
REVIEW

The signaling mechanisms involved in the dimorphic phenomenon
of the Basidiomycota fungus Ustilago maydis

José Ruiz-Herrera1 & Fernando Pérez-Rodríguez1 & John Velez-Haro1,2

Received: 17 January 2019 /Revised: 2 September 2019 /Accepted: 12 September 2019
# Springer Nature Switzerland AG 2019

Abstract
In the present manuscript, we describe the mechanisms involved in the yeast-to-hypha dimorphic transition of the plant patho-
genic Basidiomycota fungus Ustilago maydis. During its life cycle, U. maydis presents two stages: one in the form of haploid
saprophytic yeasts that divide by budding and the other that is the product of the mating of sexually compatible yeast cells
(sporidia), in the form of mycelial dikaryons that invade the plant host. The occurrence of the involved dimorphic transition is
controlled by the two mating loci a and b. In addition, the dimorphic event can be obtained in vitro by different stimuli: change in
the pH of the growth medium, use of different carbon sources, and by nitrogen depletion. The presence of other factors and
mechanisms may affect this phenomenon; among these, we may cite the PKA and MAPK signal transduction pathways,
polyamines, and factors that affect the structure of the nucleosomes. Some of these factors and conditions may affect all these
dimorphic events, or they may be specific for only one or more but not all the processes involved. The conclusion reached by
these experiments is that U. maydis has constituted a useful model for the analysis of the mechanisms involved in cell differen-
tiation of fungi in general.

Keywords Ustilagomaydis . Dimorphism . Transduction pathways .Metabolic signals

Introduction

Ustilago maydis is a Basidiomycota fungus belonging to the
Ustilaginaceae family of the order Ustilaginales, and a
biotrophic pathogen of the Zea species that include corn
(Zea mays L), and what is considered its probable ancestor,
teozintle, corresponding to the subspecies Zea mays ssp.
parviglumis and ssp. mexicana. Although, because of its low
virulence, U. maydis does not represent an important problem
for the agriculture, it is considered a model for the compre-
hension of a number of physiological characteristics of fungi.
Accordingly, its study has been extremely useful for the anal-
ysis of the genes responsible of DNA recombination, mating,
gene regulation, dimorphism, and pathogenicity (e.g.,
Christenssen, 1963; Ruiz-Herrera et al. 2000; Banuett 2002;

Brefort et al. 2009; Han et al. 2019). Also, it may be indicated
that U. maydis has been used in México for human consump-
tion since pre-Columbian times, and is now highly appreciated
in the Mexican and international cuisines.

In the present review, we refer to the regulation of the
dimorphic behavior of U. maydis making special emphasis
on the role of the signal pathways and some specific aspects
involved in the differentiation and virulence of the fungus.

Dimorphism of Ustilago maydis and the role
of the MAPK and PKA pathways

As dimorphism, we define the capacity of some fungi to grow
in the yeast-like or mycelial forms in response to different
stimuli. U. maydis is considered a dimorphic fungus because
in natural conditions, it can grow as saprophytic haploid
yeasts that reproduce by budding or in the form of virulent
dikaryotic hyphae that grow apically and have the capacity to
infect its natural hosts. The stimulus that induces the yeast-to-
hypha transition is mating. U. maydis is heterothallic, and its
mating is tetrapolar, i.e., mating is controlled by two alleles: a
and b, a with two alleles (idiomorphs) and b with almost 30
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(Puhalla 1970). The a allele encodes a pheromone, and the
receptor of the opposite pheromone, and b, components in-
volved in mycelial growth, and the initiation and later stages
of the pathogenic process. Mating occurs when cells contain-
ing different a and b alleles come close by and form conjuga-
tion tubes that grow to each other in response to the phero-
mone produced by the opposite mating cell, which is sensed
by the corresponding pheromone receptor. Finally, both mat-
ing hyphal filaments fuse at their tips forming a dikaryotic
hypha that forms an appresorium for the invasion of the host
plant (see Froeliger and Leong 1991; Trueheart and
Herskowitz 1992; Bölker et al. 1992; Lanver et al. 2018).

The yeast-to-hypha dimorphic transition that involves api-
cal growth of the conjugation tubes, mating, and growth of the
invading dikaryotic hypha is regulated by the MAPK and
PKA signal pathways. Accordingly, after pheromone recep-
tion, a signal is transferred to both pathways that finally acti-
vate the transcription factor Prf1 that acts also as master reg-
ulator of the virulent process in response to signals from the
host plant. Transfer of the signal to the PKA pathway involves
the Gpa3 subunit, whereas a small G protein is involved in the
signal transfer to the MAPK pathway (for reviews, see
Klosterman et al. 2007; Brefort et al. 2009; Martínez-Soto
and Ruiz-Herrera 2015).

