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Abstract
Background  Accurate prediction of pathologic results for early gastric cancer (EGC) based on endoscopic findings is essential 
in deciding between endoscopic and surgical resection. This study aimed to develop an artificial intelligence (AI) model to 
assess comprehensive pathologic characteristics of EGC using white-light endoscopic images and videos.
Methods  To train the model, we retrospectively collected 4,336 images and prospectively included 153 videos from patients 
with EGC who underwent endoscopic or surgical resection. The performance of the model was tested and compared to that 
of 16 endoscopists (nine experts and seven novices) using a mutually exclusive set of 260 images and 10 videos. Finally, we 
conducted external validation using 436 images and 89 videos from another institution.
Results  After training, the model achieved predictive accuracies of 89.7% for undifferentiated histology, 88.0% for submucosal 
invasion, 87.9% for lymphovascular invasion (LVI), and 92.7% for lymph node metastasis (LNM), using endoscopic videos. 
The area under the curve values of the model were 0.992 for undifferentiated histology, 0.902 for submucosal invasion, 
0.706 for LVI, and 0.680 for LNM in the test. In addition, the model showed significantly higher accuracy than the experts 
in predicting undifferentiated histology (92.7% vs. 71.6%), submucosal invasion (87.3% vs. 72.6%), and LNM (87.7% vs. 
72.3%). The external validation showed accuracies of 75.6% and 71.9% for undifferentiated histology and submucosal 
invasion, respectively.
Conclusions  AI may assist endoscopists with high predictive performance for differentiation status and invasion depth of 
EGC. Further research is needed to improve the detection of LVI and LNM.
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Introduction

Gastric cancer is the fifth most common malignancy and the 
fourth leading cause of cancer-related death worldwide [1]. 
Although radical surgery was traditionally the only curative 
treatment for gastric cancer, recent advances in endoscopic 
resection have demonstrated favorable clinical outcomes in 
early gastric cancer (EGC), concurrently improving quality 
of life for patients by preserving the stomach [2].

Endoscopic submucosal dissection (ESD) is considered 
curative for EGC without lymph node metastasis (LNM). 
Owing to the lack of reliable imaging methods to precisely 
detect LNM in EGC [3, 4], current guidelines recommend 
curative criteria for ESD based on pathologic features in 
resected specimens associated with a minimal risk of 
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LNM [5, 6]. These factors include the differentiation 
status, invasion depth, and lymphovascular invasion (LVI) 
of the tumor. Since these characteristics are confirmed 
postoperatively, the accurate prediction of pathologic 
outcomes before treatment is essential to select the optimal 
curative approach between endoscopic and surgical 
resection.

Endoscopists perform forceps biopsies with assistance 
of magnifying endoscopy with narrow-band imaging 
(ME-NBI) to evaluate differentiation status, and endoscopic 
ultrasonography (EUS) to detect submucosal invasion before 
deciding the treatment strategy for EGC. However, previous 
studies have revealed significant histologic discrepancies 
between biopsies and resected specimens, potentially 
leading to non-curative ESD or missed opportunities for 
ESD in surgical cases [7–9]. In addition, EUS is not superior 
to conventional endoscopy in determining the invasion depth 
of EGC, with an accuracy of approximately 70% [10–12]. 
Therefore, a detailed assessment of endoscopic features by 
physicians is essential for predicting pathologic results in 
EGC.

With advancements in deep learning methods, recent 
studies have proposed artificial intelligence (AI) models for 
detecting and characterizing EGC in endoscopic images, 
aiming to assist physicians in evaluating endoscopic features 
[13]. This includes our previous study, where we developed 
an AI model which can detect EGC in endoscopic videos 
[14]. Although several models have been developed to 
assess the invasion depth of EGC using endoscopic images, 
there remains a need for further research into AI-assisted 
pathologic prediction for EGC to enhance the performance 
in video analysis [15, 16]. Moreover, to the best of our 
knowledge, no previous study has explored the capability 
of AI in predicting LVI or LNM based on endoscopic images 
or videos.

Therefore, this study aimed to develop and evaluate an 
AI model that comprehensively predicts the postoperative 
pathologic results of EGC, including the differentiation 
status, invasion depth, LVI, and LNM, based on preoperative 
white-light endoscopic images and videos.

Methods

The AI model developed in this study is an extension of 
the ENAD CAD-G, a convolutional neural network (CNN)-
based model for detecting and classifying gastric lesions in 
endoscopic videos, as demonstrated in our previous study 
[14].

