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Abstract
Purpose  This study aims to characterize antimicrobial resistance (AMR) of all the non-duplicated Acinetobacter bauman-
nii strains isolated from an intensive care unit in a tertiary hospital during the period of January 1 to December 31, 2015.
Methods  A. baumannii (n = 95 strains) isolated from patients was subjected to antimicrobial susceptibility test (AST) by 
Vitek 2 Compact system to determine minimum inhibitory concentrations, followed by genotyping by enterobacterial repeti-
tive intergenic consensus-PCR (ERIC-PCR). Resistance genes of interest were PCR amplified and sequenced.
Results  All isolates were qualified as MDR, with a resistance rate of > 80% to 8 antimicrobials tested. In terms of beta-
lactamase detection, the blaOXA23, blaTEM-1, and armA genes were detected frequently at 92.63%, 9 1.58%, and 88.42%, 
respectively. The metallo-β-lactamase genes blaIMP and blaVIM were undetected. Aph (3’)-I was detected in 82 isolates 
(86.32%), making it the most prevalent aminoglycoside-modifying enzyme (AMEs) encoding gene. In addition, ant (3″)-I 
was detected at 30.53%, while 26.32% of the strains harbored an aac (6')-Ib gene. ERIC-PCR typing suggested moderate 
genetic diversity among the isolates, which might be organized into 10 distinct clusters, with cluster A (n = 86 isolates or 
90.53%) being the dominant cluster.
Conclusions  All of the A. baumannii strains detected in the ICU were MDR clones exhibiting extremely high resistance to 
carbapenems and aminoglycosides as monitored throughout the study period. They principally belonged to a single cluster 
of isolates carrying blaOXA23 and armA co-producing different AMEs genes.

Keywords  Acinetobacter baumannii · Antimicrobial resistance · Resistance genes · Healthcare-associated infection · 
Intensive care unit

Introduction

Acinetobacter baumannii (A. baumannii) is an opportunistic 
pathogen adept at colonizing and thriving in the hospital 
environment. In the recent decade, carbapenemase-produc-
ing multidrug-resistant (MDR) A. baumannii has emerged 
as a prominent cause of healthcare-associated infections 
(HAIs) notably at intensive care units (ICUs), and its inci-
dence seems to be ascending alarmingly in parts of China 
(He et al. 2011; Li et al. 2018; Bitrian et al. 2012; Behdad 
et al. 2020). Patients undergoing invasive procedures, immu-
nosuppressive therapy, or treatment with broad-spectrum 
antibiotics are vulnerable to HAIs caused by A. baumannii, 
particularly in the contexts of ventilator-associated pneu-
monia, bacteremia, septicemia, urinary tract, and wound 
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infections (Bitrian et al. 2012; del Mar et al. 2005; Freire 
et al. 2016; Gomez-Arrebola et al. 2021).

By virtue of its extraordinary aptitude to survive in the 
hospital environment and to develop extremely high resist-
ance to an array of common antibiotics including amino-
glycoside and carbapenem classes of antibiotics, A. bau-
mannii has become a major challenge to medical care at the 
ICU (Shimose et al. 2016; Molter et al. 2016; Shamsizadeh 
et al. 2017). One of the most prevalent sequence types (ST) 
of epidemic clones in China is ST208, which has gained 
notoriety for causing outbreaks in local ICUs (Bahador 
et al. 2015). Analysis on genomic relatedness among clinical 
isolates can help detect an epidemic strain, which can also 
offer information on infection diagnosis and anti-infection 
treatment.

Although substantial efforts have been made over the 
years in monitoring the epidemicity and AMR trends of A. 
baumannii in China, the scope of previous studies tends to 
be limited to highly populous urban centers in northern and 
eastern China (Ning et al. 2017; Zhou et al. 2018). In south-
ern China including Guangdong province (population 108.5 
million), where the humid subtropical climate indeed favors 
microbial growth, epidemiological surveys on A. bauman-
nii in HAIs were only with moderate frequencies and again 
covered only very large urban centers such as Guangzhou 
(population 14.9 million) (Zhou et al. 2015; Li et al. 2013). 
In contrast, studies on HAIs by A. baumannii and underlying 
mechanisms of AMR are otherwise scant in other Chinese 
regions overlooked in epidemiological survey. In this regard, 
we undertook the current study to examine the AMR traits, 
molecular determinants of AMR, and clonal relationship of 
A. baumannii strains isolated from an ICU of a teaching 
tertiary hospital in the Chaoshan metropolitan area (13.93 
million residents) in Guangdong province, southern China. 
We found that the isolates (n = 95) generally exhibited very 
high resistance to most of the commonly used clinical anti-
biotics including aminoglycosides and carbapenems, carried 
blaOXA23, blaTEM-1, and aph (3’)-I as the most frequently 
detected resistance genes, and consisted mostly of strains 
belonging to a single dominant cluster (cluster A in ERIC-
PCR analysis).

