 
were excluded. Hospitalization below 24 h, insufficient 
documentation in the chart record, or multiple admissions 
for a single case were defined as additional exclusion cri-
teria. In case of repeated bacterial isolates from the same 
patient, the first resistant isolate was taken.

To each of the carbapenem-resistant, carbapenemase-
negative cases, a carbapenem-sensitive control was exactly 
matched according to the following criteria: bacterial spe-
cies, ward type (medical, surgical, obstetrics and gynecol-
ogy, and intensive care unit), and isolation source (blood, 
urine, respiratory material, and superficial swabs or deep 
tissue biopsies). The prioritized control was replaced with 
an alternative control in case of multiple selection, insuf-
ficient information, or hospitalization below 24 h.

In the primary analysis, the carbapenem resistance was 
set as the primary endpoint, and the most important risk 
factors were investigated. The clinical implications were 
examined in the secondary analysis regarding the end-
points: all-cause mortality during hospital stay (within 30 
days after resistance test (RT)), total intensive care unit 
stay (days), hospital stay duration (days), rehospitaliza-
tion at USB (yes/no), and duration of antibiotic treatment 
(days).

Patient data collection

Data for all patients were gathered retrospectively by chart 
review. This included associated patient data separately for 
the time frame before and after the isolates were identified. 
The following information was collected: adapted Charlson  
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comorbidity index (Charlson et al. 1994), transplantations, 
demographic information, and resistance profile of the iso-
late to other antibiotics. Previous intake of acetylsalicylic 
acid or antacids (at admission), previous surgical interven-
tions (3 months prior to the RT), previous hospitalizations 
(1 month prior to the RT), and foreign body (in situ at the 
time of the RT) such as urinary catheter were recorded. 
The following data were gathered separately for the time 
frame before and after susceptibility testing as well as dur-
ing the whole period: duration of antibiotic intake split 
into common antibiotic subgroups (1 month prior to the 
RT; RT till discharge), and duration of hospitalization and 
intensive care unit stay. Different variables like within-
hospital mortality and rehospitalization at the USB (<1 
month after discharge) completed the data base.

The data were recorded in an electronic case report form 
with the support of the freeware “Epidata” (version 4.2.0.0.) 
(EpiData Association 2017).

Antibiotic susceptibility testing

We included all bacterial isolates found during routine 
diagnostics at the ISO-accredited diagnostic microbiology 
laboratory (Fig. 1). Antimicrobial susceptibility testing was 
performed according to EUCAST guidelines. Bacterial iso-
lates were identified using MALDI-TOF mass spectrometry 
(Bruker Microflex, Bremen, Germany) with the mass-spec-
trum library and the MALDI Biotyper 3 software (OC 3.1, 
Bruker Daltonics) at standard conditions. Alternatively, we 
used the biochemical profile from VITEK2 (bioMérieux, 
Marcy-l’Étoile, France) for identification. Antimicrobial sus-
ceptibility profile was generated using the Gram-negative 
AST card (N242) on the VITEK 2 (bioMérieux) instrument. 
We used EUCAST recommendations for screening for car-
bapenemase production (Giske et al. 2013).

For screening purposes, we used specific selective chro-
mogenic culture plates: CARBA-ID for carbapenemases 
(bioMérieux) and ESBL-ID for ESBL (bioMérieux) (Hinić 
et al. 2017). Identification of colonies growing on screening 
plates was performed using MALDI-TOF MS, followed by 
a phenotypic and/or genotypic confirmation of the corre-
sponding resistance mechanism.

For phenotypic confirmation we used (i) the KPC, MBL, 
and OXA-48 confirm kit (ROSCO, Taastrup, Denmark) 
or (ii) for Metallo-Beta-Lactamases also a combined dual 
E-Test® MBL IP/IPI (bioMérieux) was used. These tests are 
based on a ratio interpretation by a MIC or inhibition zone, 
resulting from a combination of the carbapenem antibiotic 
with and without a carbapenemase inhibitor.

For genotypic confirmation, we used the following tests: 
(i) Xpert Carba-R (Cepheid, Sunnyvale, California) cover-
ing KPC, NDM, VIM, IMP-1, and OXA-48;(ii) eazyplex 

SuperBug CRE (Amplex, Gars am Inn, Germany) covering 
KPC, NDM, OXA-48, OXA-181, VIM, and the ESBL genes 
of the CTX-M-1 and CTX-M-9 group (Hinić et al. 2015) or 
whole genome sequencing.

