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Lead and cadmium-resistant bacterial species isolated from heavy
metal-contaminated soils show plant growth-promoting traits
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Abstract
Application of metal-resistant rhizobacteria is a promising approach for detoxification and bioremediation of contaminated soils.
In order to isolate, identify, and characterize lead and cadmium-resistant bacteria, nearly 30 soil samples were collected from
heavy metal-contaminated sites, and five resistant bacterial strains were isolated and identified based on their cultural, physio-
logical, biochemical, and molecular characteristics as Enterobacter cloacae, Enterobacter kobei, Bacillus cereus, Rhizobium
pusense, and Agrobacterium tumefaciens. The nucleotide information of these strains is available in GenBank under the acces-
sion numbers of MH327251, MH327252, MH327253, MH327254, and MK123361, respectively. The minimum inhibitory
concentrations (MICs) against lead and cadmium differed for each isolate and the isolates showed higher MIC against lead
(3500 μg ml−1) than cadmium (100 μg ml−1). Assessment of the heavy metal degradation capacity of the species showed 10–
60% and 5–40% reduction in concentrations of lead and cadmium, respectively. The highest ability for P-solubilization was
measured for the R. pusense, A. tumefaciens, and B. cereus species, while the R. pusense and B. cereus species had the capability
to solubilize potassium. The studied species also had the ability to produce indole acetic acid (IAA) and/or hydrogen cyanide
production (HCN). Inoculation of ornamental cabbage cultivated in a heavy metal-contaminated soil with the isolated species
significantly increased biomass and Pb and Cd uptake of the plant. With respect to plant growth promoting and heavy metal-
resistant traits of the studied species, it is concluded that these species can have great significance in bioremediation and
management of environmental pollution.
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Introduction

The essential elements of life, such as air, water, and land, are
contaminated constantly with different pollutants (Chhikara
and Dhankhar 2008). The main group of inorganic pollutants
is heavymetals which can accumulate in soils, plants, animals,

aquatic organisms, and humans at toxic levels (Muduli et al.
2012). Therefore, the biomagnification of heavy metals in the
environment is a serious threat to human health (Hooda 2007;
Yigit and Altindag 2006).

Heavy metals like mercury (Hg), lead (Pb), arsenic (As),
and cadmium (Cd) have no beneficial effect on organisms and
are even toxic to human(s) and other living systems (Adriano
2001). Metal toxicity occurs when essential elements are re-
placed from their native binding sites, and the structure of
DNA and proteins is changing, and by interference in enzy-
matic ATP formation and osmoregulation (Poole and Gadd
1989). Pb and Cd which are major pollutants found in the
environment cause damage to cell membranes, changes in
the particularity of enzymes, and carcinogenesis (Olaniran
et al. 2013). Chronic toxicity of Cd results in proteinuria and
lung emphysema, and its acute toxicity causes headaches,
nausea, and diarrhea. Toxicity of Pb also creates various
symptoms in the hematopoietic, hepatic, and renal system
even in the nervous system, and chronic toxicity with blood
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concentrations of about 400–600 mg L−1 can lead to persistent
vomiting, lethargy, delirium, convulsions, and coma if not
attended timely (Flora et al. 2012).

Utilization of bacteria possessing metal-detoxifying traits
and plant growth-promoting attributes is an efficient and en-
vironmentally friendly treatment approach and when these
bacteria are used as bioinoculants and biofertilizers in heavy
metal-polluted soils significantly improve the growth of plants
and enhance the phytoremediation process (Khan et al. 2009;
Pilon-Smits 2005). These bacteria increase metal mobility and
bioavailability in soils and thus increase uptake of metals by
plants. So, growth and metal accumulation are stimulated via
reducing soil pH, producing indole acetic acid (IAA),
monocyclopropane-1-carboxylate (ACC) deaminase,
siderophores (metal-chelating compounds), and organic acids
(Ahemad and Kibret 2014; Rajkumar et al. 2010). It has been
reported that under conditions of heavy metal stress, the
growth of plants is enhanced by auxin and gibberellin which
are synthesized by rhizobacteria and are called plant growth-
promoting hormones (Sharp et al. 2011). Heavy metal reme-
diation is performed by microorganisms via different
methods, including biosorption, intracellular accumulation,
enzyme-catalyzed transformation, bioleaching (the extraction
of metals through the use of living organisms), biomineraliza-
tion (minerals formed by living organisms), and redox reac-
tions (Lloyd et al. 2002). Furthermore, rhizobacteria augment
plant tolerance to metals by inducing thiol compounds, super-
oxide dismutase, or metallothionein (Khalid et al. 2017).
(Ahmad et al. 2016; Nath et al. 2012)

Conventional remediation approaches for heavy metal-
polluted soils and water are generally physical, chemical,
and biological techniques, which can be used in association
with each other. Compared to physical-chemical methods,
biological techniques show the great advantage with respect
to economical, eco-friendly, less disruptive, field-scale appli-
cation, high public acceptability, low time of remediation, and
cost involved (Khalid et al. 2017). One of the most promising
methods of bioremediation is microbial remediation that
makes use of microorganisms to promote absorption, precip-
itation, oxidation, and reduction of heavy metals in the soil.

In this research, ornamental cabbage was selected due to its
ability to tolerate and absorb high concentrations of heavy
metals (Boyd and Barbour 1986). This cabbage variety is
usually planted in autumn and winter, the seasons that are
not suitable for growth of most plants used in the
phytoremediation process. Thus, in cool seasons, this plant
could be a good choice for the phytoremediation of heavy
metal-polluted sites in urban areas and around smelter plants,
where the soils are contaminated with high levels of Cd and
Pb. Inoculation of plants with heavy metal-resistant plant
growth-promoting rhizobacteria (PGPR) has been found as
an interesting option to improve plant performance under
stressed conditions. The aims of this study were to separate,

identify, and describe the features of Cd- and Pb-resistant
bacteria from heavy metal-polluted soils to acquire strains that
might be suitable for inoculation of Pb- and Zn-contaminated
soils under unfavorable ecological conditions. These strains
also could be utilized for immobilization and detoxification of
heavy metals in contaminated soils and for intensification of
the phytoremediation process.