Study design and datasets

Figure 1 shows an overview of the study design and datasets. 
The total dataset of endoscopic images and videos was 
divided into an internal dataset used for training, internal 
validation, and testing and an external dataset employed for 
the external validation of the AI model.

For the internal dataset, we retrospectively collected 
4,596 preoperative white-light endoscopic images of EGC 
from patients who underwent ESD or radical surgery 
between January 2018 and December 2022 at Seoul 
National University Hospital (SNUH), a tertiary hospital 
in the Republic of Korea. To assess the performance of the 
AI model in videos, we prospectively included 163 white-
light endoscopic videos of patients referred from community 
clinics who underwent ESD or surgical resection for EGC 
between April 2022 and April 2023. For the external dataset, 
we used 436 images retrospectively collected from patients 
who underwent surgery for EGC between January 2020 
and June 2020, and 89 videos prospectively collected from 
patients who underwent ESD for EGC between April 2022 
and October 2022 at another tertiary hospital, Seoul National 
University Bundang Hospital (SNUBH), Republic of Korea.

This study was conducted in accordance with the 
Declaration of Helsinki and was approved by the ethics 
committees of the participating hospitals (IRB No. 
2109–048-1253 at SNUH and IRB No. 2201–735-405 at 
SNUBH). Written informed consent was obtained from all 
prospectively enrolled patients who provided endoscopic 
videos. The requirement for informed consent was waived 
for the patients whose retrospective images were included 
in this study.

Preparation of endoscopic images

Supplementary Figure S1 shows the process of preparing 
endoscopic images before training the model. We 
retrospectively investigated the medical records of 1,617 
patients who underwent ESD and 1,641 patients who 
underwent radical surgery for EGC at SNUH between 2018 
and 2022. All preoperative white-light endoscopic images of 
the patients were reviewed by five endoscopists from SNUH, 
who selected images that best characterized the target 
lesions (two or three images per lesion) and excluded images 
with low resolution or blurring. Patients who underwent 
additional surgery after non-curative ESD were considered 
as surgical patients. Patients who had received any previous 
endoscopic treatment for the target lesions before ESD or 
had undergone ESD at another hospital before surgery were 
excluded. Patients with inconclusive pathologic results or 
those who did not undergo preoperative endoscopies at 
SNUH were also excluded. Finally, 2,453 images from 1,031 



1090	 S. Lee et al.

(51.4% of total patients) patients who underwent ESD and 
2,143 images from 975 (48.6% of total patients) patients 
who underwent surgery were included in the internal dataset.

Patient enrollment of endoscopic videos

We prospectively enrolled patients who were diagnosed with 
gastric dysplasia or EGC on initial biopsies, underwent ESD 
or radical surgery, and were confirmed with EGC based on 
the pathological reports of the resected specimens. The 
indication for ESD was one of the following conditions: 
i) differentiated-type EGC with tumor size ≤ 2  cm and 
endoscopically suspected mucosal cancer without ulceration 
or ii) high-grade dysplasia [17]. We excluded patients who 
had previously undergone gastrectomy and those with 
contraindications for biopsy due to bleeding tendency 
or anticoagulant use. All endoscopic examinations were 
performed preoperatively using standard video endoscopes 
(GIF-Q260, GIF-H260, or GIF-H290; Olympus Medical 
Systems, Tokyo, Japan). Consequently, 163 (50 ESD patients 
and 113 surgery patients) patients from SNUH and 89 ESD 

patients from SNUBH were included in the study, and their 
endoscopic videos were provided. All ESD procedures 
were performed by experienced endoscopists following a 
standardized protocol [18]. The surgical procedures were 
based on standard gastrectomy with D1 + or D2 lymph node 
dissection [5].

Pathologic definitions

The pathologic characteristics of EGC in the images 
and videos were obtained from the pathological reports 
of specimens resected by ESD or surgery based on the 
2022 Korean gastric cancer treatment guidelines [5]. 
Expert pathologists assessed all resected specimens. 
Differentiated-type EGC includes papillary, well, or 
moderately differentiated tubular adenocarcinoma, whereas 
undifferentiated-type EGC includes poorly differentiated 
adenocarcinoma, signet ring cell carcinoma, and mucinous 
carcinoma. In cases of mixed-type gastric cancer, the 
classification was determined by the histological type of the 

Fig. 1   Flow diagram of study design and datasets. SNUH Seoul National University Hospital, SNUBH Seoul National University Bundang 
Hospital, EGC early gastric cancer, ESD endoscopic submucosal dissection, AI artificial intelligence
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predominant lesion [19]. Submucosal invasion < 500 µm 
was defined as SM1 and submucosal invasion ≥ 500 µm 
was defined as SM2. The status of LNM in the resected 
specimens was also investigated in the surgical cases.

