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Abstract
The study of the food microbiome has gained considerable interest in recent years, mainly due to the wide range of applica-
tions that can be derived from the analysis of metagenomes. Among these applications, it is worth mentioning the possibility 
of using metagenomic analyses to determine food authenticity, to assess the microbiological safety of foods thanks to the 
detection and tracking of pathogens, antibiotic resistance genes and other undesirable traits, as well to identify the microor-
ganisms responsible for food processing defects. Metataxonomics and metagenomics are currently the gold standard meth-
odologies to explore the full potential of metagenomes in the food industry. However, there are still a number of challenges 
that must be solved in order to implement these methods routinely in food chain monitoring, and for the regulatory agencies 
to take them into account in their opinions. These challenges include the difficulties of analysing foods and food-related 
environments with a low microbial load, the lack of validated bioinformatics pipelines adapted to food microbiomes and the 
difficulty of assessing the viability of the detected microorganisms. This review summarizes the methods of microbiome 
analysis that have been used, so far, in foods and food-related environments, with a specific focus on those involving Next-
Generation Sequencing technologies.
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Introduction

A microbiome is a dynamic ecosystem involving an interact-
ing microbial community (the microbiota) and the surround-
ing environment, in which the microbes display different 
activities that shape a specific biological niche. Foods and 
feeds, basically made from animal and plant origin, provide 
the essential macro and micronutrients to sustain the life 
of other organisms, constituting an ecological niche for the 

proliferation of a large microbial diversity. Specific micro-
bial consortia are associated not only with the raw materials 
and foods themselves, but also with the processing envi-
ronments, being a kind of “feedback system” that must be 
balanced in order to obtain safe products with high quality 
standards (De Filippis et al. 2021). Almost every food has an 
associated microbiome and/or microbiome-related DNA (the 
metagenome). The food microbiota is considered pivotal in 
the imprinting of distinct and specific organoleptic features, 
mainly in fermented foods. Traditionally, this microbiota 
has been studied using culture-dependent techniques. Today, 
these techniques are still the most common to characterize 
microorganisms from food, to establish the methodology 
needed to guarantee the microbiological safety of the prod-
ucts and to determine the risk assessment in the agri-food 
industry. The main limitation of culture-dependent methods 
is that they only allow the study of culturable microorgan-
isms; therefore, there is a risk of not having an accurate 
view of the biodiversity of the microbial population present 
in the food.

It was at the beginning of this century when the so-called 
culture-independent techniques began to be applied in food 
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microbiology. These methods are based on the analysis of 
macromolecules (mainly DNA), which allows the identifi-
cation of the members of the micro-ecosystem to be deter-
mined without the need to culture them (Cocolin et al. 2013). 
The first methods developed were based on the direct analy-
sis of the DNA extracted from the sample, followed by PCR 
amplification of DNA fragments and a further separation 
of the amplicons using electrophoretic or chromatographic 
techniques, or using DNA-DNA hybridization, giving rise 
to methods such as PCR-DGGE (PCR-Denaturing Gradi-
ent Gel Electrophoresis), T-RFLP (Terminal Restriction 
Fragment Length Polymorphism) or FISH (Fluorescence 
in situ Hybridization) (Pogacic et al. 2010). However, in 
recent years, methods based on Next Generation Sequenc-
ing (NGS) methodologies have revolutionized how we study 
the food microbiome. Thanks to these techniques, we are 
able to extract the information encrypted in the microbi-
ome and unmask desirable and undesirable members of the 
community, as well as their potential metabolic functions. 
This information gives novel opportunities to explore the 
diversity and functionality of microbes in foods, as well as 
in food processing and producing environments (De Filippis 
et al. 2021).

Among the NGS-based approaches most commonly used 
at present, it is important to highlight that metataxonomic 
approaches, which are based on sequencing 16S rRNA as 
a marker gene for taxonomic composition characteriza-
tion, should be clearly differentiated from metagenomic 
techniques, which involve untargeted sequencing of all 
the genetic material retrieved from microbial community 
samples. Microbial fingerprinting using shotgun or gene-
targeted NGS analyses could be a valuable extension of cur-
rent microbiological methods for the detection and tracking 
of pathogens in the food industry, to support the authentic-
ity and/or geographical origin of foods, as well as a power-
ful tool to analyse the spread of antibiotic resistance genes, 
among other applications. In this review, we intend to give 
an insight into how the introduction of novel methods of 
microbiome analysis have impacted on food microbiology, 
focusing on those methods that use NGS technologies for 
the study of metagenomes, and the potential applications 
derived from these analyses.

Sequencing methodologies: short‑reads vs 
long‑reads

From the first DNA sequencing methodologies developed 
in the mid-1970s to date, steady advances have dramati-
cally increased the power, resolution and speed of analysis 
offered by the different generations of sequencing platforms. 
This revolution has been accompanied by a dramatic reduc-
tion in sequencing costs and has posited DNA sequencing 

as a preeminent tool in several biology fields. In the last 
few decades, it has also found application in deciphering 
and monitoring the microbial communities associated with 
foodstuffs, food production processes, and food processing 
environments, known to represent key determinants of food 
quality and safety.