Statistics

Matching

Matching was done using R (version 3.3.0) and the MatchIt 
software package (Daniel et al. 2011; R Core Team 2016). 
Every carbapenem-resistant case was matched to five non-
resistant controls by corresponding bacterial species, ward, 
and source of bacterial isolation (i.e., material category). 
Subsequently, a nearest neighbor analysis sorted the matched 
controls by the date the isolates were taken and prioritized 
controls that were closer to the date of the corresponding 
case. As the statistics was performed with one prioritized 
control per case, the remaining 4 controls were used as 
alternative options.

Outcomes and analysis

Prior to analysis, we determined an analytical plan following 
standard statistical procedures at the Clinical Trial Unit. The 
primary objective of this case-control study was to identify 
the determinants of non-carbapenemase mediated carbape-
nem resistance. For an overview, the baseline characteristics 
were summarized. Median, standardized mean difference 
(SMD), and standard deviation are shown unless otherwise 
indicated. When comparing two groups, the SMD meas-
ures the difference between the group means of a variable 
in terms of the average standard deviation of this variable 
within the two groups (Austin 2011).

Since we were dealing with an exactly matched data 
set, the primary analysis was based on conditional logistic 
regression, estimated using the R package survival (version 
2.44-1.1) (Pearce 2016). Beforehand, the five potentially 
most important risk factors for a resistance were selected 
by the investigators: carbapenem treatment duration before 
RT (days), hospital stay duration before RT (days), ICU 
stay duration before RT (days), surgery before RT (yes/
no), and Charlson comorbidity index (numeric score). To 
identify further relevant predictors among the baseline 
characteristics, we performed an automated variable 
selection based on Akaike’s information criterion (AIC) 
using the R package MASS (version 7.3-51.4). Using all 
patients with completely observed data, we performed 
a forward variable selection and a backward selection as 
sensitivity analysis. In addition, we conducted sensitivity 
analysis using two pragmatic imputation methods.
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The average impact of carbapenem resistance on the 
secondary endpoints was estimated using regression 
models containing the resistance indicator as explanatory 
factor and controlling for further potential confounders. 
For the secondary endpoint death during hospital stay, we 
used logistic regression models, while the outcome total 
intensive care unit stay duration was analyzed with a hurdle 
model (Zeileis 2008). The results for hospital stay duration 
and duration of antibiotic treatment were obtained using 
(generalized) linear regression models. For each secondary 
outcome, we estimated one model controlling for a minimal 
set of potential confounders identified by the investigators 
and compared this with a model adjusting for a more 
comprehensive set of covariates.

Results

During the study period 3,426 isolates of Enterobacterales 
and P. aeruginosa were tested for carbapenem susceptibility. 
Out of this cohort, 90 patients were identified with bacteria 
carrying one or more resistances to the carbapenems 
ertapenem, imipinem, or meropenem and selected for 
further analysis. Four of these 90 cases were tested positive 
for carbapenemases and subsequently excluded. Reasons 
for additional exclusions were hospitalization below 24 h, 
insufficient documentation in the chart record, or multiple 
admissions for a single case (Fig. 1). Eight controls were 
replaced due to their multiple selection or insufficient 
information.

Fig. 1  Flow diagram of the 
matching and exclusion process 
for the case-control study of 
carbapenem-resistant Entero-
bacterales and P. aeruginosa in 
Switzerland, 2016
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We finally included retrospective data of 75 resistant 
cases matched with 75 controls sensitive to carbapenems. 
As the analysis could only be performed with completely 
observed variables, each analysis was performed with a 
different number of subjects. Depending on the selected 
potential predictors for each analysis, cases and controls 
with at least one incomplete variable had to be excluded. 
The variables were incomplete in case the information in 
the patient chart did not allow a statement. For example, as 
the information was taken from in hospital patient charts, no 
statement could be made about the mortality within 30 days 
where a patient left the hospital during this period without 
readmission.

Table S1 of the supplementary material shows the struc-
ture of the matching criteria. Forty-three (57.3%) of all 75 
cases were tested positive to carbapenem-resistant P. aer-
uginosa. Moreover, respiratory material was the most com-
mon isolation site with 31/75 (41.3%) cases and 30/75 (40%) 
isolates were detected in patients hospitalized on a medical 
ward.

