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Abstract
The outburst of green biotechnology has facilitated a substantial upsurge in the usage of enzymes in a plethora of industrial
bioconversion processes. The tremendous biocatalytic potential of industrial enzymes provides an upper edge over chemical
technologies in terms of safety, reusability, and better process control. Tannase is one such enzyme loaded with huge potential for
bioconversion of hydrolysable tannins to gallic acid. Tannins invariably occur in pteridophytes, gymnosperms, and angiosperms
and predominately cumulate in plant parts like fruits, bark, roots, and leaves. Furthermore, toxic tannery effluents from various
tanneries are loaded with significant levels of tannins in the form of tannic acid. Tannase can be principally employed for
debasing the tannins that predominately occur in the toxic tannery effluents thus providing a relatively much cheaper measure
for their biodegradation. Over the years, microbial tannase-catalyzed tannin degradation has gained momentum. The plentious
availability of tannin-containing agro- and industrial waste paves a way for efficient utilization of microbial tannase for tannin
degradation eventually resulting into gallic acid production. Gallic acid has received a great deal of attention as a molecule of
enormous therapeutic and indusrial potential. The current worldwide demand of gallic acid is 8000 t per annum. As a matter of
fact, bioconversion of tannins into gallic acid through fermentation has not been exploited completely. This necessitates further
studies for development of more efficient, economical, productive processes and improved strains for gallic acid production so as
to meet its current demand.
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Introduction

Biotransformation process principally utilizes biocatalysts
either as whole cells or as enzyme(s) for the manufacturing
of broad range of bio products. Commercially, the bio-
transformation process offers various advantages over
chemical technologies in terms of better control over var-
ious process parameters, capability to genetically alter mi-
croorganisms, better yields, credibility, safety, and reus-
ability. As a matter of fact, their biochemical heterogeneity,
capability to undergo genetic modification, and production
on a higher scale in a relatively short time span through
fermentation render microorganisms as an alternate ap-
proach for the enzyme production (Bharathiraja et al.

2017). A significant number of biotransformation opera-
tions have efficiently utilized several biocatalysts like cel-
lulase, xylanase, amylase, and lipase for producing valu-
able products of commercial importance (Willke and
Worlop 2004). Green biotechnology incites the utilization
of enzymes in producing a vast number of products of
industrial significance more precisely using renewable
sources. A great majority of industrial enzymes used in
present day era are of microbial origin since they generally
exhibit relatively escalated activities in comparison to en-
zymes having plant and animal origin thus exemplifying an
alternate source of enzymes. According to an estimate,
worldwide market for industrial enzymes was evaluated
around $4.2 billion in 2014 and is anticipated to hit approxi-
mately $ 6.2 billion mark globally at a compound yearly
growth rate of around 7% during 2015 to 2020 (2015 a, b:
Industrial EnzymeMarket). A substantial proportion of indus-
trial enzymes (around 65%) are Bhydrolases^ (Johannes and
Zhao 2006). Tannase (E.C.3.1.1.20) being hydrolase catalyzes
the biotransformation of hydrolysable tannins to simple
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phenolic molecules like gallic acid. Tannins are high molecu-
lar weight (500–3000 kDa), polyphenolic compoumds occur-
ring in plants and are one of the major constituents of effluents
released by tanning industries which are toxic to plants, ani-
mals and microorganisms, posing potential threat to both hu-
man health as well as the environment (Van de Lagemaat and
Pyle 2001). Microbial tannase enzyme is loaded with tremen-
dous potential for bioconversion of hydrolysable tannins to
gallic acid. Gallic acid, the major hydrolytic product of tannic
acid, has extended its utilization as a highly valuable thera-
peutic agent: as an antimicrobial, antiviral, antitumor, and ra-
dio protective agent as well as a potential drug (Zeida et al.
1998; Mukherjee and Banerjee 2003; Das et al. 2006; Purohit
et al. 2006; Hsu et al. 2007; Aithal and Belur 2013) (Fig. 1).

Further, its utilization in agriculture sector in protecting
crops and food storage renders gallic acid a molecule of im-
peccable commercial utility. The extremely salutary applica-
tions of gallic acid may make it a trendsetter in therapeutics as
well as industries. The worldwide annual demand of gallic
acid is 8000 t. China is the leading producer of gallic acid.
The existing technology for gallic acid production involving
the acidic hydrolysis of tannins for gallic acid production is
costlier and generates high levels of toxic effluents that pose
several environmental hazards. It also involves high produc-
tion cost, low yield and less purity of Gallic acid
(Paranthaman et al. 2009). The bioconversion of tannins into
gallic acid through microbial fermentation has not been uti-
lized completely. Evidently, the original studies on using the
substantially high concentrations of tannic acid for tannase
production as well as for galic acid production at fermenter
level are scanty in literature. The biocatalyst tannase utilized
for biotransformation of tannins to gallic acid itself holds

remarkable importance at industrial level credited to its stu-
pendous catalytic potential. The commercial level production
of tannase is being undertaken by certain producers world-
wide like Kikkoman (Japan), Novo Nordisk (Denmark),
ASA special enzyme GmbH (Germany), Amano (Japan),
Biocon (India), Julich (Germany), Wako Pure Chemical
Industries, Ltd. (Japan), and Sigma–Aldrich Co. (USA).
Despite the commercial utility of tannase and gallic acid in
plethora of applications, there are very few research studies
available in literature on their production at fermenter level.
Thus, on the account of plenteous tannin containing agrowaste
and industrial waste, astounding commercial potential of gal-
lic acid, bioremediation need for the tannin waste, and exor-
bitant approaches for gallic acid production, a cheaper and
eco-friendly green technology can be efficiently utilized to
meet the current demand of gallic acid.

Several reviews have been written with major emphasis on
tannase production from various microbial sources, its purifi-
cation, characterization, and immobilization etc. (Jana et al.
2014; Chavez Gonzalez et al. 2017). However, a comprehen-
sive review on biocatalytic potential of microbial tannase in
biotransformation of tannins to gallic acid production has not
been attempted till date. Therefore, in the present review, a
major emphasis has been laid on providing descriptive infor-
mation on various sources of microbial tannase, statistical
modeling for efficient tannase production, cloning and expres-
sion of tannase, range of tannin rich substrates for gallic acid
production, tannins as pollutants, microbial transformation of
tannins to gallic acid, role of various matrices in tannase im-
mobilization for enhanced tannin hydrolysis and scientific
perspectives as well as the challenges that need to be ad-
dressed for enhanced tannin hydrolysis and gallic acid
production.