Materials and methods

Research settings and bacterial isolates

This study was conducted at the ICU of a tertiary-level 
teaching hospital affiliated to the Shantou University Medi-
cal College (SUMC) in Shantou City in Guangdong, a 
populous province in southern China. The hospital (1816 

inpatient beds) serves the Chaoshan metropolitan area in 
eastern Guangdong. A total of 95 non-duplicated A. bau-
mannii isolates were systematically collected from patients’ 
samples during the period of January 1 to December 31, 
2015. This study had been reviewed and approved by the 
Research Ethics Committee of the First Affiliated Hospital 
of Shantou University Medical College. The study was given 
a waiver of informed consent on the ground that it focuses 
only on characterizing bacterial isolates and involves no 
patient’s information.

Antimicrobial susceptibility

All isolates were first identified by using Vitek 2 Compact 
system (bioMérieux, France) and their antimicrobial suscep-
tibility profiles obtained by using the Gram negative suscep-
tibility cards (GN16 cards), according to the manufacturer’s 
instructions. Antimicrobial susceptibility test (AST) results 
for MICs (minimum inhibitory concentrations) were inter-
preted according to the criteria recommended by the Clinical 
and Laboratory Standards Institute (CLSI 2015). Confirmed 
A. baumannii isolates were stored at − 80 °C for subsequent 
experiments.

Detection of antimicrobial resistance genes

Whole genomic DNA was extracted by using TIANamp 
Bacteria DNA kit (Tiangen Biotech, China), according to 
the manufacturer’s instructions. Detection of antimicro-
bial resistance (AMR) genes by PCR amplification was 
carried out with specific primers (Lin et al. 2015; Chen 
et al. 2010) (see details in Table 1) to screen for the fol-
lowing genes of interest: extended-spectrum β-lactamases 
(ESBLs) encoding gene (blaTEM-1, blaSHV), metallo-β-
lactamases encoding genes (blaIMP, blaVIM-2, blaNDM-1), 
OXA carbapenemases encoding genes (blaOXA23, blaOXA24, 
blaOXA58), aminoglycoside-modifying enzyme (AME) 
encoding genes (aac(6')-Ib, ant(3″)-I, aph(3’)-I), and 16 s 
rRNA methylase encoding gene (armA) were detected. For 
PCR amplification, the following thermal cycling condi-
tions were adopted: initial denaturation at 94 °C for 3 min, 
followed by 30 cycles (94 °C for 1 min, 58–62 °C for 
1 min, and 72 °C for 1 min), and a final extension step of 
8 min at 72 °C. PCR products were separated by electro-
phoresis (at 100 V through a 1% agarose gel in 0.5 × TBE 
running buffer), stained with ethidium bromide, and 
observed under ultraviolet light. Identity of all PCR prod-
ucts was confirmed by DNA sequencing (Beijing Genom-
ics Institute, BGI).
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Genotyping of isolates

For determination of genetic relatedness of the isolates, 
enterobacterial repetitive intergenic consensus-PCR 
(ERIC-PCR) was performed with primer ERIC2 (5′-AAG​
TAA​GTG​ACT​GGG​GTG​AGCG-3′) (Bahador et al. 2015) 
to amplify the conserved sequences of bacterial strains, 
by using the following thermal cycling conditions: initial 
denaturation at 94 °C for 5 min, 4 cycles (94 °C for 1 min, 
26 °C for 1 min, 72 °C for 1 min), then 40 cycles (94 °C 
for 30 s, 40 °C for 30 s, and 72 °C for 1 min), and exten-
sion at 72 °C for 5 min. To resolve the PCR products, each 
PCR product was analyzed by electrophoresis in a 1.5% 
agarose gel stained with ethidium bromide. Results for 
ERIC-PCR banding patterns were appraised by the soft-
ware Quantity One (version 4.6.2) and scored as absent 
(0) or present (1) to construct a dendrogram according to 
the unweighted pair group (UPGMA) method, using the 
software NTSYS-pc (version 2.10e). Isolates with more 
than 90% similarity were considered as belonging to the 
same cluster.