Material and methods

Study area and sample collection

Nearly 30 soil samples were collected from six different sites
nearby a lead-zinc factory located in Dandi city, Zanjan prov-
ince (between 36° 32′ and 36° 35′ N and 47° 36′ and 47° 40′
E), Northwest of Iran. The collected samples in labeled pre-
sterilized bottles weremoved to the lab and kept at 4 °C during
experiments.

Measurement of physicochemical parameters of soil
samples

The physicochemical parameters of soil samples, including
available concentrations of Pb and Cd (Lindsay and Norvell
1978), total concentrations of Pb and Cd (Hseu 2004), avail-
able concentrations of potassium and phosphorus (Helmke
and Spark 1996; Olsen 1954), and pH (Thomas 1996), were
measured.

Isolation of bacterial strains

For isolation of bacterial strains, 1 g of each soil sample was
added to 9 ml of sterile water to prepare a suspension. Then, a
serial dilution (10−1 to 10−6) was prepared from the suspen-
sion with sterile nutrient broth (NB) medium and incubated at
36–37 °C for 24 h. Then, 100 μl of each dilution was spread
on nutrient agar (NA) medium and incubated at 37 °C for
24 h. Depending on differences in color, morphology, and
shape, each microbial colony was selected and separately
streaked on NA medium and incubated overnight at 37 °C.
Then, pure strains grown in this medium were stored in nutri-
ent broth medium containing 25% (v/v) glycerol at − 20 °C or
− 80 °C for further studies (Jamaluddin et al. 2012).

Determination of minimum inhibitory concentration

The minimum inhibitory concentrations (MICs) of Pb and Cd
for isolated strains were determined by agar dilution technique
(Chen et al. 2006a). NBmedia with different concentrations of
Cd and Pb were prepared. The concentrations of Pb were 50,
250, 500, 1000, 1250, 1500, 2000, 2500, 3000, and
3500 μg ml−1, and the concentrations of Cd were 5, 10, 20,
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25, 35, 50, 75, 100, and 150 μg ml−1 using lead nitrate
[Pb(NO3)2] and cadmium sulfate [3Cd(SO4) × 8H2O] as the
sources, respectively.

Heavy metal accumulation assay

Bacterial strains were transferred to LB medium and cultivat-
ed for 1 h at 37 °C with shaking at 150 rpm to the optical
density (OD600 nm) of 0.6. Then, 2 ml of sterilized Pb or Cd
solution with a concentration of 100 ppm was added separate-
ly to each culture flask and again incubated for 24 h, at the
same condition. After incubation, the whole bacterial cells

were removed by centrifugation at 5000 rpm for 15 min using
a mini spin rotor and supernatants were mixed with two vol-
umes of concentrated HNO3 (70%). The HNO3-treated sam-
ples were heated on a hotplate stirrer (IKA, RTC basic) to
100 °C until the sample volumes reduced to initial supernatant
volume for acid digestion. The extract was clarified by remov-
ing insoluble material using filter paper (Whatman 42). This
extract was analyzed by atomic absorption spectrophotometer
(Varian Specter. AA20) for the concentration of heavy metals,
and the results were compared with control to calculate the
reduction in the heavy metal concentration and thus, accumu-
lation capacity (%) as follows (Marzan et al. 2017):

Heavy metal accumulation capacity %ð Þ ¼ Heavy metal utilized ppmð Þ by a microbial strain

Heavy metal added to the LB medium ppmð Þ � 100

Heavy metal utilized ppmð Þ by a microbial strain ¼ Heavy metal added to the LB medium ppmð Þ–Heavy metal at the end of culture ppmð Þ
ð1Þ

Identification of phenotypic and biochemical traits
of bacterial strains

The cultural and biochemical traits were used to identify the
bacterial strains, including Gram reaction, potato soft rot,
oxidation/fermentation of glucose, oxidase and catalase reac-
tions, production of fluorescent pigment onKing’s mediumB,
levan production, and hypersensitive reaction (HR) on tobac-
co plants (Schaad et al. 2001).

Resistance to antibiotics was determined on Mueller
Hinton agar plates (MHA) by disk diffusion method
(Oyetibo et al. 2010). Tests were conducted in triplicate with
(Raja et al. 2009) the following antibiotics: ampicillin
(100 μg ml−1), amoxicillin (50 μg ml−1), tetracycline
(20 μg ml−1), kanamycin (30 μg ml−1), erythromycin
(50 μg ml−1), and nalidixic acid (10 μg ml−1).

The Pikovskaya medium was used to determine the quali-
tative activity of a selected strain for mineral phosphate solu-
bilization (Subba Rao 2016). The colony and halo zone diam-
eters were determined and used to calculate the index of sol-
ubilization by the following formula (Premono et al. 1996):

SI ¼ colony diameter þ halo zone diameter

colony diameter
ð2Þ

Quantitative analysis of mineral phosphate solubilization,
in Pikovskaya broth medium containing tricalcium phosphate
(5 g L−1), was performed as described by Subba Rao (2016).
A standard curve was prepared using KH2PO4 and the amount
of soluble phosphate was measured from the standard curve
(Olsen and Sommers 1982). The method of Aleksandrov me-
dium (Jones Jr 2001) was used to determine potassium solu-
bilization, the method of Patten and Glick (2002) to determine
IAA production, and the method of Alstrom and Burns

(A l s t r öm and Burn s 1989 ) t o de t e rm ine HCN
production..(Alström and Burns 1989; Patten and Glick
2002; Subba Rao 2016).