Distribution of target lesions in datasets

Table  1 summarizes the pathologic characteristics of 
EGC in the datasets. The training set comprised 19.6% 
(850/4,336) of images and 31.3% (48/153) of videos for 
undifferentiated histology, 23.7% (1,027/4,336) of images 
and 27.5% (42/153) of videos for submucosal invasion, 7.5% 
(327/4,332) of images and 6.5% (10/153) of videos for LVI, 
and 9.5% (187/1,962) of images and 5.7% (6/105) of videos 
for LNM.

The test set comprised 43.5% (113/260) of images 
and 50% (5/10) of videos for undifferentiated histology, 
52.3% (136/260) of images and 40% (4/10) of videos for 
submucosal invasion, 19.2% (50/260) of images and 10% 
(1/10) of videos for LVI, and 15.9% (32/201) of images and 
37.5% (3/8) of videos for LNM. In addition, the external 
dataset included 53.0% (231/436) of images and 1.1% (1/89) 
of videos for undifferentiated histology, 43.1% (188/436) 
of images and 12.4% (11/89) of videos for submucosal 
invasion, 11.5% (50/436) of images and 4.5% (4/89) of 
videos for LVI, and 13.1% (57/436) of images for LNM.

Training and internal validation of the AI model

The training set comprised 4,336 images and 153 videos, 
which were used to train and internally validate the AI model 
(Fig. 1). For the internal validation, the images and videos 
in the dataset were randomly divided into five subsets. Four 
subsets were used for training, and the remaining subset, was 
used for validation to calculate the predictive performance 
of the trained model. This cross-validation process was 

conducted five times to ensure comprehensive evaluation of 
all images and videos in the set.

The AI model was based on CNN architecture 
and utilized Efficientnetb0 to evaluate the pathologic 
characteristics of target lesions in endoscopic images [20]. 
The model employed a soft voting method to categorize 
these lesions into distinct predictive classes: differentiation 
status (differentiated or undifferentiated), invasion depth 
(mucosal or submucosal), LVI (positive or negative), and 
LNM (positive or negative). A generative model using 
Stylegan2 was integrated to enhance predictive performance 
of the model and increase its sensitivity [21]. Representative 
images analyzed by the model are presented in Fig. 2.

Figure 3 shows a schematic diagram of the evaluation 
of the endoscopic videos. Initially, gastric lesions within 
the videos were recognized and outlined with boundaries 
(cropped), using a lesion detection model based on YOLOv5 
developed in our previous study [14]. Subsequently, the 
cropped images were categorized as cancer, adenoma, or 
non-neoplastic lesions using a lesion classification model 
that employs EfficientNETB0 [14]. The AI model then 
calculated the confidence levels for pathologic predictions 
of the identified cancers. Finally, the model utilized a soft 
voting method to determine the pathologic classifications of 
the cancers. Therefore, the cut-off value for considering AI 
prediction as correct was set at 50%, and this method was 
utilized in all the validation process.

Testing the performance of the AI model 
and endoscopists

A test set was designed to evaluate and compare the 
predictive performances of the AI model and endoscopists, 
using 260 endoscopic images and 10 videos distinct from the 
training set. Sixteen endoscopists, comprising nine experts 
and seven novices, participated in the test and predicted the 

Table 1   Pathologic characteristics of early gastric cancer in endoscopic images and videos across datasets

Internal dataset External dataset

Training set Test set

Images (patients) Videos Images (patients) Videos Images (patients) Videos

Total 4336 (1906) 153 260 (100) 10 436 (153) 89
Differentiation status Differentiated 3486 (1499) 105 147 (50) 5 205 (72) 88

Undifferentiated 850 (407) 48 113 (50) 5 231 (81) 1
Invasion depth Mucosal 3309 (1419) 111 114 (50) 6 248 (87) 78

Submucosal 1027 (487) 42 136 (50) 4 188 (66) 11
Lymphovascular invasion Positive 327 (154) 10 50 (19) 1 50 (18) 4

Negative 4005 (1750) 143 210 (81) 9 386 (135) 85
Lymph node metastasis Positive 187 (83) 6 32 (9) 3 57 (20) N/A