Primary analysis: determinants of carbapenem 
resistance

We performed the primary analysis on the complete 73 cases 
and 71 controls. The primary analysis is based on those 144 
subjects for whom all potential predictors (listed in Table 1) 
were completely observed. This restriction is necessary 
because we compared estimated models to identify the most 
relevant predictors using the AIC here. All the variables for 
the primary analysis were of general character (age, sex, 
comorbidity, etc.) or referred to the time frame of the clinical 
management prior to when the isolates were sampled (treat-
ment with antibiotics, surgical interventions, etc).

Table 1 provides an overview of the analyzed data set. Even 
though the matching did not explicitly account for age, gender, 
and comorbidities, the matched data set seems to be well-
balanced regarding the variables age (SMD 0.128), gender 
(SMD 0.093), and Charlson comorbidity index (SMD 0.040). 
The standardized mean differences of the variables between 

Table 1  Complete cases with 
standardized mean differences 
(SMDs)

All variables refer to the period before the isolates were taken
RT resistance test

Sensitive (control) Resistant (case) SMD

n 71 73
Carbapenems treatment (days) (mean (SD)) 0.8 (2.7) 4.9 (9.2) 0.599
Hospitalization before RT (days) (mean (SD)) 12.2 (11.2) 17.9 (14.5) 0.447
ICU before RT (days) (mean (SD)) 2.3 (4.4) 5.9 (10.6) 0.450
Surgery, surgery before diagnosis (%) 36 (50.7) 40.0 (54.8) 0.082
Charlson comorbidity index (mean (SD)) 2.6 (2.2) 2.5 (2.1) 0.040
Age (mean (SD)) 68.8 (15.0) 66.9 (15.3) 0.128
Gender, female (%) 25 (35.2) 29.0 (39.7) 0.093
Previous ICU stay, ICU < 3 m before RT (%) 10 (14.1) 5.0 (6.8) 0.238
Previous hospital stay, hospital < 1 m before RT (%) 27 (38.0) 23.0 (31.5) 0.137
Antibiotics, antibiotics < 1 m before RT (%) 63 (88.7) 67.0 (91.8) 0.103
Amoxicillin-clavulanate treatment (days) (mean (SD)) 3.1 (5.7) 2.4 (7.7) 0.111
Piperacillin-tazobactam treatment (days) (mean (SD)) 3.3 (5.5) 2.7 (5.5) 0.101
Cephalosporins treatment (days) (mean (SD)) 0.7 (1.8) 1.3 (2.9) 0.251
Quinolones treatment (days) (mean (SD)) 0.9 (3.9) 1.6 (4.6) 0.174
Macrolides treatment (days) (mean (SD)) 0.3 (1.2) 0.2 (0.9) 0.071
Aspirin, aspirin at admission (%) 20 (28.2) 12.0 (16.4) 0.285
Antacids, antacids at admission (%) 27 (38.0) 24.0 (32.9) 0.108
Foreign body (%) 0.439
 None 19 (26.8) 27.0 (37.0)
 Arterial catheter 16 (22.5) 21.0 (28.8)
 Prosthesis 3 (4.2) 3.0 (4.1)
 Urogenital foreign body 26 (36.6) 13.0 (17.8)
 Other foreign body 7 (9.9) 9.0 (12.3)
Transplant, organ/stem cell before RT (%) 3 (4.2) 6.0 (8.2) 0.166
Other antibiotics treatment (days) (mean (SD)) 1.3 (3.6) 3.6 (7.1) 0.409
Other antibiotics, intermediate/resistant (%) 5 (7.0) 24.0 (32.9) 0.683
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the group of patients with carbapenem-resistant bacteria and 
the group with carbapenem-sensitive bacteria are low.

Next, we performed an automated variable selection to 
identify further relevant variables associated with resist-
ance beside the five pre-selected by the investigators (1st 
to 5th variable in Table 2). Table 2 shows the odds ratios 
estimated in the model selected by a forward search. Four 
additional predictors were selected into the model, which 
has an improved AIC of 75.61 compared to 87.15 without 
additional predictors. The duration of carbapenems treat-
ment prior to detecting the resistance appears to be a relevant 
exposure with an estimated odds ratio of 1.15. This implies 
that with each day of carbapenems treatment the chances 
of a resistance to these antibiotics increase by this factor. 