U. maydis is able to grow in the laboratory in synthetic
media. Thus, haploid strains grow in the yeast-like form in
liquid or solid media containing glucose or sucrose and am-
monium or nitrate salts (in fact, U. maydis can grow in the
absence of an added nitrogen source, because it harbors a
nitrogen-fixing bacterium endosymbiont (see Ruiz-Herrera
et al. 2015), but this phenomenon is unrelated to the topic
analyzed here). Mycelial growth can be induced on these solid
media by mixing sexually compatible strains as result of their
mating (the so-called Fuz reaction). Nevertheless, several con-
ditions have been found that induce the mycelial growth of the
fungus changing the composition of the growth medium.
Thus, a relation between nitrogen metabolism and hyphal
growth was identified (see Klosterman et al. 2007), and the
best example was the observation that nitrogen starvation of
diploid strains of U. maydis induces their growth as long fil-
aments (Banuett and Herskowits 1994). Also, the nature of the
carbon source is important for the type of growth of the fun-
gus. As indicated above, U. maydis haploids grow yeast-like
in synthetic medium containing a hexose or a disaccharide,
but if the carbon source is changed for a fatty acid, haploid
strains of U. maydis grow in the hyphal form, although its
growth rate is reduced significantly (Klose et al. 2004). The
authors suggested that it was the hydrophobic surface of the
drops of the fatty acids the responsible agent for dimorphic
induction. Considering that acetate is the metabolic product of
fatty acids, in a further communication, Kretschmer et al.
(2018) described that this acid induces reactive species pro-
ducing cellular death, a reduction in virulence, and

mitochondrial stress. But in these experiments, no dimorphic
transition was observed. On the other hand, we have recently
demonstrated that if ethanol and especially acetate are used as
the sole carbon source at neutral pH, they induce the growth of
haploid strains ofU. maydis in the form of very long, thin, and
septate hyphae (M. Salazar-Chávez and J. Ruiz-Herrera, pre-
liminary observations; Fig. 1a, b). This result suggests that the
change in the carbon metabolism pathways is the yeast-to-
mycelium inducing factor. As a hypothesis to explain the dras-
tic difference among these two results, we may suggest differ-
ence in oxygenation of the medium and subtle differences in
the concentration of the salts in the medium.

As occurring for the dimorphic transition that takes place
during mating, the pKA and the pheromone-response MAPK
pathways are involved in the dimorphic transition of
U. maydis in vitro, except that their roles are opposite; thus,
the PKA pathway is involved in yeast-like development,
whereas the MAPK pathway is involved in mycelial growth.
Accordingly, it was observed that uac1 mutants, that are af-
fected in adenylate cyclase, grew constitutively in the hyphal
form (Gold et al. 1994). This phenotype could be reverted to
yeast-like growth by addition of cAMP, and by suppression, a
technique that led to isolation of several yeast-like strains that
were named ubc for Ustilago bypass cycle (Barrett et al. 1993;
Gold et al. 1994). Their complementation gave rise to recov-
ery of the hyphal phenotype. With these data, the correspond-
ing ubc genes were found to encode the several members of
the MAPK pathway involved in mating (for a review see
Klosterman et al. 2007), demonstrating that this pathway is
involved in hyphal growth of U. maydis.

Other stimuli involved in dimorphism, pH

Besides the inducers of the yeast-to-mycelium transition
described above, we found that pH of the growth medium
was also another factor that affected morphogenesis of
U. maydis. Thus, it was demonstrated that whereas growth
of the fungus at neutral or alkaline pH is in the yeast-like
form, in acid pH medium, with a maximum of pH 3,
U. maydis grows in the form of septated mycelium
(Ruiz-Herrera et al. 1995a; Fig. 1c, d, respectively). The
process was freely reversible from the mycelium to yeast
transition, but the opposite was restricted to only a few
hours of fungal growth. Interestingly, mutants deficient in
a or b idiomorphs were unaffected in the process, indicat-
ing that this occurred by a mechanism independent of the
one involved in mating (see above). Also, the dimorphic
transition did not involve the mechanism of pH control
(Pal/Rim process). Accordingly, in mutants in the gene
encoding the transcription factor Pac/Rim101, the dimor-
phic transition at pH 3 was not affected (Aréchiga-
Carvajal and Ruiz-Herrera 2005).
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On the contrary, the yeast-to-mycelium dimorphic transi-
tion induced at pH 3 did not occur in mutants affected in
different members of the MAPK pathway, and was inhibited
by cAMP addition to the wild type strain. These data are
evidence that the MAPK pathway is involved in mycelial
growth, and the PKA pathway is involved in yeast-like
growth, independently of the stimulus utilized (Martínez-
Espinoza et al. 2004; Martínez-Soto and Ruiz-Herrera 2015).