DNA extraction

The following method was used to extract DNA from heavy
metal-resistant bacteria:

Bacterial strains were grown in 3 ml of LB medium at
28 °C for 48 h, and then, the bacterial suspension was centri-
fuged at 3000 rpm for 3 min and the supernatant was removed
and the pellet was washed twice in 400 μl of sterile-deionized
H2O and solved in 200 μl of sterile-deionized H2O. After
adding 400 μl of 2X buffer (SDS 1%, 25 mM EDTA,
50 mM Tris-HCl, pH = 8) and 2 μl of proteinase K
(10 μg ml−1; Sigma), the bacterial suspension was further
incubated at 55 °C for 3 h. After lacing the cell walls of the
bacteria, 400 μl of 7.5 M ammonium acetate was added and
mixed gently but completely, and the mixture was centrifuged
(Hettich Mikro 220R) at 12,500 rpm for 20 min at 4 °C. The
aqueous phase was transferred to a clean polypropylene tube
and 750 μl of cool isopropanol was added and kept overnight
at − 20 °C. In the next step, tubes were centrifuged (Hettich
Mikro 220R) at 12,500 rpm for 30 min at 4 °C. Then, pellet
was rinsed twice with 70% ethanol, and finally, the DNA
dissolved in 20 μl of sterile-deionized H2O and kept at −
20 °C.

Molecular identification

The polymerase chain reaction (PCR) was used to amplify the
16S rRNA gene of the extracted DNA using a universal prim-
er pair 63f (5′-CAGGCC TAACACATGCAAGTC-3′) and
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1387r (5′-GGG CGGWGT GTA CAA GGC-3′) in 30 μl of a
reaction mixture possessing 4 μl of DNA template, 1.5 μl of
each primer at a concentration of 5 mM, and 16 μl of master
mix at a concentration of 10 mM. To perform PCR, a
thermocycler (Astec PC320, JAPAN) with the following pro-
gram was used. The first denaturation was carried out at 95 °C
for 5 min followed by 40 cycles of denaturation at 94 °C for
30 s; annealing was carried out at 55 °C for 30 s followed by
the first extension at 72 °C for 1.5 min and the final extension
at 72 °C for 10 min. The PCR product was sequenced bi-
directionally by Bioneer company (Daejeon, South Korea).
The obtained nucleotide sequences (1018–1470 bp) were
edited and compared with other relevant sequences
available in the GenBank database using the BLAST
homology search program. Also, phylogenetic analyses
were conducted with MEGA 6 software (Molecular
Evolutionary Genetics Analysis, version 6.0) (Tamura
et al. 2013) and the phylogenetic trees were constructed
using the neighbor-joining method with 1000 bootstrap
replications.

Pot trial

The effects of soil inoculation with five selected strains on the
growth and accumulation ability of heavy metal of Pb and Cd
of the ornamental cabbage plant were evaluated in pot trial. A
soil with medium pollution for heavy metals (lead and cadmi-
um) was used for the pot experiment and each pot was filled
with 4 kg of this soil (X = 737,500, Y = 4,048,000 (UTM),
total concentrations of Pb = 560 mg kg−1, available concentra-
tions of Pb = 54 mg kg−1, total concentrations of Cd =
7 mg kg−1, available concentrations of Cd = 0.62 mg kg−1,
pH = 7.69, available phosphorus = 12.5 mg kg−1, available
potassium = 422 mg kg−1), and then, three seedlings of orna-
mental cabbage (Brassica oleracea var. acephala L. Pigeon
Victoria F1) were planted in each pot. The rhizosphere soils of
ornamental cabbage were inoculated in triplicate with 2 ml of
bacterial suspension from each strain with 107–108 cfu ml−1

and the plants were placed in an experimental greenhousewith
a photoperiod of 12 h and night and a day temperature of
15 °C and 20 °C, respectively. A control treatment containing
uninoculated rhizosphere soil was also used. Three months
after sowing, fresh and dry weights of plant biomass, dry
weights of root and shoot, concentrations of Pb and Cd in
the root and shoot as well as plant uptakes of Pb and Cd were
measured. Thus, plants were harvested and then the harvested
plant materials divided into root and aerial parts and washed
with tap and distilled water, respectively. The plant samples
were oven-dried at 60 °C for 72 h before determination of dry
matter (DM). Samples of the root and aerial parts were
digested by three-acid mixture [H2SO4 (65%), HClO4

(65%), and HNO3 (70%)] at the ratio of 1:1:5 (Allen et al.
1986), and then, the concentrations of Pb and Cd were

measured in the extract of digestion using Atomic
Absorption Spectrometer (Varian Spectra. AA20).

The bioaccumulation factor (BAF) determines the rate
of transfer of lead and cadmium contaminants from soil
to plant and is calculated by dividing the concentration
(mg kg−1) of an element in the root to the total concen-
tration (mg kg−1) of the same element in the soil. The
translocation factor (TF) determines the mobility and
distribution of heavy metals in plants and is calculated
by dividing the concentration (mg kg−1) of an element
in the shoot to the concentration (mg kg−1) of the same
element in the root (Li et al. 2007).

Statistical analysis

For assessment of microbial traits, all tests were carried out in
triplicate and the means of replicates analyzed statistically and
where significant differences observed between the means,
standard deviation, and student test were used to differentiate
the means. To study the effects of microbial strains on plant
growth, the analysis of variance (ANOVA) of data was carried
out by SAS software (version 9.4), and Duncan’s multiple
range test at 1 and 5% probability levels was used for mean
comparison.

Results

Isolation of bacteria from soils

In the current study, 83 bacterial single colonies with differ-
ences in apparent characteristics and shape of colony were
isolated from six soil samples. From the bacterial strains iso-
lated, only 24 strains could tolerate Cd and Pb in nutrient agar
(NA) with the concentrations of 5 and 50 μg ml−1,
respectively.

