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Abstract   To impart polymers with high electrical conductivity and satisfactory electromagnetic interference shielding efficiency, it is crucial to

efficiently construct interconnecting networks of conductive nanofillers in polymer matrices. Herein, on the basis of the three-dimensional (3D)

skeleton  and  volume-exclusion  effect  of  silane-modified  tetra-needle  ZnO  (ST-ZnO)  whiskers  and  the  high  conductivity  of  two-dimensional

MXene nanosheets, multifunctional MXene/ST-ZnO/waterborne polyurethane (MTW) nanocomposite films are fabricated by coating of MXene

on  ST-ZnO  followed  by  compounding  with  waterborne  polyurethane.  The  3D  four-needles  of  the  whiskers  facilitate  the  formation  of  an

interconnecting network in the waterborne polyurethane matrix, while the coating of MXene efficiently makes the interconnecting network of

the  whiskers  conductive  at  a  low  amount  of  the  MXene.  The  resultant  MTW  ternary  nanocomposite  film  exhibits  not  only  a  high  electrical

conductivity  of  4.8×104 S/m,  but  also  an  excellent  electromagnetic  interference  shielding  effectiveness  of  over  70  dB  in  the  X-band  at  a  low

thickness of 100 μm. In addition, the ternary film also exhibits outstanding Joule heating performances with an equilibrium temperature of 113 °C

at a low driving voltage of 3 V. The multifunctional nanocomposite films are promising for applications in portable and wearable electronics and

flexible electromagnetic interference shielding devices.
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INTRODUCTION

With the rapid development of communication technology and
the integration of electronic equipment,  electromagnetic wave
radiation  and  interference  become  increasingly  serious,  which
not  only  interferes  with  the  normal  operation  of  nearby  high-
precision  instruments,  but  also  poses  a  great  threat  to  human
health.[1−4] It  is  therefore  imperative  to  develop  high-
performance  electromagnetic  interference  (EMI)  shielding
nanomaterials and nanocomposites to diminish or eliminate the
electromagnetic  wave  pollution.[5] Electrically  conductive
polymer  composites  are  widely  used  for  EMI  shielding
applications  because  of  their  light  weight,  superb  corrosion
resistance,  outstanding  processability,  and  tunable
properties.[6−8] Furthermore,  the  rapid  popularity  of  portable
and  wearable  electronic  devices  increases  the  demands  for

polymer nanocomposite films with high shielding efficiency and
small thickness for EMI shielding applications.[9−11] To construct
effective  interconnecting  networks  of  conductive  nanofillers  in
polymer matrices, conductive nanofillers with both high aspect
ratio  and  large  specific  surface  area  are  preferred,  such  as
graphene nanosheets,[12−14] carbon nanotubes (CNTs)[15−17] and
MXene  nanosheets.[10,18,19] Different  from  hydrophobic
graphene  and  CNTs  with  inert  surfaces,  MXene  is  hydrophilic
because  of  its  rich  surface  chemistry,  which  would  facilitate  its
dispersion  in  polar  polymers  without  additional  surface
treatments.  However,  if  conductive  nanofillers  are  dispersed
randomly  in  polymer  matrices,  satisfactory  EMI  shielding
performances  of  polymer  nanocomposites  were  usually
achieved  at  higher  contents  of  nanofillers  and/or  larger
thicknesses,[20,21] which adversely affects the flexibility of the EMI
shielding  nanocomposites  and  even  causes  processing
difficulties.[22]

Both  the  dispersion  and  distribution  of  conducting  nano-
fillers in polymer matrices are crucial for achieving high elec-
trical  conductivities  and  satisfactory  EMI  shielding  perform-
ances at low contents of nanofillers.[23] When the conducting
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nanofillers  are  selectively  dispersed  in  the  continuous  phase
of a polymer blend, or distributed only at the interfaces of the
two polymer components, the percolation thresholds of con-
ductive  polymer  nanocomposites  can  be  decreased  signifi-
cantly.[24,25] In addition, the combination of different types of
fillers is also effective in promoting the formation of intercon-
necting  networks  in  polymers  for  improving  electrical  con-
ductivity,  thermal  conductivity,  and  mechanical  perform-
ances.[26−30] For  example,  Wu et  al.[31] constructed  a  carbon
black-based  three-dimensional  (3D)  conductive  structure  in
natural  rubber  matrix  with  cellulose  whiskers  as  templates,
enhancing  the  electrical  and  mechanical  properties  of  the
natural  rubber  nanocomposites.  Similarly,  Xu et  al.[9] de-
signed 3D conductive fillers based on tetra-needle zinc oxide
(T-ZnO)  whiskers  and  Ag  nanoparticles  for  fabricating  con-
ductive  waterborne  polyurethane  (WPU)  nanocomposite
films  with  outstanding  EMI  shielding  performances.  Despite
these  advances,  it  is  still  desirable  to  achieve  a  higher  EMI
shielding effectiveness at a smaller film thickness.[32]