Tannin acyl hydrolase (TAH)

Tannase enzyme is one of the most adept biocatalysts and
plays a key role in a broad range of bioconversion reactions
under protein-precipitating conditions. Tannase strictly works
on ester and depside bonds in hydrolysable tannins, principal-
ly gallotannins thereafter giving off gallic acid and glucose
molecule (Belur and Mugeraya 2011; Yao et al. 2014).
Industrial biotransformation of tannic acid to gallic acid is
generally executed with tannase.

Microbial tannase sources

The most significant approach of obtaining the enzymes is via
microbial way, since the microbial enzymes exhibit better sta-
bility in comparison to enzymes from other possible sources
(Jana et al. 2014). More importantly, microbes can consistent-
ly produce higher titers of enzymes. Moreover, microorgan-
isms can produce tannase in high quantities in a constant way.Fig. 1 Versatile applications of Gallic acid
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Microbes can be genetically manipulated thus resulting in
increased tannase activity titers (Aguilar and Gutierrez-
Sanchez 2001). There are many microorganisms used for
tannase production. Majority of tannase-producing organisms
documented till date belong to bacteria, fungi, and yeast.

Tannase from bacteria

Numbers of bacteria have been reported to produce tannase.
Most of the reported bacterial tannase producers correspond to
extracellular tannase (Chavez Gonzalez et al. 2017). Over the
last 25 years, the interest in bacterial tannases has risen owing
to their widespread applications, ability to undergo genetic
manipulations, and capability to live under extreme tempera-
ture conditions. Thus, in this regard, several tannase-
producing bacteria have been identified till date among which
bacterial strains belonging to genera such as Lonepinella
(Goel et al. 2007), Staphylococcus (Noguchi et al. (2007),
Lactobacillus (Guzman-Lopez et al. (2009), Pseudomonas
(Selwal et al. 2010), Serratia (Belur et al. (2010), Bacillus
(Raghuwanshi et al. (Raghuwanshi et al. 2011; Muhammad
et al. 2016), Azobacter (Gauri et al. (2012), Klebsiella
(Sivashanmugam and Jayaraman 2013), Citrobacter (Wilson
et al. (2009) Pantonea (Pepi et al. 2010), and Enterobacter
(Mandal and Ghosh 2013) are predominant. The molecular
weights of tannase of bacterial origin usually lie within
46.5–90 kDa (Jana et al. 2013). Deschamps et al. 1983 firstly
reported the extracellular production of tannase from Bacillus,
Corynebacterium, and Klebsiella strains with the concomitant
release of gallic acid and glucose.

Yeast

Only certain variants of yeasts have been documented to de-
polymerize tannins. (Aoki et al. 1976) documented the
depolymerisation of tannins by Candida sp. Apart from that,
only a few types of yeast have been reported with the ability to
degrade tannins.

Fungi

Hadi et al. (1994) reported the ability of filamentous fungi to
depolymerise tannins. As many as 120 fungal species have
been documented till date as tannase producers. Majority
(around 70) of them belong to genera Aspergillus and
Penicillium (Chavez Gonzalez et al. 2017). The filamentous
fungi pertaining to genera Aspergillus have been primarily
utilized for tannase production (Banerjee et al. 2001). Fungi
like Aspergillus oryzae (Bradoo et al. 1996), Aspergillus
awamori (Beena et al. 2010), Aspergillus fumigates (Batra
and Saxena 2005), Aspergillus ruber (Kumar et al. 2007),
Penicillium chrysogenum (Bradoo et al. 1996), Penicillium
glabrum (Van de Lagemaat and Pyle 2005), Trichoderma

viride, and Trichoderma hamatum (Bradoo et al. 1996) have
been reported as efficient tannase producers. The tannase-
producing organisms and biochemical properties of some of
the characterized tannases are listed in Tables 1 and 2.

Microbial tannase production methodologies

Submerged fermentation has been reported as immensely fa-
vored approach for production of tannase globally. Depite
this, certain research invesigations involving production of
tannase via solid state fermentation approach have also been
reported. Selecting a proficient production approach relies on
various attributes like strain to be utilized during production
process, nutrient accessibility, variety, and quality of substrate
being utilized.

Submerged fermentation

Submerged fermentation basically utilizes a high oxygen con-
centrated liquid nutrient medium for culturing the microbes.
SMF has been the principally utilized approach for producing
tannase as well as other enzymes at industrial level (Chavez-
Gonzalez et al. 2012). Submerged fermentation is always pre-
ferred for microbial tannase production because it offers uni-
form fermentation conditions like substrate concentration, in-
ducer concentration, temperature, pH, dissolved oxygen con-
centration, agitation, aeration, superior process control, ease in
extracting the enzyme, better utilization of substrate, relatively
shorter incubation time span, proficient mass, and heat trans-
fer as well better feasiblity of statistical and kinetic modeling
of the process (Rao 2010; Prasad et al. 2012). Enzyme pro-
ducers usually produce enzymes using submerged fermenta-
tion with important titers in the range of grams per liter
(Aguilar et al. 2007). Tannic acid serves as the carbon source
as well as an inducer for production of tannase. Thus, in this
context, its concentration plays a crucial role for the growth of
microbes as well as production of tannase (Rao et al. 2008;
Chavez-Gonzalez et al. 2012).

Das et al. (2006) utilized tannins from eight unalike plant
extracts for production of tannase with Bacillus licheniformis
KBR6 in SMF and recorded a higher activity with the tannin
of Anacardium occidentale. Selwal et al. (2010) studied the
production of tannase enzyme using Pseudomonas
aeruginosa IIIB 8914 under submerged fermentation with
the leaves of Phylanthus emblica (amla), Acacia nilotica
(keekar), Eugenia cuspidate (Jamoa), and Syzygium cumini
(Jamun) as substrates and reported a maximum tannase
yield. Kannan et al. (2011) reported maximal enzyme activity
(5.22 U/ml) of tannase from Lactobacillus plantarum MTCC
1407 under submerged fermentation.