MIC each metal

MIC for Pb ranged from 50 to 3500μgml−1 and for Cd from 5
to 150 μg ml−1, respectively. In this experiment, the number
of resistant strains decreased with an increase in the heavy
metal concentration of media. As summarized in
Table 1, 12 strains were resistant to a wide range of
concentrations of Pb and Cd. According to the results,
five strains (52, 56, 57, 59, and 60) which showed good
tolerance capacity against Pb and Cd were selected
(Table 1). These five strains showed better tolerance to
Pb so that the strains 52 and 56 were able to tolerate
3000 μg Pb/ml and 50 μg Cd/ml, and the strains 57, 59, and
60 were able to tolerate 3500 μg Pb/ml and 100 μg Cd/ml.
These five potential strains (52, 56, 57, 59, and 60) were also
selected for conducting further bioremediation tests.
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Assessment of heavy metal accumulation capacity
of bacterial strains

Heavy metal accumulation capacity was measured by analyz-
ing the heavy metal concentration of the treated samples by
atomic absorption spectrophotometer (Varian Specter. AA20)
and comparing it with that of control. Strain 57 showed the
highest Pb accumulation ability and strains 52 and 60 stood in
second and third places. Strain 57 was able to reduce 60% of
Pb and 40% of Cd at 24 h (Table 1).

Phenotypic and molecular identification of selected
strains

Several attributes (cultural, morphological, and biochemical)
of five potential heavy metal degrading strains were measured
based on Schaad et al. (2001) methods and the results are
shown in Table 2. (Schaad et al. 2001).

The sensitivity of selected bacterial strains to six antibiotics
was determined. Those strains were considered susceptible to
antibiotics when the inhibition zone was 12 mm or more in
diameter. In the present study, the strain 52 exhibited a high
resistance pattern towards all antibiotics used. All strains were
resistant to the nalidixic acid antibiotic (Table 2) and the
strains 57 and 60 had a very high sensitivity to erythromycin
antibiotic. The strain 59 also showed a medium sensitivity to
ampicillin, amoxicillin, erythromycin, and kanamycin.

The results of this study showed that strains 57, 59, and 60
were able to solubilize tricalcium phosphate (Ca3(PO4)2 in
broth medium and the highest solubilizing ability belonged
to strain 59 with 145.83 μg ml−1. In general, the pH of culture

medium was regarded as an index for phosphate availability
and the phosphate availability increased as the pH of the cul-
ture medium decreased. Since strain 59 decreased the pH val-
ue of the culture medium from 7.7 to 4.7, it was regarded as
the most effective strain in this way (Table 2). Equation
3 which shows P solubilization from tricalcium phos-
phate as a result of the decrease in pH is given as follows
(Bolan et al. 2003):

2Ca3 PO4ð Þ2 þ 8 Hþ→3Ca2þ þ 4H2PO4
−

The results showed that strains 57 and 59 were capable of
solubilizing potassium in broth medium containing 2 g L−1

muscovite mineral. The highest solubilizing ability belonged
to strain 59 with 55.33 μg ml−1, and strain 57 with
42.67 μg ml−1 stood in second place (Table 2).

Development of pink color in flasks indicated IAA produc-
tion by strains 52, 56, and 59. The amounts of IAA produced
by these strains ranged from 3.77 to 31.94 μg ml−1 and the
best IAA producer was strain 52 (Table 2).

The bacterial strains possessing HCN production ability
were classified into four groups with very high, high, medium,
and low ability. The results showed that strains 57, 59, and 60
were capable to produce HCN. Also, it was observed that
HCN production ability in strains 57 and 60 was weak and
in strain 59 was high and the color of filter paper changed to
light brown (Table 2).

Molecular identification and phylogenetic analysis

Nucleotide BLAST search in the GenBank database with the
partial sequences of 16S rRNA gene and phylogenetic analy-
sis showed that the strains 56, 57, and 59 had a homology of
100% with Enterobacter kobei DSM 13645T, clone 3
(Accession No. LT547822.1), Bacillus cereus isolate BCsn
(Accession No. HE660034.1), and Rhizobium pusense strain:
Naga 0113 (Accession No. LC208007.1), respectively. Also,
the strains 52 and 60 clustered phylogenetically with
Enterobacter cloacae isolate L2 (Accession No.
LK391629.1) and Agrobacterium tumefaciens strain A78
(Accession No. KC196487.1) with 99.66% and 98.54% se-
quence similarity, respectively. Figure 1 shows the phyloge-
netic relationship between strains. The sequences acquired in
this study were stored in the GenBank database under the
accession numbers of MH327251, MH327252, MH327253,
MH327254, and MK123361, respectively.

Pot trial

According to the analyses of variance of data, the effects of
soil inoculation with bacterial species on fresh and dry
weights of plant biomass, dry weights of root and shoot, Pb
accumulation in the root, Cd accumulation in the root and

Table 1 Minimum inhibitory concentration (MIC) and accumulation
capacity of bacterial strains to heavy metals of Pb and Cd

Strains Minimum
inhibitory
concentration
(MIC) against
Pb (μg ml −1)

Minimum
inhibitory
concentration
(MIC) against
Cd

Accumulation
capacity of Pb
(μg ml −1)

Accumulation
capacity of Cd

51 2500 25 10 5

52 3000 50 45 30

53 2500 25 15 5

54 2500 25 10 5

55 2500 25 15 5

56 3000 50 25 20

57 3500 100 60 40

58 3000 35 20 10

59 3500 100 50 30

60 3500 100 20 20

61 2500 25 15 5

62 2500 25 10 5
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shoot, as well as Pb and Cd uptake of the plant, were signif-
icant at the probability level of 1% (p < 0.01) (Table 3).

Inoculation of the soil by bacterial species caused fresh and
dry weights of the biomass of ornamental cabbage and dry
weights of root and shoot to increase significantly when com-
pared with control treatment (Fig. 2). The largest increase in
fresh and dry weights of plant biomass and dry weights of root
and shoot was observed when the rhizosphere soils were in-
oculated by R. pusense (strain 59) and E. cloacae (strain 52),
respectively (Fig. 2).