Negative 1755 (819) 99 169 (64) 5 379 (133) N/A
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differentiation status, invasion depth, LVI, and LNM of the 
target lesions in the test set. The test was performed as a 
questionnaire comprising 100 questions, each including 
two or three images of one target lesion, and additional 
10 questions with video clips, each containing one target 
lesion, as shown in Supplementary Figure S2. Each novice 
endoscopist had 1 year of experience in upper endoscopy 
prior to this study, conducted at least 500 procedures 
independently, and diagnosed EGC in clinical practice. The 
experts comprised endoscopists from six tertiary hospitals in 
the Republic of Korea who had over 10 years of experience 
performing gastric ESD before this study and held positions 
of associate professor or higher.

Statistical analyses

The gold standard for prediction was derived from 
postoperative pathological reports of specimens obtained 
from ESD or surgery. Accuracy, sensitivity, specificity, and 
positive and negative predictive values of the predictions 
were calculated. The prediction metrics were presented as 
means with 95% confidence intervals and were compared 
using the Mann–Whitney U test. Receiver operating 
characteristic (ROC) curves and the corresponding area 
under the ROC curve (AUC) values for the AI model were 
calculated. The accuracies of the AI model and those of all 
the experts were compared using the McNemar’s test. The 

Fig. 2   Representative examples of pathologic predictions by the 
AI model in endoscopic images. Each endoscopic image contains 
one lesion of EGC with the following pathologic characteristics. 
a Differentiated-type EGC of mucosal invasion without both LVI 
and LNM. b Differentiated-type EGC of submucosal invasion with 
positive LVI and negative LNM. c Undifferentiated-type EGC of 

mucosal invasion without both LVI and LNM. d Undifferentiated-
type EGC of submucosal invasion with both LVI and LNM. The 
provided confidence levels represent the probabilistic evaluation of 
the AI model for predicting postoperative pathologic results of EGC 
in the images. AI artificial intelligence, EGC early gastric cancer, LVI 
lymphovascular invasion, LNM lymph node metastasis
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accuracies of the experts and novices were compared using 
the Mann–Whitney U test. All statistical tests were two-
sided, and P < 0.05 were considered significant. Statistical 
analyses were performed using the R software 4.2.3. for 
Windows.

Results

Baseline characteristics of patients

Detailed clinical information of enrolled patients and 
pathologic characteristics of lesions in the datasets 
are presented in Supplementary Table  S1. Baseline 
characteristics were comparable across the datasets, 
including mean age (64.5 years vs. 63.6 years vs. 63.5 years), 
male sex (68.7% vs. 59.1% vs. 69.0%), and mean tumor size 
(21.0 mm vs. 24.3 mm vs. 22.7 mm).

Internal validation of the AI model with images 
and videos

Table 2 presents the predictive metrics (per image or frame) 
of the AI model after training with images and videos. 
Based on images, the model achieved mean predictive 
accuracies of 91.9% (sensitivity, 85.3%; specificity, 
94.1%) for undifferentiated histology, 88.4% (sensitivity, 
82.4%; specificity: 90.2%) for submucosal invasion, 84.7% 

(sensitivity, 24.2%; specificity, 96.2%) for LVI, and 86.8% 
(sensitivity, 27.4%; specificity, 94.0%) for LNM.

For videos, the model demonstrated mean predictive 
accuracies of 89.7% (sensitivity, 83.4%; specificity, 
92.1%) for undifferentiated histology, 88.0% (sensitivity, 
80.4%; specificity, 91.1%) for submucosal invasion, 87.9% 
(sensitivity, 20.0%; specificity, 97.0%) for LVI, and 92.7% 
(sensitivity, 16.7%; specificity, 96.5%) for LNM.

There was no significant difference in the performance 
of the AI model between images and videos, except for the 
accuracy of predicting LNM, which was significantly higher 
for the videos (P = 0.008).