The first appearance of the so-called second generation 
of sequencing platforms has largely increased sequencers 
performance by enabling the sequencing in parallel of mil-
lions of DNA molecules in a single experiment (Heather 
and Chain 2016). These include pyrosequencing platforms 
such as the one developed by Roche which, although it is not 
in use any longer, was the first technology from these sec-
ond generation of platforms broadly offered commercially. 
This technology was rapidly followed by other sequenc-
ing platforms such as those offered by Illumina or Solexa 
which are still widely employed. These second generation 
platforms are characterized for generating millions of short 
DNA sequencing reads, usually ranging from 150 bp up to 
500 bp in length, in a single experiment. Besides, they have 
enabled scientists to multiplex or parallelize several samples 
to be sequenced simultaneously in a single run. The con-
stant upgrades of second-generation sequencing platforms 
released to the market have continuously offered impressive 
advances, particularly concerning ease of library preparation 
and sequencer manipulation, increase in the amount of data 
generated and enhanced accuracy, while reducing processing 
time. These platforms have revolutionized how we tackle 
the study of complex microbial communities and have made 
possible the study of the implication of a broad range of 
microorganisms in diverse biological processes and to dis-
cern their role in complex microbial ecosystems, including 
those related to food production. Versatility, affordances, 
and performance of these platforms have promoted their 
application for fungal profiling in complex microbial com-
munities, based on Internal Transcribed Spacer (ITS) and/or 
18S rRNA gene sequencing; bacterial profiling based on16S 
rRNA gene sequencing; and functional analyses based on 
shotgun metagenomics or other marker gene sequencing 
approaches. These methods provide a better characteriza-
tion of the microbial diversity in a given sample as com-
pared to traditional microbial community analyses, such as 
those relying on DGGE-electrophoresis or culture dependent 
analyses. Besides, whole genome sequencing-based typing 
approaches allow the most comprehensive comparison pos-
sible of individual strains as compared to traditional single-
nucleotide polymorphism (SNP) and multilocus sequence 
typing (MLST) analyses, thus NGS technologies have revo-
lutionized both microbial community and individual strain 
profiling. Specifically, some of these second-generation 
sequencing platforms have seen exceptional applications of 
relevance in food production, from farm to fork, as a means 
of rapidly tracking the origin of outbreaks (Koutsoumanis 
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et al. 2019), to the surveillance of foodborne viruses or 
microorganisms that could impose health threats (Desdouits 
et al. 2020); to identify microbial populations responsible for 
food processing defects (Quigley et al. 2016; Ritschard et al. 
2018; Xue et al. 2021a), or quality attributes in fermented 
foods (Dertli and Çon 2017; Walsh et al. 2016), or even 
to assess food authenticity, in terms of geographic origin 
or production processes, based on microbial fingerprints 
(Anagnostopoulos et al. 2019; Haynes et al. 2019; Kamilari 
et al. 2019; Mezzasalma et al. 2017). The application of 
such tools to identify and monitor the appearance of undesir-
able traits among the bacterial communities inhabiting food 
processing environments such as antibiotic resistance, traits 
related to microbial persistence in food processing environ-
ments or those involved in food spoilage, quality defects or 
safety issues, is more recent, but shows promise that they 
would be able to anticipate undesirable events (Stasiewicz 
et al. 2015).

Third-generation sequencing instruments have come to 
light in the last decade further stepping ahead NGS-based 
applications to tackle research and monitoring of dynamic 
processes within food manufacturing processes and environ-
ments. These are mainly represented by Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT). The 
main merits of these third-generation sequencing plat-
forms is that they are able to conduct long read sequencing, 
theoretically as long as the DNA molecules present in the 
sample, and usually well above 5–10 kb. They also conduct 
single DNA molecule sequencing, thus avoiding the need 
to conduct PCR amplification steps during library produc-
tion; and for these reasons, and the chemistry involved in the 
sequencing reaction, they are able to detect physical–chemi-
cal modifications, such as epigenetic marks, including acety-
lation or methylation, in the nucleotides sequenced (Munroe 
and Harris 2010). Moreover, the existence among these plat-
forms of miniaturized sequencing devices, that can sequence 
DNA in real time in the food industry, has appeared as a 
promising tool which could be implemented as a routine 
monitoring of microbial dynamics in real settings, without 
the need to conduct the analyses in highly specialized labo-
ratories. Besides, these platforms enable (i) a much finer 
resolution in taxonomic assignments as, for instance, they 
are able to sequence the full 16S rRNA in microbial com-
munities; (ii) to sequence whole bacterial genomes with a 
lower amount of reads; and (iii) to discern molecular modi-
fications in the DNA. All these advantages, in addition to 
the availability of miniaturized sequencing devices, make 
long-read platforms appealing to conduct sequencing-based 
monitoring of food processing environments to guarantee 
foodstuffs quality and safety. Long-read platforms have 
also been demonstrated to be valuable in tracking mobile 
genetic elements and their spread through microbial com-
munities, as the DNA methylation patterns in these usually 