Inoculation of rhizosphere soils with the bacterial species
significantly increased Pb accumulation in the root and Cd
accumulation in the root and shoot compared with uninocu-
lated plants or control treatments (Fig. 3). The highest

concentration of Pb in the root and the highest concentrations
of Cd in the root and shoot were measured for treatments
inoculated with A. tumefaciens (strain 60). But significant dif-
ferences in Pb concentrations of shoots were not observed
when inoculated treatments were compared to control treat-
ment (Fig. 3).

The highest uptake performances of Pb and Cd in biomass
of ornamental cabbage were measured in treatments inoculat-
ed with A. tumefaciens (strain 60) and R. pusense (strain 59)
(Fig. 4). When A. tumefaciens (strain 60) used as a soil inoc-
ulant, the uptake performances of Pb and Cd in biomass of
ornamental cabbage increased by 3 and 6 times, respectively,
and by using R. pusense (strain 59), the uptake performances
of Pb and Cd increased by 3 and 5 times, respectively (Fig. 4).

 56
 Enterobacter kobei DSM13645T clone  (LT547822.1) 

  Enterobacter asburiae strain JM458  (NR_145647.1)
 52

 Enterobacter cloacae isolate L2  (LK391629.1)
  Enterobacter ludwigii strain EN 119  (NR 042349.1)
  Enterobacter cancerogenus strain LMG 2693  (NR 044977.1)
  Enterobacter kobei strain CIP 105566  (NR 028993.1)

  Enterobacter cloacae strain ATCC 13047  (NR 102794.2)
 Citrobacter koseri strain CDC 8132 86 (NR_104890.1 )

  Rhizobium leguminosarum bv. viciae USDA 2370 (NR 044774.1)
  Rhizobium phaseoli strain ATCC 14482 (NR 044112.1)

 59
  Rhizobium pusense Naga 0113 (LC208007.1)

 Agrobacterium sp. BK-27 (GU564355.1)
 60

  Agrobacterium tumefaciens A78 (KC196487.1)
  Bacillus megaterium strain IAM 13418 (NR 043401.1)

  Bacillus subtilis strain IAM 12118 (NR 112116.2)
 57

  Bacillus cereus BCsn (HE660034.1)
  Bacillus cereus EM6 (KJ612533.1)
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Fig. 1 The phylogenetic tree constructed using neighbor-joining method
based on partial 16S rRNA gene sequences of the strains obtained in this
study and selected relevant strains from GenBank. The numbers next to

nodes are confidence values of bootstrap (1000 replicates). The scale at
the bottom represents genetic distance in nucleotide substitutions per site

Table 3 The ANOVA results, indicating the effects of soil inoculation with bacterial species on fresh-dry biomass weight, root and shoot dry weight,
concentrations of Pb and Cd in the root and shoot, and uptake performances in ornamental cabbage

Sources of variations df Mean square

Fresh biomass Dry biomass Dry weight Concentration of Pb Pb uptake Concentration of Cd Cd uptake

Root Shoot Root Shoot Root Shoot

Bacterial species 5 939.80** 33.40** 0.60** 3.71** 19,629.96** 1.73ns 0.04** 503.09** 0.13** 0.001**

Error 12 0.13 0.08 0.002 0.008 26.65 1.70 0.0001 0.31 0.003 0.00001

Coefficient of variation (%) – 0.69 2.84 3.78 2.84 3.37 2.45 3.72 3.13 0.97 5.97

* , ** Significant, respectively, at 5% and 1%
nsDifferences not significant
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Inoculation of ornamental cabbage with the bacterial spe-
cies significantly increased the bioaccumulation factors
of Pb and Cd. In all treatments, the calculated bioaccu-
mulation factor of Pb was less than one, but that of the
Cd was more than one (Fig. 5a). Also, the calculated
translocation factors of Pb and Cd were less than one,
suggesting the immobilization of Pb and Cd in the root
(Fig. 5b).

Discussion

The five bacterial species identified in this study showed a
high resistance pattern against Pb and Cd. MICs of Pb and

Cd for E. cloacae (strain 52) and E. kobei (strain 56) were
3000μg Pb/ml and 50μg Cd/ml, respectively. Also, B. cereus
(strain 57), R. pusense (strain 59), and A. tumefaciens (strain
60) showed simultaneous resistance to Pb and Cd with MICs
of 3500 μg Pb/ml and 100 μg Cd/ml (Table 1). Sevim and
Sevim (2015) isolated 15 Bacillus strains from soil samples
and one of them, which belonged to the B. cereus, was resis-
tant to heavy metals. The MICs of heavy metals for this strain
were 2500μg ml−1 for Pb and 250 μg ml−1 for Cd. Rohini and
Jayalakshmi (2015) isolated a B. cereus strain from the
copper-polluted area and the strain was considered as a highly
potential strain for bacterial bioremediation of contaminated
area since it had a maximum tolerable capacity of 600 ppm
which was significantly higher than most reported tolerance
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level. A bacterium was separated from disposing yard of mu-
nicipal solid waste and characterized by Khatun et al. (2012).
According to biochemical and 16S rDNA sequence profile, it
was identified as B. cereus. The tolerance of this bacterium
against heavy metals like Cd2+ (1.25 mg ml−1) and Pb2+

(0.75 mg ml−1) was observed and it was noted that the bacte-
rium had the most resistance to Cd2+ compared to other
metals. Naik et al. (2012) separated a lead-resistant bacterium
from industrial effluent and it was recognized as E. cloacae
based on its morphological and biochemical traits and 16S
rDNA sequence data. This bacterium resisted lead nitrate up
to 1.6 mM. Singh et al. (2010) reported that the B. cereus
(SIU1) indicated a high level of resistance to elevated concen-
tration of lead (600 μg ml−1). A potent heavy metal accumu-
lating microbial strain was isolated from a polluted soil by
Banerjee et al. (2015) and characterized as E. cloacae. The

MICs of lead and cadmium for this strain were 1100
and 900 ppm, respectively. This bacterial strain had a
high potential for the lead bioaccumulation (95.25%)
and followed by cadmium (64.17%). (Banerjee et al.
2015; Khatun et al. 2012; Naik et al. 2012; Rohini
and Jayalakshmi 2015; Sevim and Sevim 2015; Singh
et al. 2010; Yang et al. 2007).