Performance of the AI model according 
to pathologic characteristics of EGC

Supplementary Table  S2 shows the performance of 
the AI model for endoscopic images according to the 
differentiation status of the target lesion within the training 
set. For differentiated-type EGC, the model exhibited 
mean accuracies of 91.1% (sensitivity, 82.3%; specificity, 
89.2%) for submucosal invasion, 83.5% (sensitivity, 27.3%; 
specificity, 95.4%) for LVI, and 90.1% (sensitivity, 29.7%; 
specificity, 96.3%) for LNM. For undifferentiated-type 
EGC, the model demonstrated mean accuracies of 87.5% 
(sensitivity, 79.3%; specificity, 93.3%) for submucosal 
invasion, 88.1% (sensitivity, 10.4%; specificity, 98.6%) for 
LVI, and 83.8% (sensitivity, 26.9%; specificity, 92.6%) for 
LNM. The model presented a significantly higher accuracy 
in differentiated-type EGC than in undifferentiated-type 

Fig. 3   Schematic diagram 
for AI-based pathologic 
prediction in endoscopic videos. 
Initially, the gastric lesion is 
identified and outlined with 
red boundaries (cropped) with 
the lesion detection model. 
Subsequently, the cropped 
lesion is categorized as either 
cancer, adenoma, or non-
neoplastic lesion by the lesion 
classification model. For lesions 
classified as cancer, the model 
computes confidence levels to 
predict differentiation status, 
invasion depth, lymphovascular 
invasion, and lymph node 
metastasis. Finally, the lesion 
is categorized into distinct 
pathologic classes utilizing a 
soft voting method. AI artificial 
intelligence, EGC early gastric 
cancer
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EGC for predicting submucosal invasion (P = 0.008) and 
LNM (P = 0.016).

Supplementary Table S3 shows the performance of the 
AI model for predicting LVI and LNM based on the invasion 
depth of EGC in the training set. For mucosal cancer, the 
model exhibited mean accuracies of 89.6% (sensitivity, 3.0%; 
specificity, 98.6%) for LVI and 96.1% (sensitivity, 9.4%; 
specificity, 97.4%) for LNM. For submucosal cancer, the 
model demonstrated mean accuracies of 63.0% (sensitivity, 
35.9%; specificity, 83.3%) for LVI and 72.5% (sensitivity, 
38.7%; specificity, 81.4%) for LNM. For submucosal cancer 
with SM2 invasion, the model presented mean accuracies of 
64.7% (sensitivity, 41.4%; specificity, 81.5%) for LVI and 
73.3% (sensitivity, 39.9%; specificity, 82.4%) for LNM.

Comparison of the predictive accuracies between AI 
model and endoscopists

Figure  4 shows the ROC curves demonstrating the 
performance of the AI model with the performance of the 
endoscopists, presented as dots (blue = expert, red = novice) 
in the test set. The AUC values of the model were 0.992 for 
undifferentiated histology, 0.902 for submucosal invasion, 
0.706 for LVI, and 0.680 for LNM. All dots representing the 
performance of the endoscopists were positioned below the 
curves for predicting undifferentiated histology, submucosal 
invasion, and LNM.

Table  3 summarizes the performances of the AI 
model and endoscopists in the test. The model exhibited 
accuracies of 92.7% for undifferentiated histology, 87.3% 
for submucosal invasion, 76.4% for LVI, and 87.7% for 
LNM. The experts reported mean accuracies of 71.6% for 
undifferentiated histology, 72.6% for submucosal invasion, 
69.7% for LVI, and 72.3% for LNM. The model showed 
significantly higher accuracy than the experts in predicting 
undifferentiated histology (P ≤ 0.001), submucosal invasion 
(P ≤ 0.012), and LNM (P ≤ 0.001). The experts showed 
significantly higher accuracy than the novices in identifying 
undifferentiated histology (P = 0.001) and submucosal 
invasion (P = 0.019). However, there was no significant 
difference between the experts and novices in detecting LVI 
(P = 0.525) and LNM (P = 0.790).

External validation of the AI model

Table 4 shows the performance of the AI model in the 
external validation. The model demonstrated predictive 
accuracies (per patient) of 75.6% (sensitivity, 81.7%; 
specificity, 72.5%) for undifferentiated histology, 71.9% 
(sensitivity, 53.3%; specificity, 80.6%) for submucosal 
invasion, 88.8% (sensitivity, 31.8%; specificity, 94.5%) for 
LVI, and 87.0% (sensitivity, 10.0%; specificity, 98.5%) for 
LNM.

Representative videos of the AI model in the test set and 
external validation are shown in Video 1 and 2, respectively. 
The resolution of images and videos in the external dataset 
(640 × 480) was lower than that in the internal dataset 
(1920 × 1080), owing to differences in the picture archiving 
and communication system between the two hospitals.