resemble those encountered in the chromosomal genomes 
of the strains they originated from (Carr et al. 2021). In 
this way, monitoring how new methylation patterns appear 
within a given mobile genetic element can provide real time 
information to decipher its spread across members in the 
communities, and its correlation with desirable or undesir-
able traits, such as microbial persistence within the food 
industry. Despite the many advantages and promises offered 
by long-read sequencing platforms, it is worth remarking 
that they do also generally need larger DNA quantities, 
which can be a limiting factor for certain applications or 
sample types, such as those obtained from food processing 
environments (McHugh et al. 2021). In addition, long-read 
sequencing instruments have far higher error rates leading 
to 88–94% and 85–87% accuracy values for Nanopore and 
PacBio instruments, respectively (Pearman et al. 2020). 
In contrast, error rates yielded by short-read sequencing 
instruments like Illumina platforms are in the range of 0.1 
to 0.6%. Therefore, the lower accuracy of long-read sequenc-
ing instruments may affect the success of current taxonomic 
classification methods. Moreover, long-read sequencing 
instruments are not optimal for single nucleotide variation 
detection analyses because insertions and deletions may be 
included in the errors (Kono and Arakawa, 2019). Neverthe-
less, the diverse NGS-based approaches currently available 
offer numerous possibilities to design tailored-made applica-
tions which might be of interest within the food industry, yet 
the design of specific and standardized sample collection, 
DNA extraction, bioinformatic pipelines, and proper data-
bases is essential so as to take advantage of the full potential 
that microbiome sequencing can deliver in food settings.

Data analysis of metataxonomic 
and metagenomic data

NGS technologies generate large volumes of data compris-
ing entire communities of microorganisms. Although most 
bioinformatics pipelines to date have been developed in the 
frame of human gut microbiome research, and both pipe-
lines and databases might need to be adapted to food and 
food processing environments, they can serve as a reference 
guide to tackle food metagenomic studies. A glossary of 
terms defining most technical terms used in this section is 
presented in Table 1.

Metataxonomic analysis based on bacterial 16S rRNA 
gene has been widely used for decades (Johnson et  al. 
2019), although sequencing of 18S gene (Karst et al. 2018), 
as well as ITS region (Rui et al. 2019), is also employed 
for taxonomic identification of eukaryotic microorganisms 
including fungal communities. Targeting of 16S variable 
regions with short-read sequencing platforms, such as Illu-
mina, is commonly reported for taxonomic annotation of 
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microorganisms, providing reliable identification at genus 
level. It is worth remarking that short-read metataxonomic 
analyses should not be used for strain- or species-specific 
monitoring purposes as they cannot provide reliable taxo-
nomic assignments to describe microbial diversity at those 
levels. Besides, these short-read metataxonomic approaches 
have some other limitations including bias for taxonomic 
assignment of sequences depending on the variable region 
chosen for the analysis (Santos et  al. 2020). Long-read 
sequencing platforms like ONT and PacBio, where the entire 
16S gene is sequenced, can achieve better resolution and 
have the potential to characterize microbial communities at 
species level (Johnson et al. 2019).

Most computational pipelines developed for metataxo-
nomic data analysis have been designed for short 16S 
rRNA gene fragments sequenced as paired-end reads on an 
Illumina platform, even though other genes and sequenc-
ing platforms could be used (Hall and Beiko 2018). The 
Quantitative Insights Into Microbial Ecology (QIIME) ver-
sions 1 and 2 is one popular software suite for microbial 
marker-gene analysis that generates microbial community 
descriptors by a series of computational transformations 
of the original sequence data (Bolyen et al. 2019). Some 
of these transformations include sequence quality filter-
ing, sequence alignments, phylogeny building, taxonomic 
classification and microbial diversity analysis (Bolyen et al. 
2019; Hall and Beiko 2018). A typical QIIME2 workflow 
involves the following steps (Hall and Beiko 2018): (1) 
importing sequences and sample metadata, (2) assessing 
sequence quality depending on sequencing platform and 
target gene, (3) removing primers to prevent false positive 
detection and denoising sequences using software libraries 
like DADA2 (Callahan et al. 2016) or Deblur (Amir et al. 
2017), (4) filtering sequence table to exclude any samples 
that have significantly fewer sequences than the majority, (5) 
clustering sequences to generate operational taxonomic units 
(OTUs) for taxonomic classification using machine learning 

algorithms, (6) building phylogenetic trees to generate phy-
logenetic diversity measures, (7) computing alpha- and beta-
diversity measures, (8) alpha rarefaction analysis to deter-
mine if samples have been sequenced to a sufficient depth.

Other software packages developed for microbial 16S 
rRNA analysis include MOTHUR, which has been used for 
10 years (Schloss 2020), and USEARCH-UPARSE (Edgar 
2013), showing a similar performance in a comparative 
study (Prodan et al. 2020). It should be noted that the most 
meaningful difference between these software suites is the 
choice of algorithms used to cluster sequences (Schloss 
2020). With regard to computational pipelines specifically 
developed for long-read sequencing data, there is a scarcity 
of bioinformatic tools and protocols. The most extensively 
used tool to process ONT sequencing data is the cloud ser-
vice EPI2ME, providing a series of workflows for end-to-end 
analysis. A typical workflow to process long-read sequenc-
ing data involves the following steps (Santos et al. 2020): (1) 
basecalling, which is the translation of changes in electric 
currents produced by the passing of DNA strands through 
a nanopore into a DNA sequence, (2) quality filtering of 
reads, (3) sequence orientation of mixed forward and reverse 
sequences that are not complementary to each other resulting 
from the basecalling process, (4) taxonomic classification 
using Basic Local Alignment Search Tool (BLAST) (Mad-
den et al. 2018) to the National Center for Biotechnology 
Information (NCBI) database, (5) abundance table creation, 
(6) rarefaction, alpha, and beta diversity analysis.