SMF has been most preffered approach for bacterial
tannase production with higher enzyme titers (Belur and
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Table 1 Microorganisms used for
the production of tannin acyl
hydrolase (tannase)

Microorganism
Bacteria Reference

Achromobacter sp. Lewis and Starkey (1969)

Bacillus pumilus Deschamps et al. (1983)

Bacillus polymyxa Deschamps et al. (1983)

Corynebacterium sp. Deschamps et al. (1983)

Klebsiella planticola Deschamps et al. (1983)

Klebsiella pneumoniae Deschamps et al. (1983)

Paenibacillus polymyxa Deschamps et al. (1983)

Pseudomonas solanacearum Deschamps and Lebeault (1984)

Lonepinella koalarum Osawa et al. (1995)

Citrobacter freundii Kumar et al. (1999)

Bacillus licheniformis Mondal et al. (2000)

Lactobacillus plantarum Osawa et al. (2000)

Lactobacillus paraplantarum Osawa et al. (2000)

Lactobacillus pentosus Osawa et al. (2000)

Bacillus cereus KBR9 Mondal et al. 2001

Lactobacillus plantarum Ayed and Hamdi (2002)

Pseudomonas citronellolis Chowdhury et al. (2004)

Streptococcus bovis Belmares et al. (2004)

Streptococcus gallolyticus Sasaki et al. (2005)

Bacillus licheniformis KBR 6 Das et al. (2006)

Staphylococcus lugdunensis Noguchi et al. (2007)

Lactobacillus plantarum Kostinek et al. (2007)

Lactobacillus plantarum Iwamoto et al. 2008

Lactobacillus buchneri Guzman-Lopez et al. (2009)

Enterobacter cloacae Beniwal et al. (2010)

Pseudomonas aeruginosa Selwal et al. (2010)

Serratia ficaria DTC Belur et al. (2010)

Bacillus sphaericus Raghuwanshi et al. (2011)

Bacillus massieliensis Belur et al. (2012)

Gluconacetobacter hansenii Rani and Appaiah (2012)

Enterobacter asburiae Mandal and Ghosh (2013)

Klebsiella pneumonia Sivashanmugam and Jayaraman (2013)

Lactobacillus plantarum CIR1 Aguilar-Zarate et al. (2014)

Erwinia carotovora Muslim et al. (2015)

Bacillus subtilis Muhammad et al. (2016)

Bacillus gotthelii M2S2 Subbulaxmi and Murty (2016)

Bacillus megaterium Tripathi and Sharma (2016)

Klebsiella pneumonia Tahmourespour et al. (2016)

Escherichia coli Thakur and Nath (2017a)

Fusobacterium nucleatum subs.
polymorphum (TanBFnp)

Tomas-Cortazar et al. (2018)

Streptomyces sp. Roy et al. (2018)

Yeast

Candida sp. Aoki et al. (1976)

Debaromyces hansenii Deschamps et al. (1983)

Pichia spp. Deschamps and Lebeault (1984)

Debaryomyces hansenii Deschamps and Lebeault (1984)

Mycotorula japonica Belmares et al. (2004)

Saccharomyces cerevisiae Zhong et al. (2004)
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Mugeraya 2011). A great majority of lab-scale tannase pro-
duction from bacteria is done within 250-ml Erlenmeyer flask
(Das et al. 2006). However, some research investigations in-
volving bacterial tannase production have been carried out on
fermenter scale (Raghuwanshi et al. 2011). Research investi-
gations have been conducted with major emphasis on explor-
ing the bacterial strains with the potential of producing higher
enzyme titers. Maximal tannase production (16.54 U/mL) was
recorded by Raghuwanshi et al. 2011 from Bacillus
sphaericus with a 30 L fermenter.

Submerged fermentation approach has also been uti-
lized for tannase production from fungi. Bajpai and Patil

(1997) reported production of tannase from Aspergillus
spp. at relatively high aeration rates. Sharma et al. (2007)
studied the effect of various parameters like rate of agita-
tion, incubation time period, sodium nitrate, and effect of
tannic acid concentration on tannase production using
Aspergillus niger in submerged fermentation. Murugan et
al. (2007) reported production of tannase via SMF using
Aspergillus niger, Aspergillus xavus, Penicillium spp.,
Trichoderma spp. etc. A. niger was reported as the most
proficient tannase producer (16.77 U/mL) among all.
Paranthaman et al. (2009) also utilized SMF strategy for
obtaining maximum production of tannase from A. flavus

Table 1 (continued)
Microorganism
Bacteria Reference

Fungi

Aspergillus niger Knudson 1913

Aspergillus oryzae Iibuchi et al. (1967)

Aspergillus flavus Yamada et al. (1968)

Aspergillus japonicus Bradoo et al. (1996)

Penicillium notatum Ganga et al. (1977)

Cryphonectria parasitica Farias et al. (1994)

Rhizopus oryzae Hadi et al. (1994)

Fusarium solani Bajpai and Patil (1996)

Fusarium solani Bradoo et al. (1996)

Aspergillus oryzae Bradoo et al. (1996)

Aspergillus gallonyces Belmares et al. (2004)

Fusarium solani Belmares et al. (2004)

Aspergillus acolumaris Batra and Saxena (2005)

P. glabrum Van de Lagemaat and Pyle (2005)

P. crustosum Batra and Saxena (2005)

R. oryzae Mukherjee and Banerjee (2006)

A. aculeatus Banerjee et al. (2007)

A. fumigatus Manjit et al. (2008)

Penicillium variable Sharma et al. (2008)

A. flavus Paranthaman et al. (2009);
Kuppusamy et al. (2014)

A. tamari Enemour and Odibo (2009)

A. awamori Beena et al. (2010)

A. oryzae Abdel-Nabey et al. (2011)

vA. japonicas Abdel-Nabey et al. (2011)

Trichoderma harzianum Iqbal and Kapoor (2012)

A. ochraceus Goncalves et al. (2012)

P. purpurogenum Reddy and Rathod (2012)

Aspergillus niger Ahmed and Rhman (2014)

A. aculeatus Bagga et al. (2015)

Aspergillus melleus Liu et al. (2016)

A. fumigatus CAS21 Cavalcanti et al. (2017)

A. tamarii URM 7115 de Sena et al. (2018)
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under optimal conditions of temperature, incubation time
period and substrate concentration. Srivastava and Kar
(2009) obtained maximal tannase and gallic acid produc-
tion from A. niger by utilizing pomegranate rind powder
(4% w/v) as substrate under optimized conditions. Beniwal
et al. (2010) utilized response surface methodology (RSM)
for optimizing the process parameters for maximal produc-
tion of tannase from Aspergillus awamori MTCC 9299.