In addition, we found that resistance to other antibiotics 
is a strong association (OR 8.33, CI [1.73, 40.13], p-value 
0.008), while acetylsalicylic acid seems to be associated 
with a reduction of resistance to carbapenems. Further, the 
treatment with cephalosporins before the resistance appears 
to be linked to a higher risk of carbapenem resistance with 
an Odds ratio of 1.28.

The performed susceptibility analysis yielded similar 
results.

Secondary analysis: clinical implications

The secondary objective was to explore the implications of 
an infection with carbapenem-resistant, carbapenemase-
negative bacteria with respect to a number of clinical out-
comes. The descriptive analysis of the secondary endpoints 
contained the initial dataset of 75 cases and 75 controls. 
Further secondary analyses are based on 128 to 149 subjects, 
depending on whether the corresponding endpoints and pre-
dictors were completely observed.

Table 3 shows the results of the descriptive analysis of 
the secondary endpoints. Twelve patients from the sensitive 
cohort died within 30 days after the antibiotic susceptibility 
testing had been conducted, and seven deaths of resistant 
cases were reported. The duration of the whole hospitaliza-
tion stays and in the ICU was longer in the resistant group. 
With a day average of 8.6 for cases and 4.5 for controls, the 
total duration of ICU stays almost half.

Regression models containing the resistance indicator 
as explanatory factor and controlling for further potential 
confounders were used to analyze mortality rates in detail. 
Controlling was conducted with a minimal and an extensive 
set of confounders. Based on the performance on AIC, one 
approach was selected and presented in Tables 4 and 5.

Table 2  Odds ratios from conditional logit model considering auto-
matically selected predictors of a resistance to carbapenems with 
approximate 95% confidence intervals

The predictors were selected based on a forward stepwise model 
selection, starting from the model with essential predictors (1st to 5th 
variable)
RT resistance test

Odds ratio 95% CI p-value

Carbapenems treatment (days) 1.15 [1.01, 1.31] 0.036
Hospitalization before RT (days) 1.00 [0.95, 1.05] 0.890
ICU before RT (days) 1.06 [0.95, 1.17] 0.292
Surgery-surgery before diagnosis 1.16 [0.18, 7.43] 0.878
Charlson comorbidity index 0.88 [0.72, 1.08] 0.219
Other antibiotics-intermediate/

resistant
8.33 [1.73, 40.13] 0.008

Acetylsalicylic acid-at admission 0.36 [0.10, 1.24] 0.105
Cephalosporins treatment (days) 1.28 [0.96, 1.71] 0.090
Transplant-organ/stem cell 

before RT
6.44 [0.56, 74.28] 0.136

Table 3  Descriptive analysis 
of secondary endpoints with 
standardized mean differences 
(SMDs)

1 Rehospitalization at the USB within 30 days after the end of stationary care
2 End of hospitalization within 30 days after resistance testing. No information could be gathered about 
mortality

Sensitive (control) Resistant (case) SMD

n 75 75
Death hospital, died in hospital < 30 d after 

resistance test (%)
12 (16.0) 7 (9.3) 0.201

Death (%) 0.232
 Alive 30 d after resistance testing 53 (70.7) 54 (72.0)
 Died < 30 d after resistance testing 12 (16.0) 7 (9.3)
  NA2 10 (13.3) 14 (18.7)
ICU total (days) (mean (SD)) 4.5 (7.9) 8.6 (16.4) 0.315
Hospitalization total (days) (mean (SD)) 25.8 (21.2) 34.1 (41.3) 0.253
Re-hospitalization 1 (%) 12 (16.0) 9 (12.0) 0.115
Antibiotics total (days) (mean (SD)) 34.9 (42.0) 45.3 (61.2) 0.197
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With an odds ratio of 0.44 (CI [0.14, 1.36]), the models did 
not show an association of carbapenem resistance and mortal-
ity. As shown in Table 4, the time spent in an ICU during the 
hospitalization appears to be the most important characteristic 
associated with dying in hospital.