On the other hand, metagenomics allows untargeted 
sequence of genomes from all microorganisms present in 
one sample, including bacteria, archaea, virus and unicel-
lular eukaryotic microorganisms. Metagenomics is often 
used to study the genetic diversity of microbial communities 
and to determine taxonomic profiles of microorganisms at 
strain-level, as well as gene families and metabolic pathways 
(Bharti and Grimm 2021; Dulanto-Chiang and Dekker 2020; 
Pérez-Cobas et al. 2020). This kind of information could 

Table 1   Common terminology in next generation sequencing experiments

Term Definition

Assembly The process of reconstructing in silico the original genome sequence of a microorganism from small sequence reads
Binning Classification of sequence reads or contigs into bins representing individual genomes or taxa
Contigs Series of overlapping DNA sequences generated from joining smaller sequence reads
Metagenome Genetic content of the whole microbial community present in an ecological niche
Metagenomics A set of techniques for recovering and sequencing total nucleic acids from microbial communities which analyses enables 

their functional and taxonomic characterization
Metataxonomics A set of techniques used to characterize the microbial composition of a community and generate a metataxonomic tree, which 

shows the relationships between taxonomic assignments
Microbiome Dynamic ecosystem involving an interacting microbial community (the microbiota) and the surrounding environment
Pipeline Chain of data processing elements (i.e., bioinformatics software) arranged so that the output of each element is the input of 

the next
Trimming Removal of low-quality sequence reads
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not be obtained by simpler metataxonomic approaches. 
The pipelines that have been developed for metagenomics 
analyses are an extension of those that have been developed 
for whole bacterial genome analysis (Quijada et al. 2019), 
including genome assembly and annotation steps, as well as 
the identification of plasmids and mobile elements (Carattoli 
et al. 2014), and antibiotic resistance genes using specific 
databases (Bortolaia et al. 2020).

Figure 1 illustrates a typical pipeline to process shotgun 
metagenomic sequences. The first step in metagenomic data 
analysis involves quality control of sequences to remove low 
quality and contaminant reads from the host or food matrix. 
For this purpose, software packages like Kneaddata and 
Trimmomatic (Bolger et al. 2014), to trim reads and to per-
form in silico separation of bacterial reads from contaminant 
reads, have been developed. These sequences are usually 
mapped by using Bowtie2 (Langmead and Salzberg 2012) 
against reference or custom databases containing host con-
taminant reads. Once sequencing reads have been filtered, 
assembly-free or assembly-based pipelines can be computed 
to continue the analysis (Fig. 1).

Assembly-free methods require less computational power 
and take less time to complete allowing for a consistent iden-
tification of low-abundance species whose genomes could 
not be assembled. Taxonomic and functional annotation is 
carried out by mapping reads against reference databases 
that contain thousands of reference genomes or characteris-
tic marker genes of each clade (Fig. 1). Therefore, assembly-
free analysis strongly depends on the information contained 
in currently available databases, so incomplete databases 
may yield high false negative rates for those microorgan-
isms that were not previously deposited. Some examples 
of commonly used software for assembly-free taxonomic 
and functional analysis include MetaPhlAn and HUMAnN, 
respectively (Franzosa et al. 2018; Truong et al. 2017). 
Taxonomic identification relies on clade-specific marker 
genes from approximately 100,000 reference genomes 
including 99,500 bacterial and archaeal and 500 eukaryotic 
genomes while reference protein databases are used to pro-
file the abundance of microbial gene families and metabolic 

pathways. In addition, assembly-free methods specifically 
designed for tracking individual strains across samples 
have been developed. In this sense, StrainPhlAn software 
performs metagenomic strain-level population genomics 
by profiling microbes from known species and providing 
comparative and phylogenetic analyses of strains retrieved 
from metagenomic samples (Segata et al. 2012; Truong et al. 
2017).

With regard to assembly-based methods, metagenome 
assembly is the process of reconstructing in silico the 
original genome sequence of a microorganism from small 
sequenced reads (Fig. 1). During metagenome assembly, 
sequenced fragments are joined to generate longer and 
more contiguous sequences called “contigs” by two different 
methods: (1) without using a previously sequenced reference 
genome, (2) using a previously sequenced, closely related 
organism to guide the assembly (Pérez-Cobas et al. 2020). 
Some examples of common software used for metagenome 
assembly are MEGAHIT (Li et al. 2016) and metaSPAdes 
(Nurk et al. 2017). Contigs belonging to the same biological 
taxon are gathered to generate bins to perform taxonomic 
classification and functional characterization (Bharti and 
Grimm 2021; Pérez-Cobas et al. 2020). Common binning 
algorithms include MaxBin2 (Wu et al. 2016), MetaBAT2 
(Kang et al. 2019) and CONCOCT (Alneberg et al. 2013).