Darah et al. (2011) reported maximal tannase production
(2.81 U/ml) from Aspergillus niger FETL FT3 via SMF strat-
egy. Iqbal and Kapoor (2012) studied the production of
tannase by Trichoderma harzianumMTCC 10841 under sub-
merged fermentation using various tannin rich materials as
carbon sources. Ahmed and Rhman (2014) also documented
production of tannase from Aspergillus niger under optimal
condtions of temperature, pH, and incubation time period.
Varadharajan et al. (2015) reported pomegranate rind extract
as the most proficient substrate for producing tannase from A.
oryzae by SMF approach.

Solid-state fermentation

Solid-state fermentation (SSF) has witnessed a continuous rise
in its use for tannase as well as other industrial enzymes pro-
duction. Solid-state fermentation (SSF) is a process that pref-
erentially occurs in near or absolute absence of free flowing
water thus employing either a natural support or an inert sup-
port as a solid material. However, the substrate must be having
sufficient moisture to sustain the growth microbial growth and
metabolism (Pandey et al. 2000). SSF approach has been uti-
lized to a relatively lesser extent for production of tannase as
compared to submerged fermentation (Jana et al. 2013). The
research investigations conducted in recent years have
claimed enhanced tannase production and better stability in
accordance with pH and temperature deviations. However,
the majority of literature suggests suitability of SSF for fungal
tannase production by utilizing natural tannin containg agro
residues as they imitate the natural conditions indispensable
for fungal growth. Several natural tannin containing substrates
like wheat bran, coffee pulp and tea residue, tamarind seed
powder, and rice bran have been efficiently utilized for max-
imal tannase production via SSF. Polyurethane foam has been
the most commonly used natural support amongst various
other supports (Rodrıguez-Duran et al. 2011); Wilson et al.
(2009) and Jana et al. (2013) documented as high as 45 times
and 7 times enhanced bacterial tannase production via SSF in
comparison to SMF. However the original research studies
utilizing SSF for bacterial tannase production are scanty.

Various natural tannin-containing substrates jamun leaves,
amla leaves (Kumar et al. 2007; Selwal et al. 2011), tamarind
seed powder, baggase, ground nut oil cake, wheat bran and
rice bran (Natarajan and Rajendran 2012), coffee pulp, and tea

residue (Sharma et al. 2014; Bhoite and Murthy 2015) have
been utilized as substrates for tannase production under SSF.

Aguilar et al. (2001) reported 2 times higher biomass yield
in solid-state fermentation during the production of tannase
using Aspergillus niger Aa-20 in SSF and SMF with tannic
acid and glucose as carbon sources. Pinto et al. (2001) inves-
tigated the tannase activity of 17 wild type and 13 mutant
strains of Aspergillus niger and selected the potential tannase
producers for maximum tannase production by solid state
fermentation. Sabu et al. (2005) recorded an enzyme yield of
13.03 IU/g dry substrate (gds) in his research investigation
involving tannase production under SSF using A. niger
ATCC 16620 with palm kernel cake and tamarind seed
powder as the substrate. Kumar et al. (2007) recorded maxi-
mum tannase production (30.2 U/ml) from A. ruber at 30.1 °C
after 96 h of incubation with jamun leaves (Syzygium cumini)
by SSF strategy. Manjit et al. (2008) reported maximum
tannase production (174.32 U/g) using Aspergillus fumigatus
MAwith Jamun leaves as substrate at 25 °C, pH 5.0 and 96 h
of incubation. Reddy and Kumar (2011) reported maximum
tannase production (41.6 U/mg) from A.terreus using wheat
bran as a substrate. Kulkarni et al. (2012) reported maximum
activity (116 U/g dry substrate) of tannase from A.oryzae
using mixed substrate (Jamun and Babul bark in the ratio of
4:6) through SSF. Nandini et al. (2014 (documented that food
and agricultural residues such as corn husk, tamarind seed
powder, banana peel, coconut coir, and spent tea powder are
most suited natural substrates for both tannase and gallic acid
production through SSF. Deepa et al. (2015) investigated pro-
duction of tannase from Aspergillus niger using wood chips as
substrate under SSF. Malgireddy and Nimma (2015) in their
research investigation reported maximal tannase production
from Aspergillus terreus with wheat bran as a substrate.
Various natural tannin-containing substrates like wheat bran,
coffee pulp and tea residue, tamarind seed powder, and rice
bran have been efficiently utilized for maximal tannase pro-
duction via SSF.

Statistical modeling of tannase production

The optimization of fermentation process is an important tool
for the development of optimum parameters to scale-up the
tannase production. The statistical modeling has been used for
medium optimization and for understanding the relationship
between different parameters with smallest number of exper-
iments (Singh and Mukhopadhyay 2016).

There are several reports in literature emphasizing on opti-
mization of tannase production using statistical modeling.
Response surface methodology (RSM) and Taguchi method-
ology have been most widely used statistical tools for optimi-
zation of tannase production. Response surface methodology
is utilized for determining the influence of factors over the
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response and to optimize these variables to reach the highest
productivity (Das et al. 2009). Taguchi methodology deter-
mines the influence of individual factors and reveals the cor-
relation between the variables and process parameters
(Taguchi 1986). Lekha and Lonsane (1994) optimized the
variables such as initial pH, inoculum ratio, temperature, fer-
mentation time, and moisture content using RSM for the
production of tannase by solid state fermentation. Battestin
andMacedo (2007) studied the optimization of variables (sub-
strate concentration and % residue) through RSM. Sharma et
al. (2007) proposed central composite rotatable design
(CCRD) for optimization of tannase production from
Aspergillus niger. Results revealed that tannic acid concentra-
tion, sodium nitrate, incubation period, and agitation rate were
the most influencing factors for tannase production. Naidu et
al. (2008) obtained twofold increase in activity of tannase
from Aspergillus foetidus in SMF using a dual statistical ap-
proach involving a Plackett-Burman design to determine the
key factors for production of tannase and RSM (utilizing a
central composite design) to optimize these factors. Das et
al. (2009) used taguchi method to optimize the concentration
of tannic acid for tannase production from Bacillus
licheniformis in SMF. Beniwal and Chhokar (2010) also op-
timized the parameters such as agitation rate, substrate con-
centration and incubation period for tannase production from
Aspergillus awamori and A. niger in SMF through RSM.
Mohan et al. 2014 used Plackett–Burman design and identi-
fied tannic acid, magnesium sulfate, ferrous sulfate and am-
monium sulfate as significant nutrients affecting tannase pro-
duction from Aspergillus flavus using tamarind seed powder
as substrate in submerged fermentation. In addition, the opti-
mization of process parameters using RSM resulted in maxi-
mum production of tannase (139.3 U/ml).