Statistics analysis

Statistical analysis on antimicrobial susceptibility rates 
was analyzed by WHONET 5.6 software.

Results

Isolate characteristics and resistance rates

In this study, a total of 95 non-duplicative A. baumannii 
strains were isolated from ICU patients. Strains from male 
patients evidently outnumbered those from females at a ratio 
of 65 (68.42%) to 30 (31.58%). Affected patients had a mean 
age of 61.93 ± 1.87 years (range of 7 to 89 years old). The 
major isolation sites were sputum (n = 91), puncture fluid 
(n = 2), and stool (n = 2). As shown in Table 2, AST results 
suggested that all isolates could be qualified as multidrug-
resistant (MDR) A. baumannii, which were highly resist-
ant to 8 antibiotics including cefepime (FEP), ceftriaxone 
(CRO), imipenem (IPM), gentamycin (GEN), tobramycin 

Table 1   Primer sequences 
used in this study for detecting 
resistance genes

Target gene Sequence 5′ → 3′ Annealing temp. 
(°C)

Ampli-
con size 
(bp)

blaTEM-1 ACC​CAG​AAA​CGC​TGG​TGA​AA 57 724
TGA​CTC​CCC​GTC​GTG​TAG​AT

BlaSHV TTA​TCT​CCC​TGT​TAG​CCA​CC 55 795
GAT​TTG​CTG​ATT​TCG​CTC​GG

blaIMP AAT​TGA​GAA​GCT​TGA​AGA​AGGCG​ 56 621
TTA​ACA​GCC​TGC​TCC​CAT​GT

blaVIM-2 AGT​CTC​CAC​GCA​CTT​TCA​T 57 505
CAC​AAC​CAC​CAT​AGA​GCA​CA

blaNDM-1 GGT​TTG​GCG​ATC​TGG​TTT​TC 55 621
CGG​AAT​GGC​TCA​TCA​CGA​TC

blaOXA23 TTT​CTG​GTT​GTA​CGG​TTC​AGCA​ 57 646
AAC​CAG​CCC​ACT​TGT​GGT​TTT​

blaOXA24 GTT​TCT​CTC​AGT​GCA​TGT​TCA​TCT​ 55 664
CCC​AAC​CAG​TCA​ACC​AAC​CT

blaOXA58 CCA​ATC​GGC​TTT​TTC​TTC​AGCA​ 56 837
TCA​TCA​CCA​GCT​TTC​ATT​TGCAT​

aac(6')-Ib TTG​CGA​TGC​TCT​ATG​AGT​GGCTA​ 57 482
CTC​GAA​TGC​CTG​GCG​TGT​TT

ant(3″)-I GCC​ATA​CAG​CGA​TAT​TGA​TTTG​ 58 306
AAG​GCA​ACG​CTA​TGT​TCT​CTTG​

aph(3’)-I CGT​TGC​CAA​TGA​TGT​TAC​AGAT​ 58 333
TTA​CGC​TCG​TCA​TCA​AAA​TCAC​

armA TGA​AAA​GGT​TGT​TTC​CAT​TTC​TGA​ 57 669
TCA​TTC​CCT​ATA​ACC​TTC​GAA​TCA​
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(TOB), ciprofloxacin (CIP), trimethoprim/sulfamethoxazole 
(SXT), and piperacillin/tazobactam (TZP) while levofloxa-
cin (LVX) might not be deemed any more efficient than the 
abovementioned agents against A. baumannii, as it had a 
notable rate of intermediate-level resistance (37.90%) as 
shown in Fig. 1.