Metataxonomics in the food production 
chain: applications to improve food quality 
and safety

Metataxonomic approaches are used to know the microbial 
diversity and abundance of many different fermented foods 
or their raw materials. They are also considered useful to 
follow the dynamics of fermentations and ripening of the 
fermented products (De Filippis et al. 2017). In this sense, 
NGS data is adequate for developing multivariate statistical 
and ecological models, useful, for instance, for associating 
food production processes, or specific final characteristics 
in the products, to the associated microbial communities, 

Fig. 1   Typical data analysis workflow of shotgun metagenomic data illustrating both assembly-free and assembly-based methods
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although it is not an appropriate tool for purely taxonomic-
descriptive purposes. The most abundant literature is related 
to the food bacteriome characterization, based on sequenc-
ing the 16S rRNA to decipher the members of the bacterial 
community. Yeasts and molds, that also play a relevant role 
in food production, were less extensively studied, maybe due 
to the reduced number of genetic databases for comparison 
of the amplified genetic regions. This review does not intend 
to perform an exhaustive collection of food related bacte-
riomes or mycobiomes, but some representative examples 
are collected in Table 2. In general, most primers used to 
explore bacterial diversity target the hypervariable V3–V4 
region of the 16S rRNA gene, whereas, the 18S and 28S 
rRNA and more often ITS DNA regions are used in the case 
of yeasts and molds. The taxonomic assignment is made 
by comparing sequences with those annotated in different 
databases, typically that of the NCBI, or the SILVA ribo-
somal RNA gene database project, among others. Attempts 
to have specific databases related to food microbiomes have 
also been made. This is the case of the FoodMicrobionet 
database which is a structured collection of food bacteriomes 
constructed based on the FoodEx2 hierarchical food clas-
sification of the EFSA (Parente et al. 2019).

Metataxonomic approaches can be applied to describe 
food microbiotas along the production chain. In the par-
ticular case of the dairy sector, Parente and coworkers 
have recently reviewed the microbiota of cow’s milk “from 
the teat to the carton”. They analyzed the evolution of the 
NGS methodologies applied to study the microbial com-
munities of raw milk, but they put the focus, as well, on the 
relevance of a good sampling experimental design to gain 
insight into this complex microbial community. In fact, the 
choice of the sampling procedure might introduce huge bias 
in the results obtained in a single milk sample; something 
simple, such as the way of teat cleaning, might modify the 
initial number of the bacterial load and, for instance, the 
success rate of amplification (Parente et al. 2020). Deal-
ing with the issue of low microbial-load samples, McHugh 
et al. (2021) have compared Illumina and portable Nanopore 
sequencing platforms in order to propose the implementa-
tion of microbiome sequencing for the detection of patho-
gens in dairy production facilities. The portable platform 
was comparable, in terms of accurate species assignment, to 
the lab equipment but it required a higher amount of DNA 
for sequencing (McHugh et al. 2021). Thus, factors such 
as the DNA purification protocol, library construction pro-
cedures, or the choice of platform for sequencing, among 

Table 2   Some recent literature studying the microbiome diversity of foods and raw materials by means of metataxonomic approaches

Type of food Name Amplicon Reference

Animal
  Raw dairy material Raw cow milk (Ireland) V3–V4 region 16S rRNA Doyle et al. 2017
  Raw dairy material Raw ewe milk (Spain) V3–V4 region 16S rRNA Castro et al. 2019
  Dairy fermented food Fermented milk “Suero Costeño” (Colombia) V3 region 16S rRNA Motato et al., 2017
  Dairy fermented food Fermented milk “Gioddu” (Italy) V3–V4 region 16S rRNA Maoloni et al. 2020a
  Dairy fermented food Several Brazilian Cheeses (Brazil) V3–V4 region 16S rRNA Kamimura et al. 2019
  Dairy fermented food Artisanal goat cheese “Pélardon” (France) V3–V4 region 16S rRNA

ITS2 region (fungal)
Penland et al. 2021

  Meat fermented food “Cacholeira” blood sausage (Portugal) V3–V4 region 16S rRNA
D1 domain 26S rRNA (fungal)

Belleggia et al. 2020

  Meat fermented food Meat products from Sikkim state (India) V3–V4 region 16S rRNA Bhutia et al. 2021
Plant

  Raw wine material Vitis vinifera L. cv. “” Grapes and musts (Italy) ITS1 region (fungal) Stefanini et al. 2017
  Raw ingredient Table olive dressing components (Spain) V3–V4 region 16S rRNA Benítez-Cabello et al. 2019
  Raw ingredients Kimchi (fermented) ingredients (Rep. Korea) V3–V4 region 16S rRNA Song et al., 2020
  Fermented cereal “Colomba” sourdough (Italy) V1–V3 region 16S rRNA

26S rRNA (fungal)
Raimondi et al. 2017

  Fermented cereal Millet-based fermented “Ogi” (Nigeri) V3–V4 region 16S rRNA Chibuzor-Onyema et al. 2021
  Fermented cocoa Theobroma cacao L. beans (Italy) V3–V4 region 16S rRNA