Xiao et al. (2015) optimized tannase production from
Aspergillus tubingensis through sequential statistical approach
under SSF.

Cloning and expression of tannase

Advancements in recombinant DNA techniques have wid-
ened the scope of creating genetically modified variants of
existing microbial strains with desired enzyme machineries.
Because of the several technical barriers involved in tannase
production through traditional technologies, there has been a
keen interest in molecular biology techniques for enhancing
the production of tannase using recombinant microorganisms.
Hatamoto et al. in Hatamoto et al. 1996 for the very first time
clones and sequenced the gene encoding for tannase from
A.oryzae. They further expressed this gene in A. oryzae strain
having lower tannase-producing ability and reported as many
as three fold increased production of tannase in transformants
in comparison to wild strain. The increase in tannase

production level in the transformant genome was due to
additional gene encoding for tannase as confirmed by
Southern blotting. Zhong et al. (2004) cloned and sequenced
tannase-encoding gene from Aspergillus oryzae in the
methylotrophic yeast Pichia pastoris. They reported signifi-
cantly higher extracellular tannase production (7000 U/L) in
the transformed yeast in SMF fed-batch production system
utilizing glycerol and methanol as carbon source and trans-
ducer respectively. Cerda-Gomez et al. (2006) designed
primers (Tan 1 and Tan 2) by using conserved sequences of
tannase gene obtained from various species belonging to
Aspergillus. They further used the primers set for amplifying
a 435-bp DNA fragment taken from four distinct Aspergillus
species through PCR. Noguchi et al. (2007) investigated the
alliance of tannase-producing bacteria and colon cancer and
explore novel gene encoding for tannase production. Iwamoto
et al. (2008) identified the tannase-encoding gene from
Lactobacillus plantarum from GenBank database on the basis
of literature available about L. plantarum WCFS1. Tannase-
encoding gene was then cloned and hyperexpressed in
Escherichia coli. Recombinant tannase revealed a single
protein of approximately 50.7 kDa after purification. On the
other hand, Curiel et al. (2009) documented the production
and purification of recombinant Lactobacillus plantarum
expressed in E. coli using vector pURI3 and inserted the gene
encoding for tannase with an aminoterminal His-tag. This
strategy gave significantly higher amount of pure tannase
(17 mg/L) by adopting single-step affinity method. Beena et
al. (2010) isolated gene encoding for tannase fromA. awamori
and documented an ORF of 1122 bp upon sequencing.
Homology studies conducted revealed a higher similarity in-
dex between A. awamori gene with that of A. niger in com-
parison to A. oryzae gene. Researchers are now emphasizing
on metagenomic approach for identifying and exploring the
tannase-encoding genes of microbes that are difficult to cul-
ture. Yao et al. (2013) documented a novel gene-encoding
tannase (tan410) of 1563 bp from cotton field metagenomic
library by functional screening. They cloned the tan410 gene
and expressed it in E.coli BL21 (DE3) using pET-28a expres-
sion system under the control of T7 lac promoter. The recom-
binant tannase revealed interesting properties like 55 kDa mo-
lecular weight upon purification and characterization.

Tannins as substrates for tannase and gallic
acid production

Tannins are high molecular weight (500 to 3000 kDa) poly-
phenolic compounds that exist abundantly in different parts o
plants such as fruits, leaves, and bark (Aguilar et al. 2007;
Rodriguez et al. 2008). Tannins are the seconds most copius
polyphenols following lignins (Bhat et al. 1998). Aguilar et al.
(2007) categorized tannins into four major groups:
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gallotannins, ellagitannins, condensed tannins, and complex
tannins. The structure of different tannins and tannic acid is
depicted in (Fig. 2a, b.

Tannic acid is the commercial form of gallotannins. It
mainly consists of glucose esters of gallic acid. Chinese
gallotannin (Rhus semilata) is the principally utilized natural
hydrolysable tannin for gallic acid production.

Tannins are present in several naturally occurring agricul-
tural wastes such as redgram husk, greengram husk,
blackgram husk, tamarind seed powder, tea dust, rice bran,
and groundnut shell which can be utilized in industrial
bioprocess for the production of value added products such
as gallic acid through submerged fermentation (Table 3).

A number of research investigations utilizing a concoction
of agro-industrial wastes like Paddy husk, wheat bran, Palm
kernel cake, Cashew waste, apple baggasse, and rice bran for
enhancing the tannase and gallic acid production have report-
ed (Lekha and Lonsane 1994; Sabu et al. 2005; Battestin and
Macedo 2007; Rodriguez et al. 2008; Paranthaman et al.
2010). Hydrolysable tannins are polyphenolic compounds
consisting of gallic acid esters (gallotannins) or ellagic acid
esters (ellagitannins) with a sugar core (generally glucose).
Hydrolysable tannins can be easily hydrolysed under mild
acid or alkaline conditions with hot water or enzyme

(Lopez-Rios 1984). The principally utilized commercial
sources of hydrolysable tannins include tannins from
Chinese gall (Rhus semialata), Keekar (Acacia nilotica)
leaves, Red gram husk and Cashew waste testa (Anacardium
occidentales), and Myrobalan nuts (Terminalia chebula).
Some of the plant sources that can be efficiently utilized for
production of tannase and gallic acid have been listed in
(Table 4).