Genotypic patterns in ERIC‑PCR analysis

ERIC-PCR was used to compare the genetic relatedness 
among the A. baumannii isolates. All PCR banding patterns 
ranging from 550 to 2000 bp were analyzed by the NTSYS 
software to construct a dendrogram, as shown in Fig. 2. In 
general, 86 (or 90.53%) of the analyzed A. baumannii strains 
belonged to a major cluster A, while the remaining 9 isolates 
exhibited substantially different banding patterns, addition-
ally designated as isolates B, C, D, E, F, G, H, J, and K. In 
a longitudinal analysis, strains belonging to cluster A were 
detectable throughout the study period in 2015, indicating 
that members of this cluster correspond to the major clone 
causing the epidemic of MDR A. baumannii at our hospital.

Determination of antimicrobial resistance genes

Analysis on AMR genes suggests that the A. baumannii iso-
lates included in this study had high carriage rates for some 
specific AMR genes. Among the 95 strains, 87 (91.58%) 
were tested positive for the ESBL encoding gene blaTEM-1. 
In terms of detection of carbapenemase genes, 88 strains 
(92.63%) were found to harbor the blaOXA23 gene. Gene 
armA, a member of 16S rRNA methylases, was detected in 
84 isolates (88.42%), while the most prevalent AME encod-
ing gene aph (3’)-I was found in 82 isolates (86.32%). In 
comparison, 29 (30.53%) and 25 (26.32%) of the isolates 
harbored the ant (3″)-I and aac (6')-Ib genes, respectively. In 
further analysis, the genes blaSHV, blaIMP, blaVIM-2, blaNDM-1, 

blaOXA24, and blaOXA58 were undetected in any of the A. bau-
mannii strains (Table 3).

Through genotyping and detection of resistance genes, we 
classified the 95 isolates of A. baumannii in this study, as 
shown in Table 3. Cluster A could be categorized into 9 sub-
types on the basis of different AMR gene combinations. The 
most prevalent subtype in cluster A was subtype Ai, com-
prising 55 (63.95%) isolates expressing the genes blaOXA23, 
blaTEM-1, armA, and aph (3’)-I. Among subtype Ai isolates, 
38 (44.19%) were non-susceptible to all of the antibiotics 
tested. Twenty-two (25.58%) isolates in group Aii harbored 6 
different genes, non-susceptible to cefepime and ceftriaxone. 
The aminoglycoside resistance genes aph (3’)-I and ant (3″)-I 
were only detected in subtypes Aviii and Aix, but surpris-
ingly they were susceptible to gentamycin and tobramycin. 
The rest of the isolates showed various combinations of AMR 
genes, presumably giving rise to different resistance patterns.

Discussion

ERIC-PCR, a genotyping method premised on amplification 
of conserved regions of genomic DNA, has the advantage of 
facile instrumentation and reliability comparable to pulsed 
field gel electrophoresis (PFGE). It has been proven use-
ful for determining genomic relationship across strains with 
heterogeneous backgrounds (Cartelle Gestal et al. 2016; Ece 
et al. 2015). In the present study, a dendrogram based on 
ERIC-PCR results identifies 1 cluster (cluster A) and other 
9 distinct isolates, suggesting that a single dominant clone 
of MDR A. baumannii prevailed in the ICU in 2015 (Jan. to 
Dec.). In terms of resistance phenotype, strains in cluster A 
were consistently more non-susceptible to all tested antibiot-
ics than other strains. By using ERIC-PCR as a genotyping 
method, Ning and coworkers reported carbapenem-resist-
ant clones of A. baumannii spreading at an ICU in western 
China (Ning et al. 2017). Chen and coworkers also described 

Table 2   Antimicrobial 
susceptibility profiles of A. 
baumannii isolates

FEP cefepime, CRO ceftriaxone, IPM imipenem, GEN gentamycin, TOB tobramycin, CIP ciprofloxacin, 
SXT trimethoprim/sulfamethoxazole, TZP piperacillin/tazobactam

Antibiotics Resistance Intermediate Susceptible MIC range MIC50 MIC90

n Rate (%) n Rate (%) n Rate (%)