ITS2 region (fungal)
Mota-Gutierrez et al. 2018

  Fermented olives Commercial (worldwide) table olives (Spain) V3–V4 region 16S rRNA Benítez-Cabello et al. 2020
  Fermented olives Black cv. “Kalamata” fermented olives (Greece) V1–V3 region 16S rRNA

ITS1-ITS2 (fungal)
Kazou et al. 2020

  Fermented vegetable Non-Korean Kimchi (Italy) V3–V4 region 16S rRNA
D1 domain 26S rRNA (fungal)

Maoloni et al. 2020b
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others, together with the pipeline used for the downstream 
data analysis, have a strong influence on the description of 
the milk microbiota components (Ruiz et al. 2021). Added 
to this, other external variables related to the animal (breed, 
feeding, health, lactation state, etc.), farming environment 
(management practices, geographical location, season, etc.), 
milk production (milking type, bulk tanks, etc.), or the trans-
port to the transformation facilities, have a strong influence 
on the microorganisms that might be present in the raw milk, 
making it difficult to have a picture of a “standard” or a 
“core” microbial composition (Doyle et al. 2017; McHugh 
et al. 2020; Parente et al. 2020; Oliveira et al. 2021). Simi-
larly, the environment of the processing plants also plays 
a pivotal role in the microbiota finally present in the dairy 
product. By means of metataxonomic analyses it has been 
shown that the microbiota of skimmed milk powder, one 
of the “simplest” products that can be obtained from milk, 
varied according to the microbial composition of the raw 
milk and the microorganisms that were selected during 
manufacturing (McHugh et al. 2020). Cheeses are the most 
“complex” dairy products that can be made which involve 
different processing steps that are likely to be similar for 
all varieties. However, what defines a specific cheese is the 
microbial community responsible for the fermentation of 
the curd and for the cheese ripening. Metataxonomics has 
been useful to study undefined starters driving the initial 
fermentation step as well as those implicated in spontane-
ous fermentation processes, still employed in some tradi-
tional and artisanal food production processes such as those 
employed for the production of kimchi, fermented sausages 
or other raw-milk derived products, among other examples 
(Maoloni et al. 2020b; Wang et al. 2019; Motato et al. 2017). 
Remarkably, the knowledge of the communities implicated 
in spontaneous fermentations may aid towards the design 
of robust and reproducible starter cocktails, capable of 
providing desired organoleptic or functional properties to 
the final product. The 16S rRNA gene was widely used for 
this purpose, but additional target genes have been used to 
reach a higher species level resolution of specific bacterial 
populations (Zotta et al. 2021). This is the case of the purR 
(purine biosynthesis repressor) for the characterization of 
Lactococcus lactis subspecies diversity (Saltaji et al. 2020). 
In the final cheese, certain bacterial populations have been 
studied by sequencing other genetic regions, such as is the 
case of the ITS-bifidobacterial amplicons, which has been 
demonstrated to improve the resolution of bifidobacterial 
species assignation as compared to other 16Sr RNA regions 
(Milani et al. 2019). Further, interactions among different 
microbial communities can be monitored by means of these 
approaches. In an in vitro model, Wolfe and co-authors have 
evaluated the evolution of surface bacteria and fungi during 
the rind aging of different cheese varieties, which has gained 
insight into the ecology of these particular communities 

including dissection of particular fungal-bacterial interac-
tions which can influence the attributes of the final product 
(Wolfe et al. 2014). Thus, upon development of appropriate 
standardized procedures for food and food-related samples, 
the application of NGS may play a relevant role in the food 
industry in the near future.

Shotgun metagenomics in the food 
production chain: applications to improve 
food quality and safety

Metagenomics and metataxonomics display a different, 
although complementary, perspective. While metataxonom-
ics does not provide information about the functional and 
metabolic features of the microorganisms and it is limited 
to depicting a profile of the members of the community, 
metagenomics exploits the information present in the whole 
genetic content of the community (the metagenome), usually 
by directly sequencing the total DNA pool of the microbial 
population, avoiding the bias introduced by the amplification 
of specific DNA fragments. The sequencing of all micro-
bial DNA present in a sample has been defined as “shotgun 
metagenomics”, which currently is the gold standard to ana-
lyse complex microbial communities (Quince et al. 2017). 
One step further approach is represented by metatranscrip-
tomics, which sequences all the mRNA present in a sample 
and thus may add information on the functions and popula-
tions that are metabolically active at a given sampling point. 
However, the cost of metatranscriptomics analyses and quick 
RNA decay have strongly limited its application, which to 
date has been very scarce in food-related samples. For this 
reason, this section will focus on shotgun metagenomics 
analyses of DNA samples.