Tannins as pollutants

Leather industry is one of the highest water-consuming
industries generating extensively polluted effluent after
processing of leather having high loads of pollutants
(Song et al. 2004). Tannery waste water is reckoned as
one of the highest ranked environmental pollutant amongst
all forms of waste water generated from various industries
(Verma et al. 2008; Gupta et al. 2012). Emergence of tan-
nery waste water as an absolute pollutant in countries such
as China has eventually posed catastrophic threat to man-
kind and aquatic life. Tannins are used in tanneries for
processing of leather in the form of tannic acid. During
tanning process significantly high levels of water, tannin

Table 3 Agricultural wastes as
sources of tannin Material Tannin content (mg/g) Reference

Rice bran 0.096 Paranthaman et al. (2009)

Redgram husk 2.601 Paranthaman et al. (2009)

Tea dust 0.102 Gowdhaman et al. (2012)

Blackgram husk 0.910 Arulnathan et al. (2013)

Black plum 38.37 Kumar et al. (2016)

Babul 41.6 Kumar et al. (2016)

Table 4 Major plant sources for
production of gallic acid Source plant Common name Plant part Type of tannin Tannin %

Rhus coriaria Sumac Leaves Gallotannin 10

Larrea tridentate Creosote bush Leaves Ellagitannin 16

Caesalpinia cacalaco Cascolate Leaves Ellagitannin 25

Anacardium occidentale Cashew Testa of seeds Ellagitannin 10–40

Terminalia chebula Myrobalan Fruit Ellagitannin 40

Caesalpinia spinosa Tara Fruit Pods Gallotannin 40

Flurensia crenua Tar bush Leaves Ellagitannin 40

Caesalpinia coriaria Divi divi Pods Ellagitannin 43

Caesalipinia dignya Teri pod Pod cover Gallotannin 45

Quercus infectoria Turkish galls Nuts Gallotannin 81

Rhus semialata Chinese galls Galls Gallotannin 89

*(Compiled from: Bajpai and Patil (2008); Banerjee et al. (2005); Deschamps and Lebeault (1984); Kar et al.
(1999), Kar and Banerjee (2000) and Kar et al. (2002); Lokeswari and Jayaraju (2007); Paaver et al. (2010);
Pourrat et al. (1987); Ruiz-Aguilar et al. (2004); Ventura et al. (2008), Lokeswari (2010), Lokeshwari (2016)
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(in the form of tannic acid) and several other chemicals are
used for processing of raw hides and skins. The entire
process generates an approximate 30–35 m3 volume of
waste water per ton of raw hide/skins processed (Lofrano
et al. 2008; Islam et al. 2014). In addition, the industries
utilizing plant constituents as raw and processing materials
eventually produce enormously high levels of waste water
rich in tannins. The dark brown color of Tannery waste
water causes blockage of sunlight thus reducing the pho-
tosynthesis and oxygenation activities of aquatic photosyn-
thetic organisms and thus becomes fatal for them
(Mwinyihija 2010; Carpenter et al. 2013). Consequently,
the reduced dissolved oxygen level promotes the anaerobic
conditions which results in unpleasant odor of aquatic or-
ganisms (Sahu et al. 2007; Verma et al. 2008). Tannery
waste water also adversely affects the quality of water re-
sources (Schilling et al. 2012; Dixit et al. 2015). Tannery
waste water is rich in organic and inorganic components
which may serve as nutrients for promoting the growth of
several pathogenic bacteria thus severely contaminating
the water resources (Verma et al. 2008; Bharagava et al.
2014). Common effluent treatment plant (CETP)-treated
waste water has significantly high BOD, COD and TDS
levels in addition to various other toxic pollutants like
chromium which ultimately renders the water unsafe for
mankind and other forms of life (Lofrano et al. 2013;
Dixit et al. 2015). Thus, the currently available conven-
tional chemical and biological waste water treatment
methods are not good enough to remove these pollutants
especially tannins because of their recalcitrant nature and
low biodegrability. This necessitates the development and
utilization of appropriate and effective treatment methods
for bioprocessing of such enormously high volumes of tan-
nery waste water. Bioremediation of these tannin rich
waste waters using suitable enzymes may result in their
effective biodegradation. The ability of microbial tannase
to efficiently degrade natural tannins and tannic acid can be
utilized for bioremediation of tannery waste water high in
tannins and eventually for Gallic acid production.

Gallic acid production from tannins

Commercial production of gallic acid is undertaken by hy-
drolysing the tannins either chemically or enzymatically.
The chemical approach for producing gallic acid generally
consists of acidic hydrolysis of naturally occurring hydro-
lysable tannins (Mukherjee and Banerjee 2003). This par-
ticular approach is economically not feasible on account of
reduced yield and lower purity of gallic acid (Bajpai and
Patil 2008). In addition, this approach uses relatively
higher concentrations of acid or alkali which causes corro-
sion of vessels utilized during the entire process. Thus, this

approach requires better and effective safety means. One of
the major drawbacks of this strategy is the generation of
toxic effluents that are hazardous to environment thus ul-
timately posing threat to mankind (Banerjee et al. 2001).

As an alternate, the production of gallic acid is undertaken
via microbial fermentation approach by cleaving the ester and
depside bonds in hydrolysable tannins thus giving off gallic
acid. The microbial tannase-based bioconversion of tannins to
gallic acid offers several advantages over chemical technology
in terms of ease of cultivation of cultivation of microorgan-
isms, better control over various process parameters such as
pH, temperature, degree of aeration as well as several envi-
ronmental factors indispensable for the optimal growth of the
microorganisms. The enzyme utilized mainly belongs to fun-
gal or bacterial origin. The cell deprived fermentation broth is
allowed to precipitate at reduced temperature so as to collect
gallic acid. Gallic acid from fermentation broth is recovered
via solvent extraction and is dried under vacuum till precipi-
tation. This approach is economically feasible and environ-
ment friendly and does not cause any hazards to neither envi-
ronment nor mankind.

Microbial biotransformation of tannins

Microbial degradation of tannins is most eminent approach for
effectively biotransforming larger tannin molecules into rela-
tively smaller molecules of higher market value. Tannin deg-
radation potential significantly varies among different mi-
crobes like bacteria, fungi, and yeast. Yeast can effectively
degrade gallotannins but looses its effectiveness in degrading
elagitannins. Over the years, enzymatic hydrolysis of tannins
by microbial tannases has gained momentum (Dhiman et al.
2017). Bacteria have stupendous potential to efficiently de-
grade gallotannins as well as ellagitannins (Deschamps et al.
1983). Fungi can effective depolymersise various tannins
(Bhat et al. 1998). The enzymes involved in depolymerization
of tannins include tannase and gallic acid decarboxylase.
However, as a matter of fact, tannase has been the most widely
investigated and utilized ezyme for tannin degradation.
Microbial tannase holds utmost importance in tannin degrada-
tion as compared to tannase from plant and animal sources
(Aguilar et al. 2007). Tannase breaks the ester and depside
bonds in different types of tannins. However, their effective-
ness in degrading condensed tannins is limited by their inabil-
ity to affect C-C bonds (Haslam and Stangroom 1966). Gallic
acid decarboxylase mediates the decarboxylation to gallic acid
to pyrogallol; however, the enzyme is extremely unstable due
to its relatively higher sensitivity to oxygen which renders its
isolation and purification quite ardous (Zeida et al. 1998).
There are certain bacteria like Selenomonas gallolyticus and
E.coli that catalyzes decarboxylation of gallic acid to pyrogal-
lol. Further transformation of this compound does not take
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place possibily because of it having lesser toxicity or its pro-
duction being thermodynamically more viable (Mingshu et al.
2006). In ellagitannin degradation, the liberation of ellagic
acid is mediated by ellagitannin acyl hydrolase. However,
extensive research investigations are required to evince the
actual catalytic variability between tannin acyl hydrolase and
ellagitannin acyl hydrolase and to comprehend the actual
mechanism of tannin degradation (Aguilera-Carbo et al.
2008). The understanding of complex and condensed tannins
is quite toilsome owing their convoluted structures. Thus,
there has been only limited success in comprehending their
degradation process. The degradation pathway of gallotannins
is represented in Fig. 3.