Other researchers have also reported Pb- and Cd-resistant
species, including Pseudomonas aeruginosa (BC2),
Pseudomonas aeruginosa (BC5) (Raja et al. 2009),
Pseudomonas sp., Bacillus sp. (Nath et al. 2012),
Enterobacter sp. (EG16) (Chen et al. 2016), Rhizobium
halophytocola (RT7) (Gupta et al. 2016), Pseudomonas
(RS-1), Bacillus (RS-2), Bacillus (RS-3) (Kumar et al.
2016), Bacillus (CIK-517), Bacillus (CIK-519), and
Enterobacter (CIK-521R) (Ahmad et al. 2016).
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In accordance with the results of this study, B. cereus (strain
57) had the highest accumulation capacity for Pb and Cd which

was 60% and 40%, respectively. Similarly, E. cloacae (strain
52) and R. pusense (strain 59) species showed, respectively, an
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accumulation capacity of 45% and 50% for Pb and 30% for Cd
(Table 1). The B. cereus (S5 strain) was considered as a bio-
logical adsorbent for remediation of severe and trace cadmium
pollution by Wu et al. (2016) since this bacterium was able to
eliminate a high quantity (72.1–83.1%) of Cd2+ (mg l−1) from
the medium. Syed and Chinthala (2015) reported that B. cereus
(NSPA8) showed a remarkable level of lead biosorption with a
maximum of 87–90%. Three bacterial strains, two ofKlebsiella
sp. and one E. cloacae, were separated from wastewaters of
chemical and textile industries. These strains showed high effi-
ciency in removing cadmium from the medium, and when
100 μg ml−1 of Cd was added to the medium, the strains name-
ly CMBL-Cd1, CMBL-Cd2, and CMBL-Cd3, respectively,
removed or accumulated 86%, 87%, and 85% of Cd from the
medium within 24 h (Haq et al. 1999). Kumar et al. (2015)
reported that Bacillus thuringiensis (strain Simi) had an accu-
mulation capacity of 54% for Pb.

In this study, all microbial species were tested for their
response to several widely used antibiotics. The antibiotic
resistance patterns of the strains were different and only
E. cloacae (strain52) species showed resistance to all antibi-
otics (Table 2). Kim and Wei (2007) showed that E. cloacae
were resistant to ampicillin, cephalothin, and amoxicillin
antibiotics. Singh et al. (2010) reported that the B. cereus
(SIU1) was resistant to antibiotics such as penicillin, lincomy-
cin, cloxacillin, and pefloxacin. Sevim and Sevim (2015) iso-
lated B. cereus from soil samples that were resistant to some
antibiotics (ampicillin, methicillin, cephalothin, trimethoprim/
sulfamethoxazole, and oxacillin). Pramanik et al. (2018b) re-
ported that E. kobei was resistant to some antibiotics such as
erythromycin, cephalexin, ampicillin, and lincomycin. From
resistance to antibiotics that were observed in strains that had
not been exposed to antibiotics so far, it can be concluded that
in the lack of direct pressure, concurrent resistance to multiple
antibiotics can happen in bacteria. A relationship between
bacterial tolerances to heavy metals and antibiotics has been
indicated in many studies (Verma et al. 2001).
Tolerances to antibiotics and heavy metals may help
bacteria to adapt themselves to conditions of heavy met-
al stress faster by the expansion of resistant factors than by
mutation and natural selection (Silver and Misra 1988). (Kim
and Wei 2007; Pramanik et al. 2018b).

A large portion of soil P is not available for plants and
phosphate solubilizing bacterial (PSB) can convert it to avail-
able forms (Zaidi et al. 2009). Several studies have reported
Pseudomonas, Bacillus, and Rhizobium genera as potent min-
eral phosphate solubilizers (Gandhi et al. 2014; Karpagam and
Nagalakshmi 2014; Susilowati and Syekhfani 2014; Tripti
2012). Their study showed that Pseudomonas had the highest
P-solubilizing ability which was 12.23 mg P/l from tricalcium
phosphate. The highest amounts of P solubilized from
tricalcium phosphate by Bacillus and Rhizobium were
0.32 mg l−1 and 0.28 mg l−1, respectively. Other bacteria

which mineralize and solubilize poorly available phosphorus
included Flavobacterium, Achromobacter, Agrobacterium
spp., Aerobacter, Micrococcus, Pseudomonas spp.,
Rhizobium spp. (Babalola and Glick 2012; Rodriguez and
Fraga 1999), Azotobacter (Kumar et al. 2014), Burkholderia
(Istina et al. 2015; Mamta et al. 2010; Rodriguez and Fraga
1999; Zhao et al. 2014), Enterobacter and Erwinia
(Chakraborty et al. 2009; Rodriguez and Fraga 1999), and
Bacillus spp. (Babalola and Glick 2012; Jahan et al. 2013;
Raj et al. 2014). Among the studied strains, R. pusense (strain
59) (145.83 μg ml−1) and A. tumefaciens (strain 60)
(136.83 μg ml−1) showed the highest P-solubilizing ability
when compared to other strains (Table 2). Dhull et al. (2018)
isolated several microbial strains from the root nodules of
cluster bean that their efficiency for P solubilization varied
from 36 to 79%. (Dhull et al. 2018).