The sequences obtained from shotgun metagenomics 
analyses can be assembled and annotated, providing quali-
tative and quantitative functional and taxonomic data. Even 
though there are still some unsolved challenges in metagen-
omics analysis, such as those derived from the incomplete 
or absent lysis of some recalcitrant members of the com-
munity, the lack of adequate software pipelines to analyse 
unknown microorganisms or microbial genes, or the fact that 
these procedures do not distinguish between genetic mate-
rial from functionally active or inactive cells, metagenomics 
represents the most complete and reliable approach to the 
description of microbial populations. Shotgun sequencing 
generates raw data that can be exploited in many different 
ways, including taxonomic profiling and metabolic potential 
of the microbiota, recovery of genome sequences (metage-
nome-assembled genomes—MAGs), tracking of strains in 
complex environments or analysis of gene subclusters with 
specific functions within the whole metagenome, such as 
antibiotic resistance genes.
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Shotgun metagenomics has been extensively used to 
depict the microbiomes of different environments, includ-
ing those associated with foods and the food industry. 
The food metagenome has been studied through shotgun 
sequencing in both non-fermented foods, such as milk and 
honey (Bovo et al. 2020; Mchugh et al. 2020), and fermented 
foods, the latter being the ones that have received the most 
attention because their microbial load is normally high. 
Among fermented foods, shotgun sequencing methods have 
been applied in the cheese industry to assess the functional 
features of the microbiota of cow’s milk artisanal cheeses 
from Northwestern Argentina, which has contributed to the 
isolation of bacteriocin-producing bacteria against Listeria 
monocytogenes (Suárez et al. 2020). Shotgun methods have 
also contributed to clarifying the role of individual species 
during the ripening of surface-ripened cheeses, and their 
impact on flavor development (Bertuzzi et al. 2018), as well 
as unravelling the carotenoid-producing microorganism 
responsible for the pink discoloration defect of Continental-
type cheeses (Quigley et al. 2016), among other applications. 
The most comprehensive metagenomic analysis of differ-
ent cheese types has recently been published, showing the 
usefulness of shotgun sequencing to link different bacterial 
functionalities, such as the synthesis of volatile compounds 
during ripening or bacteriocin-production, with genes or 
bacteria present in the cheese microbiota, providing a tool 
to improve cheese production processes (Walsh et al. 2020). 
Interestingly, Mchugh et al. (2020) showed the usefulness 
of untargeted metagenomic sequencing approaches in food 
safety and quality by tracing microbial species in the dairy 
industry, during the whole process of skimmed milk-produc-
tion, showing that the dairy microbiota strongly depends on 
the initial characteristics of the raw milk.

In addition, metagenomes of fermented-meat and meat-
processing industries have also been investigated. The poten-
tial functions associated with meat fermentation processes 
have been studied in sausages, highlighting the key role of 
the starter cultures in the organoleptic properties of fer-
mented products (Ferrocino et al. 2018). Also, the pathogen 
populations have been monitored in environmental samples 
at different points of the beef production chain, from feedlot 
to the end of the fabrication system, indicating that metagen-
omic data can be used to track a wide variety of pathogens 
in the cattle related food chain (Yang et al. 2016). Similar 
methods have also been applied to industrial facilities pro-
ducing fermented vegetables, namely traditionally fermented 
sauerkraut, identifying the raw vegetables and environmen-
tal surfaces as the potential sources of the microorganisms 
carrying out the spontaneous fermentations (Einson et al. 
2018).

Overall, as demonstrated in previous examples, the 
knowledge generated through shotgun metagenomics on 
food and food processing environments can help towards 

the selection of starter and adjunct bacterial cultures capa-
ble of conferring desired quality attributes to the final prod-
uct, either in terms of improved nutritional, functional, or 
organoleptic properties. But, it can also help to improve its 
safety through selecting microorganisms capable of extend-
ing their shelf-life and to guarantee the absence of spoilage 
or pathogenic bacteria in a range of food products.

Finally, it is important to note that although shotgun 
analysis offers unprecedented opportunities to analyse food 
metagenomes from a broad ecological perspective, there are 
still great challenges to be solved in this field, including 
the difficulties of analysing foods and food-related environ-
ments with a low microbial load with the currently available 
methodologies, as well as the lack of specific bioinformatics 
pipelines adapted to the study of food microbiomes. There-
fore, there is a need to fine tune current shotgun approaches 
to fully explore the potential of these applications and imple-
ment these new methodologies in the food industry, which 
will undoubtedly contribute to the increase of quality and 
safety of food.

Targeted microbiome analysis of datasets: 
the example of the resistome and its 
relevance in the food production chain

Targeted microbiome analyses are those which include a 
selection step in the analytical pipeline to enrich or filter 
microbial sequences of interest; hence, they are designed 
to provide tailored information about relevant biological 
questions beyond taxonomic assignment. Some of these 
targeted approaches are based on a selection process tak-
ing place before library preparation and sequencing, with 
the aim of enhancing the sensitivity of detection of genetic 
determinants avoiding the “needle in the haystack” limita-
tion (Mitchell and Simner 2019). Thus, approaches involving 
PCR amplification of specific sets of genes before library 
preparation have been followed to, for instance, survey 
bacterial histidine and tyrosine decarboxylases in raw milk 
cheeses (O’Sullivan et al. 2015), or integrons and integron-
like gene cassettes in marine environments (Elsaied et al. 
2007). In other cases, platforms based on probes for the 
hybridization and capture of selected genes can be used for 
sequence enrichment after library preparation and sequenc-
ing, such as for antibiotic resistance genes or relaxase genes 
in the report by Lanza et al. (2018).