FEP 89 93.68 0 0.00 6 6.32 1–64 64 64
CRO 88 92.63 7 7.37 0 0.00 1–64 64 64
IPM 89 93.68 0 0.00 6 6.32 1–16 16 16
GEN 85 89.47 2 2.11 8 8.42 1–16 16 16
TOB 82 86.32 0 0.00 13 13.68 1–16 16 16
LVX 51 53.68 36 37.90 8 8.42 0.25–8 4 8
CIP 90 94.74 0 0.00 5 5.26 0.25–4 4 4
SXT 77 81.05 0 0.00 18 18.95 1–16 16 16
TZP 79 83.16 4 4.21 12 12.63 4–28 128 128
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a major epidemic strain spreading at different hospital units 
in Hunan province of southern China (Chen et al. 2016). In 
our study, the spread of A. baumannii strains in the ICU 
lasted for a substantial period and their resistance rates to 
antibiotics were extremely high. We found that among the 
9 subtypes of strains within cluster A, the most frequent 
type of AMR gene combination was blaOXA23 -blaTEM-1-aph 
(3’)-I-armA. Strains harboring this gene combination could 

be routinely isolated throughout the study period, suggesting 
the existence of entrenched extrinsic factors favoring their 
spread. Cross-transmission and contamination within the 
ward environment might underpin this process, which calls 
for greater awareness for monitoring and timely disinfection 
of the ward environment (Protano et al. 2019).

In our study, we found that multidrug-resistant Acine-
tobacter baumannii (MDRAB) strains simultaneously 

Fig. 1   Distribution of A. 
baumannii isolates recovered at 
the ICU (upper panel) and their 
resistance rates for individual 
antibiotics (lower panel) over 
the period of 2012 to 2015
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Fig. 2   Dendrogram depict-
ing genetic relationships of A. 
baumannii isolates
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carrying the blaOXA23 gene and multiple aminoglycoside 
resistance genes are apparently spreading in southern China. 
The carriage of blaOXA23 carbapenemases in A. baumannii 
has been documented worldwide and blaOXA23 was one of 
the most prevalent carbapenemase genes detected in Chinese 
hospitals (Ruan et al. 2013; Shoja et al. 2017). While the 
prevalence of A. baumannii co-expressing aminoglycoside 
resistance genes and carbapenemase genes has been reported 
in eastern China (Wang et al. 2016), to the best of our knowl-
edge, there have been no studies on the epidemicity of A. 
baumannii co-carrying AMR genes against aminoglycosides 
and carbapenems in southern China. It is noteworthy that 
the blaTEM-1 gene was the most prevalent ESBL gene in the 
present study, which differs from a previous study, where 
blaCTX-M was reported to be the predominant ESBL gene 
(Mahamat et al. 2016).

Aminoglycoside resistance of A. baumannii has been 
reported with increasing frequency in China in recent years 
(Gao et al. 2017; Jiang et al. 2014; Lin et al. 2015). In a study 
on A. baumannii from Jiangsu province, China, the most 
prevalent AMEs were identified as aac(3')-I and aac(6')-Ib 
(Wen et al. 2014). The resistance rates for GEN and TOB in 

this study were 89.47% and 86.32%, respectively (Table 2), 
and the most representative aminoglycoside resistance 
gene combination in the present study was armA-aph(3’)-I 
(58.95%). Interestingly, the isolate exhibited susceptibility 
to both GEN and TOB with only armA gene being detected. 
The most prevalent of the AMEs was aph(3’)-I (86.32%), 
followed by ant(3″)-I (30.53%), with 84 (88.42%) of the 
strains carrying armA. In addition, high levels of aminogly-
coside resistance co-occurring with carbapenem resistance 
have been reported in epidemic clones of A. baumannii from 
western China (Lin et al. 2015). The imipenem resistance 
rates of A. baumannii were extremely high in China and 
numerous studies have raised concerns over the emergence 
and spread of imipenem-resistant A. baumannii in hospi-
tals (Neves FC et al. 2016). Resistance rates for imipenem 
reported in different Chinese ranged from 58 to 100% (Jiang 
et al. 2016; Zong et al. 2008; Ji et al. 2014; Wu et al. 2015). 
Our current results suggested that efficacy of carbapenems as 
treatment for MDR-AB infections seemed to be fast dimin-
ishing, especially in ICU contexts. A growing body of litera-
ture documents blaOXA23 as a predominant carbapenemase 
genotype among epidemic clones in China (Chen et al. 2017; 

Table 3   Classification of MDR A. baumannii isolates based upon ERIC-PCR and genotypic profiles

a All isolates were tested negative for blaSHV, blaVIM-2, blaIMP, blaNDM, blaOXA58, and blaOXA24
b R + I resistant and intermediate