Discussion

In this study, we developed and evaluated an AI model that 
predicts postoperative pathologic results of EGC based on 
conventional white-light endoscopic images and videos. 
The performance of the model was compared with that of 

Table 2   Internal validation of trained AI model with endoscopic 
images and videos

AI, artificial intelligence; PPV, positive prediction value; NPV, 
negative prediction value; CI, confidence interval

Prediction target Image–based
mean, (95% CI)

Video-based
mean, (95% CI)

P value

Undifferentiated 
histology

 Accuracy (%) 91.9 (91.0–92.9) 89.7 (86.5–92.9) 0.209
 Sensitivity (%) 85.3 (82.6–88.0) 83.4 (72.3–94.5) 0.841
 Specificity (%) 94.1 (92.1–96.0) 92.1 (88.7–95.5) 0.222
 PPV (%) 81.1 (72.5–89.8) 79.4 (62.4–96.5) 0.690
 NPV (%) 95.3 (94.0–96.7) 86.9 (76.8–97.0) 0.151

Submucosal invasion
 Accuracy (%) 88.4 (87.8–89.0) 88.0 (83.8–92.3) 0.834
 Sensitivity (%) 82.4 (76.6–88.1) 80.4 (64.7–96.0) 0.996
 Specificity (%) 90.2 (87.8–92.6) 91.1 (86.4–95.8) 0.996
 PPV (%) 72.6 (67.6–78.1) 71.7 (67.9–85.5) 0.841
 NPV (%) 94.3 (92.7–95.8) 93.1 (89.2–97.1) 0.841

Lymphovascular 
invasion

 Accuracy (%) 84.7 (79.7–89.8) 87.9 (80.7–95.0) 0.310
 Sensitivity (%) 24.2 (15.6–32.8) 20.0 (11.5–28.5) 0.203
 Specificity (%) 96.2 (94.9–97.5) 97.0 (94.3–99.7) 0.590
 PPV (%) 53.6 (44.3–62.9) 44.3 (32.5–56.1) 0.537
 NPV (%) 87.0 (81.9–92.1) 90.2 (86.4–94.0) 0.398

Lymph node 
metastasis

 Accuracy (%) 86.8 (85.3–88.2) 92.7 (87.7—97.7) 0.008
 Sensitivity (%) 27.4 (20.1–34.7) 16.7 (4.1–22.6) 0.085
 Specificity (%) 94.0 (90.2–97.9) 96.5 (89.3–100) 0.151
 PPV (%) 37.3 (20.5–54.2) 27.0 (16.3–37.7) 0.672
 NPV (%) 91.4 (88.8–94.1) 95.7 (91.1–100) 0.151
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endoscopists in a test and externally validated using videos 
from another institution.

Categorizing the differentiation status of EGC is 
pivotal in deciding the indication for ESD, considering 
the significantly lower curative resection rate in 
undifferentiated-type EGC compared to differentiated-
type EGC [22, 23]. Since approximately 18% of 
undifferentiated-type EGC can initially be misclassified 
as differentiated-type with forceps biopsy, endoscopic 
features of the lesions, including ME-NBI, must be 
combined for accurate diagnosis [24–26]. In a previous 
study, an AI model trained with ME-NBI showed an 
accuracy of 86.2% for classifying EGC differentiation 
status [27]. In our study, the AI model exhibited an 
accuracy of 89.7% in white-light endoscopic videos and 
outperformed the experts in identifying undifferentiated-
type EGC. These results suggest that AI can assist 

endoscopists in predicting the differentiation status, with 
both white-light and ME-NBI endoscopic images.

Although EUS is commonly used to detect submucosal 
invasion in EGC, its advantages over conventional 
endoscopy are insignificant, with an accuracy of 
approximately 70% [10]. Notably, these findings are 
consistent with our results, where the experts showed 
a mean accuracy of 72.6% for predicting submucosal 
invasion of EGC in the test. In contrast, the AI model 
demonstrated significantly higher accuracy than the 
experts. Therefore, endoscopic findings indicative of 
submucosal invasion in EGC, such as clubbing, abrupt 
cutting or fusion of folds, uneven or nodular depression, 
and remarked redness of surface can be assessed without 
ultrasound [28–31], and AI enhances this process by 
learning an extensive dataset of conventional endoscopic 
images.