More recently, using microarrays, we performed a
transcriptomic analysis of the U. maydis yeast-to-mycelium di-
morphic transition induced by cell transfer from neutral to acid
pH (Martínez-Soto and Ruiz-Herrera 2013). In this study, we
used the FB2wild type strain, and as controls, a constitutive yeast
mutant (CL211, Martínez-Espinoza et al. 1997) and a constitu-
tive mycelial strain (Δgcn5, González-Prieto et al. 2014). By
comparison of the data obtained by means of a Venn diagram,
we identified 132 genes specifically involved in dimorphism.
Besides those encoding unclassified proteins, the classes best
represented were Metabolism and Transport and Cell
Communication (24.7% and 15.6% of the total regulated genes).

Other factors involved in dimorphism: histone
acetyltransferases, polyamines, DNA
methylation, histidine kinases, and homeotic
genes

Interestingly, it was observed (Gonzalez-Prieto et al. 2014)
that the haploid *gcn5 mutants deficient in the gene encoding

the histone acetyltransferase Gcn5 (see above) were avirulent
and displayed a constitutive mycelial growth in liquid media
independently of the pH. On solid media, contrasting with the
wild type whose colonies were smooth and were formed by
yeast-like cells, the colonies of the mutants showed a Fuz-like
growth due to mycelium formation. The mutant phenotype
was not reverted by cAMP addition, but only by transforma-
tion with the wild type gene. Mating was not affected in the
mutants; they formed conjugation tubes, and induced the sex-
ual partners to do the same, with formation of mating fila-
ments. Taking into consideration that histone acetylation gives
rise to DNA relaxation in the nucleosomes, these data indicate
that access of different activators of DNA transcription, in-
cluding transcription factors, negatively regulate the expres-
sion of genes involved in hyphal growth induced by mating or
by acid pH, and that the Gcn5 histone acetyl transferase is
necessary to regulate these mechanisms. This result is sugges-
tive of an epigenetic control of dimorphism and virulence in
U. maydis.

Further studies designed to investigate the role of Gcn5
involved the transcriptomic analysis of the FB2Δgcn5mutant
compared with the one from the wild type strain. This study
revealed that a great number of genes, a total of 1176, were
regulated by Gcn5. Of these, 547 were up-regulated and 629
were down-regulated (Martínez-Soto et al. 2015).
Interestingly, it was found that a number of genes related to
pathogenesis were up-regulated. Also, a high number of genes
involved in the dimorphic process induced by acid pH were
down-regulated by the histone acetyl transferase (82 in total).

Fig. 1 Photographs that
exemplify the dimorphic capacity
of Ustilago maydis. a Hyphal
cells obtained by growth at pH 7
in a synthetic medium containing
ethanol as carbon source. b
Morphology of cells grown in
pH 7 synthetic medium with
acetate. c Morphology of yeast
cells grown in pH 7 synthetic
medium with glucose as carbon
source. d Hyphal cells grown in
the same glucose-containing syn-
thetic medium at pH 3. Calcofluor
White staining. Magnification bar
in all photographs, 20 μm
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Of these, 66 were down-regulated and only 16 were up-regu-
lated. These results confirmed the data and suggestions de-
scribed above, including also the virulence mechanism.
Interestingly, some of the regulated genes formed clusters,
an indication that they may be co-regulated. It is important
to point out that 21 of these groups correspond to the patho-
genesis clusters identified during the sequencing of the
U. maydis genome (Kämper et al. 2006).

Histone deacetylase Hos2 and Clr3, which carry out the
opposite reaction to Gcn5, were found that affect mating,
and accordingly virulence, through a reaction involving di-
rectly on the mating genes through the cAMP-PKA pathway
(Elías-Villalobos et al. 2015).

Putrescine (a diamine), spermidine (a triamine), and spermine
(a tetraamine) are the most widely distributed polyamines in all
prokaryotic and eukaryotic organisms. Polyamines are essential
to carry out a great number of cellular functions, mainly prolif-
erative and differentiation processes (Valdés-Santiago and Ruiz-
Herrera 2015; Gevrekci 2017). U. maydis contains only putres-
cine and spermidine, and it was demonstrated that higher con-
centrations of polyamines than those necessary to sustain vege-
tative growth are required to support dimorphism induced by
acid pH (Guevara-Olvera et al. 1997). Thus, an odcmutant (lack-
ing ornithine decarboxylase (ODC), the first enzyme of the bio-
synthetic pathway of polyamine biosynthesis) grew normally
with a 0.4 mM concentration of putrescine, but was unable to
grow in the hyphal form at pH 3, requiring 5 mM putrescine or
spermidine to carry out the dimorphic reaction in liquid or solid
media. Further on, construction of a double mutant in the genes
encoding ornithine decarboxylase and polyamine oxidase, odc/
pao that was unable to form putrescine by the biosynthetic mech-
anism or by retroconversion from spermidine, showed a similar
behavior, indicating that spermidine is the polyamine required for
dimorphism (Valdés-Santiago et al. 2010; reviewed in Rocha and
Wilson 2019). The formation of conjugation tubes and growth of
the dikaryotic mycelium in odc mutants, also require high poly-
amine concentrations (F. Pérez-Rodríguez and J. Ruiz-Herrera in
preparation), a further indication that similar mechanisms operate
in the dimorphic transition induced by different stimuli.