The association between the length of a potential ICU stay 
and suffering from an infection with carbapenem-resistant bac-
teria was assessed using a hurdle model. The model indicates 
that patients with carbapenem-resistant bacteria tend to stay 
1.59 times (CI [0.81, 3.14]) longer in an ICU, when admitted. 
Potential confounders were included, and the corresponding 
results are listed in Table 5.

Separate analysis was performed with no remarkable result 
on duration of total hospitalization stay, rehospitalization at 
USB, and antibiotic treatment. Adjusted linear regression 
models did not indicate a difference between patients with 
carbapenem-resistant bacteria and patients with a carbapenem-
sensitive infection.

Discussion

Most of the previous published literature focused on resist-
ances due to carbapenemases, but very little data exist on 
the determinants and implications of other possible resist-
ance mechanisms such as porin loss or efflux pump activ-
ity in a wider range of Gram-negative bacteria. Therefore, 
carbapenemase-positive isolates were excluded in this 
study. The objective of this study was to identify the clini-
cal determinants of carbapenemase-negative, but carbape-
nem-resistant Enterobacterales, as well as P. aeruginosa, 
and to explore the clinical implications of these resistances 
in a low-endemic setting of carbapenemases. Our analy-
sis shows that the duration of prior carbapenem treatment 
correlates with resistance to carbapenem. Furthermore, 
the data indicates that patients with carbapenem-resistant 
bacteria tend to stay longer in an ICU ward.

With 43 patients suffering from an infection of carbap-
enem-resistant, carbapenemase-negative P. aeruginosa, 
more than half of the included cases were caused by this 
pathogen. This is not surprising, considering that P. aer-
uginosa is one of the major nosocomial pathogens and 
has a well-known resistance mechanism due to porin loss 
(Sanbongi et al. 2009; Yoneyama and Nakae 1993).

Differences concerning comorbidities between the 
resistant and the sensible cohort could not be shown. A 
possible explanation might be that the quantification using 
the Charlson comorbidity index is lacking in complete-
ness and specificity for infection-relevant comorbidities. 
For instance, several cases with cystic fibrosis could not 
be taken into full account due to the index being focused 
more on chronic respiratory diseases like COPD that are 
common in the average population. As we are dealing with 
a carbapenem-resistant subgroup with stated higher preva-
lence for cystic fibrosis, this could confound the index 
values (Oliver et al. 2000).

Our first question sought to identify determinants of 
carbapenem resistance in carbapenemase-negative Gram-
negative bacteria. Our models indicate nine predictors 
with variable evidence. In general, it seems that the devel-
opment of resistances is the result of numerous interfering 
risk factors. The analysis of these nine predictors implies 
that the duration of carbapenem treatment is an impor-
tant risk factor. Another result is the robust correlation 
of resistance to carbapenems with resistances to other 
antibiotics (summing up resistances to aminoglycosides 
and fluoroquinolones). The multi-resistant bacteria as well 
as the gradual escalation resulting in the use of carbap-
enems as antibiotics of last resort explain this temporal 

Table 4  Odds ratios from logit model for death in hospital controlling 
for a minimal set of confounders with approximate 95% confidence 
intervals

Odds ratio 95% CI

Carbapenems-resistant (case) 0.44 [0.14, 1.36]
Hospitalization total (days) 0.96 [0.93, 0.99]
ICU total (days) 1.10 [1.05, 1.17]
Charlson comorbidity index 1.21 [0.95, 1.52]
Age 1.03 [0.99, 1.08]

Table 5  Estimated multiplicative effects on ICU stay duration 
(among those discharged alive) controlling for an extensive set of 
confounders with approximate 95% confidence intervals

1 Total intake of specific antibiotic subgroups was counted within 30 
days prior to resistant test till end of stationary care

Estimate 95% CI

Carbapenems-resistant (case) 1.59 [0.81, 3.14]
Charlson comorbidity index 0.94 [0.80, 1.12]
Age 1.00 [0.98, 1.03]
Previous ICU stay-ICU < 3 m before 

resistance test
1.14 [0.40, 3.22]