Fig. 4   Receiver operating characteristics curves for the AI model in 
the test set. a Prediction of undifferentiated histology (AUC = 0.992). 
b Prediction of submucosal invasion (AUC = 0.902). c Prediction 
of lymphovascular invasion (AUC = 0.706). d Prediction of lymph 

node metastasis (AUC = 0.680). Blue dots (n = 9) and red dots (n = 7) 
indicate the performance of the experts and novices, respectively. AI 
artificial intelligence, AUC​ area under the curve
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Several studies have investigated deep learning-based 
prediction of submucosal invasion in EGC using endoscopic 
images, reporting accuracies ranging from 84 to 94% [16, 
32–34]. However, two studies revealed that undifferentiated-
type EGC was associated with lower predictive accuracies 
compared with differentiated-type EGC [19, 35], a tendency 
also observed in our study. Furthermore, the significantly 
lower sensitivity for submucosal invasion was observed 
in undifferentiated EGC. Given that submucosal invasion 
with undifferentiated histology indicates non-curative ESD 
in EGC, these findings suggest that endoscopists still need 
to be more conservative when deciding to perform ESD for 
undifferentiated-type EGC than for differentiated-type EGC, 
even with the assistance of AI.

The lack of research on predicting LNM from endoscopic 
images using AI can be attributed to the low incidence of 
LNM in patients with EGC. The LNM rates have been 
reported to be < 9% for mucosal cancer and < 20% for 
submucosal cancer, according to large-scale studies based 
on surgical specimens of EGC [36, 37]. In addition, the LVI 

rate of EGC was approximately 13% in another study based 
on surgical specimens [38]. Although our study included as 
many surgical patients as possible, these inherently low rates 
of LVI and LNM in EGC induced an imbalance between 
positive and negative cases within the datasets. This is the 
reason our model exhibited lower sensitivity and positive 
prediction value, resulting in a low AUC value compared 
to its high accuracy in predicting LVI and LNM. However, 
excluding some patients with negative LVI or LNM to 
address this data imbalance could introduce significant 
selection bias. Therefore, despite the potential effect of data 
imbalance, we chose to include patients consecutively in 
the study.

Additionally, the absence of a significant difference in 
the mean accuracy between experts and novices suggests 
that the ability to detect LNM does not necessarily 
improve with clinical experience. However, the AI model 
in our study showed higher accuracy and sensitivity than 
the experts in predicting LNM. One possible explanation 
for this is that the AI may have adapted to associate a 

Table 3   Comparison of predictive accuracies between AI model and endoscopists in the test set

AI artificial intelligence, CI confidence interval, n number of correct answers, N number of questions
*  P < 0.05, when accuracy was compared with that of the AI system using the Mcnemar’s test
**  P < 0.05, when the mean accuracy was compared with that of the experts using the Mann–Whitney U test

Prediction target AI model (n/N) Experts, mean (95% CI) Novices, mean (95% CI)

Overall Video Overall Video Overall Video

Undifferentiated histology
 Accuracy (%) 92.7 (102/110) 100 (10/10) 71.6 (68.6–74.6)* 71.1 58.1 (53.4–62.8)** 48.8
 Sensitivity (%) 87.3 (48/55) 100 (5/5) 85.8 (79.5–92.1) 88.5 60.8 (53.1–68.5) 43.1
 Specificity (%) 98.2 (54/55) 100 (5/5) 65.9 (63.2–68.6) 65.8 57.4 (53.1–61.7) 48.0
 PPV (%) 98.0 (48/49) 100 (5/5) 52.9 (46.8–59.2) 51.1 53.3 (42.5–64.1) 45.0
 NPV (%) 88.5 (54/61) 100 (5/5) 90.3 (84.6–95.4) 91.1 62.9 (49.0–76.8) 52.5

Submucosal invasion
 Accuracy (%) 87.3 (96/110) 100 (10/10) 72.6 (70.6–74.6)* 77.8 63.9 (56.4–71.4)** 58.8
 Sensitivity (%) 83.3 (45/54) 100 (4/4) 70.9 (65.9–75.9) 86.2 60.8 (53.1–68.5) 78.5
 Specificity (%) 91.1 (51/56) 100 (6/6) 76.5 (73.4–79.6) 70.2 73.0 (61.6–84.4) 51.8
 PPV (%) 90.0 (45/50) 100 (4/4) 77.6 (71.4–83.8) 80.6 77.2 (64.0–90.4) 75.0
 NPV (%) 85.0 (51/60) 100 (6/6) 67.9 (58.8–0.77) 75.9 51.0 (38.6–63.5) 47.9