Since a powerful correlation was established between the
quantity of phosphorus solubilized and the pH of culture me-
dia, it is concluded that the main mechanism of phosphate
solubilization is acidification of culture media (Chen et al.
2006b). A highly significant correlation was found between
the amount of phosphate solubilized and the pH of the culture
media. This observation strongly suggests that the mainmech-
anism of phosphate solubilization is medium acidification
(Castagno et al. 2011). The phosphate-solubilizing strains re-
duce the pH of the culture medium by the production of or-
ganic acids and R. pusense (strain 59) and A. tumefaciens
(strain 60) reduced it from 7.7 to 4.7 and 5.3, respectively
(Table 2).

The results of this study also showed that B. cereus (strain
57) and R. pusense (strain 59) species were capable of solubi-
lizing potassium (42.67 and 55.33 μg ml−1, respectively)
(Table 2). Species such as B. cereus IARI-J-6 and
B. mycoides have already been introduced as potassium
solubilizer with a value of 72.8 and 66.4 mg K/l, respectively
(Rajawat et al. 2014). Meena et al. (2015) studied the release
of potassium from waste mica (muscovite and biotite) and
found that A. tumefaciens and R. pusense were potassium-
solubilizing rhizobacteria. Also, R. pusense strain KRB-2
(MF135560) could release 7.05 mg K/l from mica
(muscovite) after 6 weeks of incubation (Hauka et al. 2017).
(Meena et al. 2015).

Researchers have shown that the majority of microorgan-
isms (80%) isolated from the rhizosphere of different crops
has the ability to synthesize and release auxins as secondary
metabolites (Loper and Schroth 1986). It has been shown that
from different PGPR strains, genera Azospirillum,
Pseudomonas, Xanthomonas, and Rhizobium together with
Agrobacterium, Alcaligenes, Enterobacter, Acetobacter, and
Bradyrhizobium have the ability to synthesize auxins which
increase plant growth (Egamberdieva et al. 2008; Khan et al.
2014; Kumar et al. 2008; Poonguzhali et al. 2008; Wani et al.
2007). Indole-3-acetic acid (IAA) is one of those important
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hormones provided by microbe to plant that enhances the
growth of root and stem and thus the length of the plant
(Aloni et al. 2006). Comparatively, some strains used in this
study presented IAA production, including, E. cloacae strain
52, R. pusense strain 59, and E. kobei strain 56 (31.94, 26.78,
and 24.11 μg ml−1, respectively) (Table 2). The E. cloacae
UW5, a plant growth-promoting rhizobacterium, was able to
produce high levels of IAA through the indolepyruvate path-
way (Ryu and Patten 2008) by utilizing indole-3-pyruvate
decarboxylase enzyme (Koga et al. 1994). Strains of
Enterobacter sp. separated from the rhizosphere of sugar cane
produced about 2.21 μg IAA/ml in vitro (Mantelin and
Touraine 2004). IAA production by PGPR could be varied
among different strains and is also affected by culture and
medium conditions, growth stage, and substrate availability
(Kumar et al. 2012). Goswamia et al. (Goswami et al. 2013)
reported strains of Pseudomonas spp. that had the ability to
produce IAA (29 mg ml−1) and solubilize phosphorus
(34 mg ml−1). Pramanik et al. (2018b), after screening rhizo-
sphere soil of rice supplemented with Cd, isolated E. kobei
which grew profusely in high concentration (1000 mg l−1) of
Cd and had PGP traits (P solubilization, IAA production, NH3
production, HCN activity, etc) which were essential for plant
growth promotion. The production of IAA also increases root
growth, which is needed for obtaining nutrients under Cd
stress conditions (Mitra et al. 2018a; Mitra et al. 2018b;
Pramanik et al. 2018a; Pramanik et al. 2017). (Goswami
et al. 2013; Pramanik et al. 2018b).

To obtain a higher crop yield and for phytoremediation of
heavy metal-polluted soils, rhizobacteria possessing PGP
traits can be used (Kumar et al. 2016). The association of
heavy metal-tolerant plants and useful rhizospheric microor-
ganisms is one of the most important steps in developing an
effective phytoremediation system with the use of microor-
ganisms. In this research, ornamental cabbage was selected
due to the ability to tolerate and absorb high concentrations
of heavy metals (Boyd and Barbour 1986). Our investigation
clearly demonstrated that five selected Pb- and Cd-resistant
bacterial species promoted fresh and dry weights of plant bio-
mass and also, dry weights of root and shoot in the contami-
nated soil significantly (Fig. 2). Under abiotic stress condi-
tions, beneficial rhizospheric soil-borne microbes may en-
hance plant growth by different mechanisms, including opti-
mization of growth by the supply of nutrients, synthesis of
phytohormones such as IAA and 1-aminocyclopropane-1-
carboxylate (ACC) deaminase, phosphate solubilization, and
bioaccumulation or leaching of metals (Yang et al. 2009).

The bacterial strains separated in this study had the ability
to produce IAA and solubilize phosphate. The principal con-
sequence of IAA production is the growth stimulation of lat-
eral and adventitious roots which enhances the uptake of nu-
trients (Golubev et al. 2011). When the ornamental cabbage
was inoculated by the bacterial species, significant increases