Penicillin-BL inhibitor total (days) 1.04 [1.00, 1.07]
Quinolones total (days)1 0.97 [0.94, 0.99]
Carbapenems total (days)1 1.04 [1.01, 1.06]
Aminoglycosides total (days)1 1.01 [0.95, 1.06]
Surgery, surgery before resistance test 0.98 [0.53, 1.80]
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association. A strong relationship between the intake of 
different antibiotics and resistance to carbapenems has 
been reported in various studies (Adams et al. 2020; Jeon 
et al. 2008; Schwaber et al. 2008). Interestingly, together 
with carbapenems, the intake of cephalosporins seems 
to be associated with a resistance to carbapenems. Kwak 
et al. stated this association before among carbapenem-
resistant Klebsiella pneumoniae (Kwak et al. 2005). The 
exact molecular mechanism was not explored in that study 
and neither in ours. The increased intake of cephalospor-
ins may correlate with the overexpression of extended-
spectrum beta-lactamase (ESBL) or AmpC genes what 
potentially lead on its own to the resistance of carbapen-
ems or triggered an escalation towards carbapenem treat-
ment (Majewski et al. 2016; Rizi et al. 2023; Wilson and 
Török 2018). Furthermore, our data suggest the associa-
tion between the duration of hospitalization in the ICU 
and the development of resistant species. This seems to 
be consistent with other research (Schwaber et al. 2008).

We found that the intake of aspirin may be associated 
with decreased risk of resistance to carbapenems. In dis-
cordance with this suggestion, previous investigations 
(Bandara et  al. 2016; Ochs et  al. 1999; Zimmermann 
and Curtis 2018) have indicated that the intake of ace-
tylsalicylic acid is leading to more resistances. Our data 
could not corroborate the findings of an in vitro study that 
showed the reduction of OprD porin in P. aeruginosa outer 
membranes and increase of resistance to carbapenems due 
to acetyl salicylate (Ochs et al. 1999). In addition, another 
paper investigated the outer membrane proteomic profile 
of a P. aeruginosa isolate and found that some porins 
were downregulated in presence of salicylic acid in vitro 
(Bandara et al. 2016). It remains unclear if this in vitro 
observation is clinically meaningful. In our study, it could 
be that the intake of acetylsalicylic acid is associated indi-
rectly with a lower exposure to carbapenem antibiotics. 
Further studies are needed to explore the potential impact 
of co-medication on antibiotic resistance.

Next, we examined the clinical impact of carbapenem 
resistance. The analyzed dataset does not provide evidence 
for strong clinical implications of a resistance to carbap-
enems. The results of the secondary analysis propose that 
patients suffering from infection with carbapenem-resist-
ant bacteria have longer ICU stays. As a stay in the ICU 
increases hospitalization costs dramatically, this may con-
firm the association of carbapenem resistance and higher 
hospitalization costs in earlier research (Adams et al. 2020). 
The results of the descriptive analysis regarding the hospital 
stay duration could not be confirmed with models consider-
ing multiplicative effects. In this case, we could not support 
evidence from previous observations (Adams et al. 2020).

Evidence for an increased mortality could not be dem-
onstrated. This may be explained by a previous study which 

suggests poorer outcomes for carbapenem resistance due to 
carbapenemases compared with resistance of non-carbap-
enemase-producing Enterobacterales (Tamma et al. 2017).

However, these results need to be interpreted with cau-
tion. Our study has the following limitations: retrospective 
data with absence of further follow up after the stay in the 
hospital of tertiary care and limited number of patients. The 
limited number of patients from a single center in Switzer-
land and the exclusion of carbapenemase-positive cases may 
lead to reduced generalizability, especially in other endemic 
settings (European Centre for Disease Prevention and Con-
trol 2018; Federal Office of Public Health and Federal Food 
Safety and Veterinary Office 2018). We cannot rule out the 
possibility of confounding due to unmeasured variables, e.g., 
other interventions like ERCP. Also, we could not perform 
detailed molecular analysis such as transcriptomics to fully 
understand the reason for the carbapenem resistance, e.g., 
overexpression of ESBL or AmpC genes. Nevertheless, we 
focus in detail on an important group of microbiologically 
and clinically relevant bacterial strains with carbapenem 
resistance in absence of carbapenemases.

In conclusion, the duration of prior carbapenem treatment 
seems to be a strong risk factor. Furthermore, the higher risk 
for a longer ICU stay could be a consequence of a carbapenem 
resistance. Considerably more work, especially with larger 
cohorts, will be needed to further corroborate risk factors for the 
development of resistances of non-carbapenemase-producing 
gram-negative bacteria as well as their clinical implications.
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