Also, DNA methylation appears to play a role in the
dimorphic transition of U. maydis, as well as in other
fungi. Accordingly, using a modification of the ampli-
fied fragment length polymorphism method, we were
able to demonstrate differences in the methylation pat-
terns of DNA obtained from yeast or mycelial cells of
Mucor rouxii, Yarrowia lipolytica, and the subject of the
present review, Ustilago maydis (Reyna-López et al.
1997). The specificity of these changes in relation to
dimorphism was confirmed by similar experiments
where the dimorphic transition of Y. lipolytica and
M. rouxii, and in an odc mutant for U. maydis was
inhibited by addition of the ODC inhibitor diamino
butanone (DAB; Reyna-López and Ruiz-Herrera 2004).

Regarding the mode of action of polyamines on dimorphism,
there are a number of hypotheses, but no clear answer has been
yet provided. Since DNAmethylation is involved in gene silenc-
ing, we suggested a long time ago that polyamines might be
involved in avoiding DNA methylation. In support of this hy-
pothesis, we observed that the Mucor spp. CUP gene was
expressed during spore germination only after germ tubes were
formed. Addition of DAB inhibited both germ tube formation
and gene expression (Cano-Canchola et al. 1992). A more direct
evidence of the hypothesis was provided by in vitro experiments.
It was observed that activity of cytosine-DNA methylases, but
not adenine-DNA methylases, nor the corresponding restriction
enzymes, was inhibited by polyamines at physiological concen-
trations (Ruiz-Herrera et al. 1995b).

More recently, in search of homologs of the histidine ki-
nases involved in the two-component system in U. maydis, a
homolog of the Tco1 gene of Cryptococcus neoformans was
identified (Yun et al. 2017). The role of this gene was analyzed
by mutation. The authors found that the mutants were affected
in the mating process, decreasing the levels of the genes
encoding pheromones and pheromone receptors .
Accordingly, they were unable to form conjugation and mat-
ing tubes, and failed to form filaments on solid medium (Fuz
reaction). No analysis of the dimorphic transition in vitro was
pursued. In a similar way, it may be indicated that the bW and
bE genes involved in mating contain a homeobox (i.e., they
are homeotic genes) and are required for hyphal growth during
this process (Schulz et al. 1990), but they are not involved in
the dimorphic transition induced in vitro by growth at an acid
pH (Ruiz-Herrera et al. 1995a).

Concluding remarks

In the preceding pages, we have analyzed the yeast-to-hypha
dimorphic transition of Ustilago maydis, analyzing the phe-
nomenon from different points of view.

This process occurs in vivo during mating when the yeast-
like cells change their growth pattern to apical, first during the
formation of conjugation tubes, and second during the growth
of the dikaryotic host-invading hypha. But in the absence of
the plant, the dimorphic transition can be induced by a number
of stimuli: nitrogen starvation, use of different carbon sources,
change in the external pH, and possibly others not analyzed
yet. Some aspects of these processes have common elements,
for example, the signal transduction pathways, whereas others
are different, and some of these systems may be important for
pathogenesis, whereas others are not. The analysis of the
genes regulated under each condition confirms this duality.
Other factors that are involved in one or more of the different
dimorphic inducing conditions that have been studied are
among others, the alteration of the nucleosome structure due
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to DNA methylation or histone or demethylation, and the
requirement of polyamines.

The role played by the dimorphic phenomenon, if any,
except for the one occurring in vivo, is difficult to discern,
and to our knowledge, this aspect has been neglected in the
studies on the matter. Nevertheless, the great plasticity of the
behavior of U. maydis has been extremely important to dis-
cern the different mechanisms governing, not only the viru-
lence, but also its behavior.

In conclusion, we can affirm thatU. maydis has served as a
model for studies performed in other fungi, pathogens or not,
that will lead to a better knowledge of fungal physiology,
behavior, and development. Although there are still many as-
pects of U. maydis that remain unknown, it is evident that our
knowledge on this interesting fungus has advanced steadily in
the last years.
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