in Pb concentration of root, Cd concentrations of root and
shoot, and uptake performances of Pb and Cd in plant biomass
were observed (Figs. 3 and 4). Phosphate solubilization, po-
tassium solubilization, IAA and HCN production, and pH
reduction traits of the isolated strains lead to mobilization of
metals in the soil and increases in concentrations of Pb and Cd
in the root and shoot and uptake performances of Pb and Cd in
plant biomass. Uptake and translocation of heavy metals may
differ significantly and rely upon bacterial species and kind of
heavy metals. Different metals to varying degrees show dif-
ferent mobility rates and the mobilization rate of a particular
metal could be higher than the other metals within a plant.
Previous findings indicate that different groups of
rhizospheric microorganisms can increase the Cd uptake of
plants (Kartik et al. 2016; Prapagdee and Khonsue 2015;
Sangthong et al. 2016; Sheng and Xia 2006; Wu et al. 2006)
which was attributed to increased Cd bioavailability in soils
and the protection of plants against the inhibitory effects of Cd
(Kartik et al. 2016; Sangthong et al. 2016). A similar result
was indicated that A. tumefaciens CCNWGS0286, plant
growth-promoting bacterium, separated from the nodules of
Robinia pseudoacacia growing in zinc-lead mine tailings in
Gansu province, China, displayed high resistance to heavy
metals and enhanced significantly the dry weight of Robinia
plant stems by 14.63%, 23.56%, and 28.07% in the presence
of 0, 300, and 600 mg kg−1 zinc, respectively, compared with
uninoculated plants (Hao et al. 2012). Enhancement of the
root length, shoot length, and root shoot biomass was also
shown by Romam-Ponce et al. (Roman-Ponce et al. 2017)
while experimenting with the effect of seven rhizobacterial
s t r a i n s ( a s membe r s o f Alca l i gene s , Bac i l l u s ,
Curtobacterium, and Microbacterium) on Brassica nigra
seedling growth (Roman-Ponce et al. 2017). A similar type
of PGP study was also performed by Lal et al. (2019) working
on two rhizobacterial strains Pantoea agglomerance (PC1)
and Pseudomonas aeruginosa (SA) and its effect on Zea mays
L. that showed a significant increase in seed germination in
the presence of Cd2+ and Pb2+ ions (Lal et al. 2019). Wang
et al. (2020) reported that Enterobacter TJ6 had a high ability
to reduce Cd and Pb uptake of lettuce and concentrations of
water-soluble Cd and Pb in soil solution. This bacterium
protected lettuce against Cd and Pb toxicity by extracellular
adsorption, Cd and Pb immobilization, and increased pH. The
effects of heavy metal immobilization by the strain of
Enterobacter TJ6 can guarantee vegetable safety in situ for
the bioremediation of heavy metal-polluted farmland. Sharma
et al. (2020) reported that inoculation of Cajanus cajan plant
by Enterobacter sp. C1D reduced the adverse effect of Cd,
and various plant growth parameters were significantly
increased by bacterial treatment. Al Azad et al. (2020) report-
ed that B. cereus had phenomenal bioaccumulation and metal-
tolerant properties and it can clearly be manipulated regarding
bioremediation purposes. Jan et al. (2019) reported that
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inoculation of rice by B. cereus under Cd2+ treatments en-
hanced plant growth, biomass production, and uptake of
micronutrients. They said that B. cereus has the ability to
alleviate Cd toxicity and increased phytoremediation
efficiency of rice seedling under Cd stress. Li et al. (2019)
reported that Rhizobium pusense KG2 had a minimal lethal
concentration of 120 mg L−1 for Cd2+. In pot soils containing
50 and 100 mg kg−1 of Cd2+, strain KG2 caused a 45.9 and
35.3% decrease in soybean root Cd content, respectively.
Meanwhile, KG2 improved the root and shoot length, nitro-
gen content, and biomass of soybean plants. Thus, it is con-
cluded that plant inoculation by bacterial species can promote
the effectiveness and efficiency of phytoremediation
through growth enhancement and protection of plants
against heavy metals.

In all treatments, the bioaccumulation factor of Pb was less
than one, but that of the Cd was more than one (Fig. 5a). The
translocation factors of Pb and Cd were also less than one
(Fig. 5b). Ndeda and Manohar (2014) and Balabanova et al.
(2015) reported that cadmium has the highest bioaccumula-
tion factor among heavy metals. Similar results for transloca-
tion factors of Cd and Pb in cabbage grown in contaminated
soils have been reported by other researchers (Hara and
Sonoda 1979; Pandey and Sharma 2002; Xian 1989). It has
been shown that the concentration of Cd in plants generally
decreases in the order: root > leaves > fruits > seeds (Sarma
et al. 2006), indicating more accumulation of this metal in the
root than in the aerial parts. TF, also called shoot-root quo-
tient, explains the ability of a plant species to translocate
heavy metals from roots to shoots and leaves and plants with
the TF values > 1 are considered suitable for phytoextraction
whereas those with the TF values < 1 are appropriate for the
phytostabilization programs (Shi et al. 2011; Wu et al. 2011).
Based on the results of this study, the translocation factor of
Cd in ornamental cabbage was less than one, but the bioaccu-
mulation factor of Cd was more than one. Considering the
higher concentration of the Cd in the roots than in the aerial
parts, this plant can be classified as cadmium excluder plant.
(Al Azad et al. 2020; Balabanova et al. 2015; Jan et al. 2019;
Li et al. 2019; Ndeda and Manohar 2014; Sharma et al. 2020;
Wang et al. 2020)

Conclusions

In heavy metal-polluted soils, microbial species have devel-
oped different resistance mechanisms to adapt themselves to
the stress conditions caused by these metals. According to the
results of this study, the long-term effects of pollutants have
led to the emergence of resistant bacteria to heavy metals (Pb
and Cd) in the study areas. Regarding the results of this study,
very distinct behaviors were observed among microbial
strains isolated from heavy metal-contaminated soils. Heavy

metal-resistant microbial strains which produce IAA and
HCN and solubilize phosphate and potassium could be uti-
lized for immobilization and detoxification of heavy metals in
contaminated soils and to intensify the phytoremediation pro-
cess. On the other hand, ornamental cabbage is usually
planted from early autumn until late winter. Since most of
the plants used for phytoremediation cannot be grown during
this time, ornamental cabbage could be as new plant
hyperaccumulator and has potential for phytoremediation
and utilized during autumn and winter in urban areas, espe-
cially around the factories with high levels of Pb and Cd.
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