Lymphovascular invasion
 Accuracy (%) 76.4 (84/110) 100 (10/10) 69.7 (59.6–79.8) 72.2 64.8 (61.4–68.2) 62.5
 Sensitivity (%) 30.0 (6/20) 100 (1/1) 33.7 (26.7–40.7) 33.3 28.9 (20.6–37.2) 62.5
 Specificity (%) 86.7 (78/90) 100 (9/9) 86.7 (85.2–88.2) 76.5 87.5 (83.2–92.7) 62.5
 PPV (%) 33.3 (6/18) 100 (1/1) 46.9 (31.5–62.3) 8.7 40.0 (16.9–63.1) 3.8
 NPV (%) 84.8 (78/92) 100 (9/9) 68.4 (56.7–73.7) 91.8 68.1 (48.8–87.4) 96.0

Lymph node metastasis
 Accuracy (%) 87.7 (71/81) 62.5 (5/8) 72.3 (65.8–78.8)* 68.1 67.7 (49.8–85.6) 65.6
 Sensitivity (%) 41.7 (5/12) 33.3 (1/3) 17.6 (11.5–23.7) 22.2  14.8 (5.2–24.4) 29.2
 Specificity (%) 95.4 (66/69) 80.0 (4/5) 85.3 (72.3—98.4) 95.6 83.4 (79.6–87.2) 87.5
 PPV (%) 62.5 (5/8) 50 (1/2) 19.7 (3.9–35.5) 46.3 10.3 (2.6–18.0) 43.8
 NPV (%) 90.4 (66/73) 66.7 (4/6) 81.8 (72.7–90.9) 67.9 76.2 (0.58–0.95) 70.5
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deeper invasion depth with an increased probability of 
LNM in EGC. This is supported by the fact that the model 
showed increased sensitivity for LNM in submucosal 
cancer compared to mucosal cancer, with the highest 
sensitivity in cancer with SM2 invasion. This trend was 
also observed in the prediction of LVI, a pathologic factor 
correlated with LNM in EGC [18, 39]. However, within 
the same categories of mucosal or submucosal cancer, 
there appeared to be no specific endoscopic features 
suggestive of LNM. Moreover, there are factors other 
than endoscopic findings associated with LNM in EGC, 
including age, sex, and tumor size, as reported in previous 
studies [40–42]. Therefore, future research could focus 
on integrating various clinical features indicative of LNM 
with endoscopic images to enhance AI-based detection of 
LNM in EGC.

This study has several limitations. First, the AI model 
was trained using retrospective images after the selection 
process, potentially introducing bias into our study. To 
compensate for this, we also included videos from patients 

enrolled prospectively under the same indications for 
ESD and found consistent performance of the model 
between images and videos. Furthermore, we tested the 
performance of the model by comparing it with experts 
from various hospitals across the nation. Second, the 
predictive performance of the AI model was lower in 
the external validation than in the internal tests. This 
discrepancy can be partially explained by the inferior 
resolution of images and videos in the external dataset 
compared to those in the internal dataset. Additionally, 
previous studies reported the “overfitting effect” in AI, 
where the learning process becomes excessively adapted 
to the training data [43, 44]. Several studies on deep 
learning-based prediction of invasion depth in gastric 
neoplasms have also reported significant differences in 
accuracies between internal and external tests [19, 45, 46]. 
Nevertheless, the external validation of our model showed 
predictive accuracy above 70% for invasion depth, which 
was higher than reported predictive accuracy of EUS. 
The performance could be further improved by training 
the model with images from various institutions in the 
future. Third, this study did not evaluate ME-NBI images 
and videos of EGC. Training this model with NBI data 
can improve the histological diagnosis of EGC, and it is 
essential to train the model with NBI images and videos 
in further studies. Fourth, incorporating both ESD and 
surgical cases into the dataset may have affected the 
model’s performance due to heterogeneity among the 
data. The longer section intervals in surgical specimens 
compared to ESD specimens could potentially lead to 
underestimation of submucosal invasion and LVI in 
surgical specimens [47]. Finally, the findings of this study 
should be confirmed in randomized controlled trials, and 
we are planning to conduct prospective studies to apply 
this AI model in clinical practice.

In conclusion, this study suggests that AI has the potential 
to assist endoscopists in determining the optimal treatment 
strategy for EGC, showing high performance in predicting 
the differentiation status and invasion depth based on 
conventional endoscopic images and videos. However, 
the detection of LVI and LNM using deep learning-based 
methods requires further research.
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prediction value, n number of correct predictions, N number of 
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Prediction target Patient-based 
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 Specificity (%) 72.5 (116/160)
 PPV (%) 60.4 (67/111)
 NPV (%) 88.6 (116/131)
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