Microbial tannase-catalyzed biotransformation of tan-
nins can be efficiently utilized for producing significant
levels of gallic acid. Gallic acid production and tannase
production are interconnected with each other since
tannase catalyzes the depolymerization of hydrolysable
tannins thus releasing gallic acid.

Bacterial biotransformation of tannins

Some bacterial strains pertaining to genera such as Bacillus
(Raghuwanshi et al. (2011), Pseudomonas (Selwal et al.
2010), Staphylococcus (Noguchi et al. (2007), Klebsiella
(Sivashanmugam and Jayaraman 2013), Lactobacillus
(Guzman-Lopez et al. (2009), Citrobacter (Wilson et al.
(2009), Serratia (Belur et al. 2010), Pantonea (Pepi et al.
2010), Azobacter (Gauri et al. 2012), and Enterobacter
(Mandal and Ghosh 2013) have been documented with the
ability to degrade tannins. Lewis and Starkey (1969) docu-
mented the biodegradation of gallotannins from an aerobic
bacterium Achromobacter sp. Deschamps et al. (1981) isolat-
ed several bacterial strains capable of degrading hydrolyzable
and condensed tannins, including chestnut, wattle, and
Quebracho commercial tannin extracts by enrichment.
Bacteria tannase have the stupendous ability to hydrolyse nat-
ural tannins and tannic acid (Deschamps et al. (1983).
Deschamps et al. (1983) documented the gallotannin (1% w/
v) degradation by Bacillus pumilus , B. polymyxa ,
Corynebacterium, and K. pneumonia. Moreover, B. pumilus,
B. polymyxa, and K. planticola utilized chestnut bark as sub-
state and produced tannase followed by Gallic acid generation
(Deschamps and Lebeault 1984). The anaerobic degradation
of gallotannins mediated by a consortium of anaerobic sludge
bacteria was first reported by Field and Lettinga (1987). Singh
et al. 2001 reported gallic acid production through microbial
degradation of tannic acid by ruminal fluid of cattle. Kachouri
and Hamdi (2004) documented the potential of Lactobacillus
plantarum in degradation of tannic acid. In most cases bacte-
rial tannase utilizes methyl gallate as a substrate for producing
gallic acid as the end product through oxidation process
(Nishitani and Osawa 2003; Nishitani et al. 2004; Vaquero

et al. 2004). Comprehensive tannin metabolism pathway is
yet to be explored. Kumar et al. (1999) and Gauri et al.
(2012) investigated the mechanism of tannic acid degradation
and reported that glucose released by tannin degradation enters
glycolysis and eventually TCA cycle. Gallic acid decarboxyl-
ase transforms gallic acid produced into pyrogalloll which is
eventually converted to pyruvic acid, cis-aconitic acid, 3-
hydroxy-5-oxo hexanoate and eventually enters the TCA cycle.

Fungal biotransformation of tannins

The role of fungi in tannin degradation dates back as early
as 1900, when Fernbach Pottevin in 1900 independently
reported the hydrolysis of tannins using cell free prepara-
tion of Aspergillus niger (Pottevin 1900). Aspergillus,
Rhizopus, and Penicillium have been predominant fila-
mentous fungi involved in the biotransformation of tan-
nins. Along with them, various other fungi pertaining to
genera Trichoderma, Fusarium, Chaetomium, Rhizoctonia
etc. have also been reported for their ability to degrade the
tannins especially the hydrolysable tannins. Aspergillus
sp. has been the most potent and most widely studied
tannase producer among other existing fungal sources.
Fungal systems are well recognized for their capability
to degrade hydrolysable tannins (gallotannins). Yamada
et al. (1968) documented the evolution of tannin
degrading systems in fungi belonging to genera
Aspergillus and Penicillium. Ikeda et al. (1972) reported
the interrelationship between tannin source and type of
microbes being utilized for gallic acid production.
Suseela and Nandy (1985) investigated the effect of var-
ious process parameters like pH, temperature, and cabon
source on tannic acid degradation and Gallic acid produc-
tion by Penicillium chrysogenum. The degradation of hy-
drolyzable tannins, specifically tannic acid has received a
great deal of attention (Kumar et al. 1999). Kar and
Banerjee (2000) documented proportionality in tannase
and gallic acid production. Belmares et al. (2003); Cruz-
Hernandez et al. (2009) reported the oxidative degradation
of hydrolyzable tannins in Aspergillus sp. A good number
of research studies involving fungal tannase have shown
significant rise in tannin degradation in presence of car-
bon sources. It is a well established fact that tannase-
catalyzed degradation of tannic acid gives off gallic acid
and glucose. However, reserachers have succeeded in ex-
ploring pyrogallol as the intermediate compound of this
metabolism along with gallic acid and glucose. Several
research studies using various combinations of tannin
containing substrates with major focus on optimizing the
tannase and gallic acid production have been reported
(Banerjee 2004). Several bacteria and fungi have been
documented for biotransformation of tannins to Gallic ac-
id (Table 5).
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Immobilization of tannase

Tannase can be immobilized by typical methods such as phys-
ical adsorption, covalent coupling, encapsulation, entrapment,
or crosslinking. Immobilization facilitates tannase-enhanced
catalytic activity and stability, reusability, easily controls the
enzymatic reactions, product purification, and improved pro-
cess economy (Ong and Annuar 2018). Tannase has been
encapsulated in alginate, chitosan, carrageenan or pectin gel
matrices.