However, with the continuous temporal decrease in 
sequencing costs and increase in computers’ performance, 
and the associated shift from amplicon sequencing to shot-
gun whole metagenome sequencing approaches, targeted 
microbiome analyses nowadays mainly rely on the direct 
query of databases (consolidated and curated, or tailor-made 
in-house databases) using as input raw reads or assembled 
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reads obtained from the shotgun sequencing of the target 
sample. This allows information to be obtained on the com-
plete pool of genes in that sample related to any given func-
tion of interest, like antimicrobial resistance or bacterial 
virulence (Walsh et al. 2017).

The resistome, i.e., the collection of all the antimicro-
bial resistance genes, is the dataset most widely studied 
through targeted microbiome approaches. While the trans-
mission of antimicrobial resistances (AMR) through food 
systems is currently under investigation (Bengtsson-Palme, 
2017; Oniciuc et al. 2019), it is generally considered that 
controlling the spread of resistance genes or resistant bac-
teria in primary food production and food processing must 
be a priority to reduce the burden associated with infec-
tions caused by resistant bacteria in humans. Indeed, cur-
rent regulatory policies are focused on reducing the use of 
antimicrobials in crop fields and farms, but the food chain 
still represents an important reservoir of antibiotic-resistant 
organisms (Schmithausen et al. 2018). The analysis of the 
resistome generally involves the detection of known resist-
ance determinants among raw reads, assembled contigs or 
metagenome assembled genomes by using the BLAST algo-
rithm or bowtie2 alignment (Langmead and Salzberg 2012) 
to find all possible matches between the database and the 
query sequences (Alvarez-Molina et al. 2020). Custom or 
publicly available databases, such as CARD (Alcock et al. 
2020), ARG-Annot (Gupta et al. 2014), or ResFinder (Bor-
tolaia et al. 2020), can be used for this purpose. The util-
ity of shotgun metagenomic approaches to understand the 
factors shaping the resistome abundance and diversity has 
been highlighted in several recent studies addressing dif-
ferent microbial ecosystems within the food supply chain 
(Mencía-Ares et al. 2020; Munk et al. 2018; Pitta et al. 
2016; Xue et al. 2021b). This has dramatically expanded the 
information obtained from surveys which previously were 
exclusively focused on the isolation and characterization 
of antimicrobial-resistant microorganisms from a limited 
number of pathogenic or indicator bacterial species and has 
shown that targeted resistome analyses have the potential 
to replace or complement culture-dependent approaches in 
antimicrobial resistance monitoring initiatives (EFSA 2019).

The main limitations of resistome analyses derive from 
the lack of harmonized methods or the fact that the results 
obtained strongly depend on the choice of wet lab methods, 
like DNA isolation methods, and databases and bioinformat-
ics pipelines. In addition, the characterization of resistomes, 
which is commonly performed using short-read sequencing 
technology, does not generally allow the attribution of the 
identified resistance genes to specific taxa or strains and their 
identification as transferable or non-transferable resistance 
determinants, which can hamper the assessment of the actual 
risk posed by such resistance determinants (Oniciuc et al. 
2018). However, in recent years it is becoming apparent that 

the use of long read sequencing approaches will increase 
the resolution of complex genomic regions in metagenomes, 
allowing the location of resistance genes within mobile 
genetic elements to be unraveled (Che et al. 2019), and ena-
bling host cell taxonomic classification of both resistance 
genes and mobile genetic elements (Beaulaurier et al. 2018). 
These advances, coupled to the recent improvements of 
assembly and binning algorithms which are facilitating the 
mining of thousands of individual genomes from metagen-
omes (Pasolli et al. 2019), will ensure that the most detailed 
information will be obtained in future resistome surveys. 
Overall, these and other future technological and analyti-
cal developments will surely further the development and 
enhance the implementation of targeted microbiome and 
resistome analyses in the food industry. This will allow the 
tracking of resistance genes and mobile genetic elements and 
will provide unique insights into hotspots, the mechanisms 
of selection for, and the spread of, AMR in food-related set-
tings, ultimately leading to the development of knowledge-
based interventions aimed at reducing dispersal of multidrug 
resistant microorganisms in the food industry (Oniciuc et al. 
2018; de Filippis et al. 2021).

Conclusions and future perspectives

The rise in sequencing technologies has allowed the mapping 
of microbial communities associated with the production of 
specific foods, these being valuable tools to know “who” 
are in this niche and also “what” might be their role in the 
characteristics of the final product (De Filippis et al. 2021). 
However, there is a scarcity of food microbiome data and 
publicly available sequences compared to the large amount 
of information that has been generated in recent years con-
cerning the human microbiome. In this regard, food microbi-
ology should benefit from the methodologies already devel-
oped for the study of the human microbiome, and be able to 
adapt analytical and computational tools in order to enhance 
the knowledge of food microbial communities. There is an 
urgent need to create dedicated food microbiome databases, 
as well as to develop bioinformatic pipelines to interrogate 
food metagenomes, in order to explore the genetic and func-
tional information of food micro-ecosystems. The current 
challenge is how to implement these metagenomic technolo-
gies in the industrial chain, “from farm to fork”, in the con-
text of sustainable food and feed production, and also taking 
into account regulatory issues.
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