Cluster n (%) Subtype (n) Resistance genesa Resistance patterns (R + I)b

A 86 (90.35) Ai (55) blaOXA23, blaTEM-1, armA, aph(3’)-I FEP, CRO, IPM, GEN, TOB, LVX, CIP, SXT (40)
FEP, CRO, IPM, GEN, TOB, LVX, CIP, SXT (6)
FEP, CRO, IPM, GEN, TOB, LVX, CIP (5)
FEP, CRO, IPM, GEN, TOB, LVX, CIP (4)
FEP, CRO, IPM, GEN, TOB, CIP (1)

Aii (22) blaOXA23, blaTEM-1, armA, aph(3’)-I, aac(6’)-Ib, ant(3″)-I FEP, CRO, IPM, GEN, TOB, LVX, CIP, SXT (20)
FEP, CRO, IPM, GEN, TOB, LVX, CIP (1)
FEP, CRO, IPM, GEN, TOB, LVX, CIP (1)

Aiii (2) blaOXA23, blaTEM-1, armA, aac(6’)-Ib, ant(3″)-I FEP, CRO, IPM, GEN, TOB, LVX, CIP, SXT
Aiv (1) blaOXA23, blaTEM-1, armA, ant(3″)-I FEP, CRO, IPM, GEN, TOB, LVX, CIP
Av (1) blaOXA23, blaTEM-1, aph(3’)-I, ant(3″)-I FEP, CRO, IPM, GEN, LVX, CIP, SXT
Avi (1) blaOXA23, blaTEM-1, armA, aac(6’)-Ib, ant(3″)-I FEP, CRO, IPM, GEN, TOB, LVX, CIP, SXT
Avii (2) blaOXA23, blaTEM-1, armA FEP, CRO, IPM, GEN, TOB, LVX, CIP, SXT
Aviii (1) blaOXA23, blaTEM-1, aph(3’)-I FEP, CRO, IPM, LVX, CIP, SXT
Aix (1) blaOXA23, ant(3″)-I FEP, CRO, IPM, LVX, CIP

B 1 (1.05) – blaOXA23, armA FEP, CRO, IPM, SXT
C 1 (1.05) – CRO
D 1 (1.05) – , aph(3’)-I, ant(3″)-I CRO, GEN, LVX, CIP, SXT
E 1 (1.05) – CRO, CIP
F 1 (1.05) – blaTEM-1 FEP, CRO, IPM, GEN, TOB, LVX, CIP, SXT
G 1 (1.05) – blaOXA23, blaTEM-1, armA, aph(3’)-I FEP, CRO, IPM, GEN, TOB, LVX, CIP
H 1 (1.05) – aph(3’)-I CRO
I 1 (1.05) – CRO
J 1 (1.05) – CRO, CIP, SXT
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Thummeepak et al. 2016) and outbreaks caused by blaOXA23 
producing A. baumannii paralleled those occurring world-
wide (Neves et al. 2016; Hammoudi et al. 2015; Novovic 
et al. 2015; Koh et al. 2007; Martins et al. 2009). In this 
present study, we found that 88 of the A. baumannii strains 
(92.63%) harbored a blaOXA23 gene, suggestive of a level 
of prevalence seen in other parts of China (Ana Kovacic 
et al. 2017). Collectively, we proposed that the presence of 
blaOXA23 gene could be a cardinal molecular determinant of 
carbapenem resistance in our study.

Conclusion

In this study, we described the resistance traits and genetic 
relatedness of MDR A. baumannii strains with high resist-
ance that prevailed at the ICU of a teaching tertiary hospital 
in the Chaoshan area of Guangdong province, a populous 
yet epidemiologically overlooked region in southern China. 
Those strains highly resistant to carbapenem and aminogly-
coside including imipenem and gentamycin/tobramycin may 
be associated with the carriage of blaOXA23 and AME genes 
as determined in PCR assays. A single cluster A of epidemic 
clones seemed to dominate the spread of MDR A. bauman-
nii in the ICU of our hospital. Surveillance work in this 
study represents a first step towards a better understanding of 
MDR A. baumannii as a causative agent in ICUs, which calls 
for greater attention to continued monitoring and rational 
use of antibiotics.
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