Aspergillus oryzae tannase was immobilized by covalent
binding of its glycosidic part on chitosan, chitin, Dowex 50W,
DEAE- sephadex A-25 (Abdel-Nabey et al. 1999). The
highest enzyme activity was found on chitosan with a bifunc-
tional agent (glutaraldehyde Immobilized tannase has been
used for the gallic acid production (Mahendran et al. 2006;
Sharma et al. 2008) and its esters in non-aqueous medium
(Sharma and Gupta 2003; Yu et al. 2004). Sharma et al.

(2002) non-covalently immobilized A. niger van tighem
tannase on concanavalin A-Sepharose A-Sepharose via
bioaffinity interaction. Sharma and Gupta (2003) successfully
immobilized Aspergillus niger tannase on Celite-545 to pro-
duce propyl gallate. Yu et al. (2004) immobilized tannase on
chitosan-alginate membrane by microencapsulation for the
synthesis of propyl gallate. Das et al. (2007) utilized calcium
alginate to immobilize B. licheniformis tannase. Chhokar et al.
(2008) investigated immobilization of Aspergillus
heteromorphus tannase on chitin, DEAE-sephadex A-50 and
Ca-alginate. Among these supports, chitin was documented as
best support matrix with 88% operational stability after seven
cycles of reactions. Sharma et al. (2008) reported amberlite IR
as best support for immobilizing the P. variable tannase. The
immobilized enzyme retained catalytic activity even after six
times reuse. Su et al. (2009) immobilized tannase on alginate
by crosslinking-entrapment-crosslinking method and reported
86.9% residual activity after 30 times repeated use. Curiel et
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al. (2010) covalently immobilized recombinant L. plantarum
tannase onto glyoxyl agarose and the enzyme was able to
retain its catalytic activity after 1 month. Aspergillus niger
GH1 tannase has been immobilized by entrapment in calcium
alginate beads (Flores-Maltos et al. 2011). Tanash et al. (2011)
immobilized the tannase fromAspergillus aculeatus on gelatin
by cross-linking and observed the highest activity. Yao et al.
(2014) immobilized Tan410 tannase of metagenomic isolate
on silica SBA-15, calcium alginate, chitosan, and amberlite
IRC 50. Results revealed calcium alginate as the most suitable
support and immobilized enzyme retained its activity after
1 month. Kumar et al. (2015) studied the immobilization of
Aspergillus awamori tannase on various supports such as
Dowex 50, pectin, sephadex 25–40, DEAE–sephadex,
amberlite, silica, and chitin. Among them, amberlite proved
as best support for immobilization. Wu et al. (2016)
immobilized Aspergillus tubingensis tannase onto carboxyl-
functionalized Fe3O4 nanoparticles (CMNPs). Lima et al.
(2017) covalently immobilized tannase onto magnetic nano-
particles composited with polyaniline coated diatomaceous
earth. Li et al. (2018) immobilized Aspergillus niger tannase
by a glutaraldehyde conjugate with chitosan-coated magnetic
nanoparticles.

Scientific perspectives

Deschamps et al. (1983) reported that the fungal and yeast
tannase exhibit considerably good activity in biodegrading
the hydrolysable tannins, however lesser activity in the degra-
dation of natural tannins. The drawback of utilizing fungal
strains in industrial applications is that degradation by fungi
is slow and they are not easy to genetically alter because of
their genetic complexity (Beniwal et al. 2010, 2013). It has
been documented that bacterial tannase can effectively hydro-
lyse natural tannins and tannic acid. Bacteria can efficiently
degrade gallotannins as well as ellagitannins. Furthermore,
bacteria possess the capability to live under extreme tempera-
ture conditions, thus they may prove as a potential source of
thermostable tannase (Beniwal et al. 2013). Although several
reports regarding fungal and bacterial tannase have been stud-
ied and it is evident that fungal tannase has been extensively
studied and exploited for tannase and gallic acid production in
comparison to bacterial tannase. As a matter of fact, in the last
150 years of tannase research (1867–2017), most of the re-
searchers have drawn a straight forward portrait on tannase
from fungi rather than bacteria. However, the bacterial tannase
on the other hand personifies a stupendous potential for indus-
trial utilization. More than five billion metric tons agrowaste
biomass is being generated per year in the form of fruits and
vegetable wastes, wheat bran, sugarcane bagasse, cotton leaf
scraps, rice bran, rice straw, ground nut cake, cashew waste,
tamarind seed, pomegranate rind etc. Currently in India, more

than 960 million tons of solid waste is being produced annu-
ally as byproducts during industrial, mining, municipal, agri-
cultural and other processes. In India, more than 40% of solid
waste generated annually is from organic and agricultural
sources. There is a growing concern for these accumulating
wastes as they are either being dumped in landfills, burnt, or
left to rot in the open, leading to severe environmental pollu-
tion. A sustainable solution would be to utilize these solid
wastes as an Beconomical^ alternative to costly raw materials
to effectively and economically produce industrially impor-
tant products of industrial and commercial potential such as
gallic acid (Nandini et al. 2013; Wang et al. 2016).

Conclusions

The industrial importance of gallic acid is well established.
There are two possible routes of for gallic acid production at
industrial level: chemical technology and enzyme-based tech-
nology. From our review, we concluded that enzyme-based
technology has a clear cut upper edge over chemical technol-
ogy of gallic acid production. The bioconversion by enzyme
as well as whole cell biocatalyst has tremendous importance in
industry owing to escalated yields, low impurity profiles, en-
vironmental safety, and process reproducibility.

The original studies on fermenter scale biotransformation
of tannins to gallic acid using microbial tannase are scanty.
This is limited by several constraints like limitation in using
high tannin concentration due to to sensitiveness of the mi-
crobes (being used) to tannic acid, dearth of information on
exact tannin metabolism and properties of tannase etc. The
superfluity of tannin-containing agro- and industrial waste de-
mands more efficient tannase that would be able to withstand
higher concentration of tannic acid at fermenter scale. Thus,
more research is needed in areas concerning studies to lessen
the sensitivity of microorganisms to tannic acid, to understand
the complete tannin metabolism, to enhance the hydrolysis
rate of tannins, to establish a superior process control, and to
develop economically feasible, environment friendly, more
productive and proficient biotransformation processes for pro-
duction of gallic acid for industrial and commercial utility.
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