Compared with conventional organic polymers, WPU is en-
vironmentally  friendly  as  its  dispersion  medium  is  water  in-
stead  of  organic  solvents,  and  has  excellent  film-formability
and outstanding flexibility.[33] It  is  well  suitable for  preparing
flexible  functional  films.[15,34] To  impart  flexible  WPU  films
with high electrical conductivity, satisfactory EMI shielding ef-
fectiveness  (SE),  Joule  heating  behavior,  and  solar-thermal
conversion performances, we fabricate WPU-based nanocom-
posite films by coating silane-modified tetra-needle ZnO (ST-
ZnO)  whiskers  with  conductive  MXene  nanosheets  followed
by  compounding  with  WPU.  The  unique  four-needles  of  the
whiskers can be readily interconnected to generate a continu-
ous  network  in  the  WPU  matrix.  Although  the  whiskers  are
not  electrically  conductive,  the  coating  of  MXene  on  the  ST-
ZnO  whiskers  can  efficiently  make  the  interconnecting  net-
work of  the whiskers  conductive at  a  low amount of  MXene.
Obviously, the whiskers play the role of hosting the conduct-
ing MXene nanosheets, and exhibit a volume-exclusion effect
on promoting the spatial distribution and interconnection of
conducting  nanofillers  and  hence  the  formation  of  an  elec-
trical  conduction  network.  As  a  result,  the  resultant
MXene/ST-ZnO/WPU  (MTW)  nanocomposite  films  exhibit
higher  electrical  conductivities  and better  EMI  shielding per-
formances than those of MXene/WPU (MW) binary nanocom-
posite  films  with  the  same  MXene  contents.  Notably,  the
MTW  ternary  nanocomposite  film  with  a  small  thickness  of
100 μm achieves  a  high EMI  SE of  over  70 dB in  the X-band.
Additionally,  the ternary films exhibit  satisfactory Joule heat-
ing  and  solar-thermal  conversion  performances  at  low-
voltage  driving  or  under  solar-light  irradiation,  which  are
promising  for  warming  and  heating  electronic  devices  pro-
perly  to  avoid  malfunctions  of  the  devices  in  cold  environ-
ments.[35,36]

EXPERIMENTAL

Materials
Tetra-needle  ZnO  (T-ZnO)  whiskers  were  obtained  from
Chengdu Crystrealm Co., Ltd. (China). Waterborne polyurethane
emulsion  (Crysol  6110)  with  a  solid  content  of  50  wt%  was

provided  by  Wanhua  Chemicals  (China).  Silane  coupling  agent
of  (3-aminopropyl)  triethoxysilane  (APTES)  was  bought  from
Shanghai Yuanye Biotechnology (China). Ti3AlC2 (400 mesh) and
Lithium fluoride (LiF, 99.99%) powders were supplied by Jilin 11
technology and Aladdin (China), respectively. Hydrochloric acid
(HCl,  37%)  was  acquired  from  Beijing  Chemical  Reagents
(China).

Preparation of Ti3C2Tx MXene Nanosheets
Ti3AlC2 powder  was  etched  with  HCl/LiF  solution  as  previously
reported.[37,38] In detail,  8 g of LiF powder was dissolved in 100
mL  of  HCl  solution  (9  mol/L)  under  stirring,  and  5  g  of  Ti3AlC2

powder was then added slowly and carefully. After the mixture
reacted for 42 h in a water bath at 35 °C with magnetic stirring,
the  resultant  acidic  suspension  was  repeatedly  washed  with
plenty  of  deionized  water  with  the  assistance  of  centrifugal
separation  until  its  pH  value  was  ~6.  Finally,  the  centrifuged
sediment  was  re-dispersed  in  deionized  water  and
ultrasonicated  in  an  ice  bath  for  1  h  under  the  protection  of
argon flow to obtain exfoliated Ti3C2Tx MXene nanosheets.

Fabrication of Silane-modified T-ZnO Whiskers
The  surface  of  T-ZnO  whiskers  was  modified  with  the  silane
coupling agent to introduce amine groups. Typically, 200 mg of
T-ZnO  whiskers  were  dispersed  in  200  mL  of  the  solution  of
absolute alcohol  and deionized water  (1/1, V/V),  and sonicated
for 5 min. After 1 mL of APTES was added, the mixture reacted at
50 °C for 4 h under magnetic stirring, centrifuged at 9500 r/min
for  15  min,  and  washed  with  absolute  alcohol  for  3  times  to
remove residual APTES. The product was dried in an oven at 80
°C for 3 h, and designated as ST-ZnO.

Fabrication of Conductive MXene/ST-ZnO/WPU and
MXene/WPU Nanocomposite films
Firstly,  the  ST-ZnO  whiskers  and  the  MXene  dispersion  were
mixed in a 50 mL centrifugal tube by a vortex machine at 1000
r/min for 5 min, and the mixture was then mixed with the WPU
emulsion  under  ultrasonication  for  10  min.  Subsequently,  the
MXene/ST-ZnO/WPU mixture  was  casted into  a  culture  dish  to
form a film, dried at 50 °C for 24 h, and peeled from the culture
dish.  The  MXene/ST-ZnO/WPU  (MTW)  ternary  nanocomposite
films  with  different  MXene  contents  and  thicknesses  were
prepared by varying the dosages  of  ST-ZnO,  MXene and WPU,
and  keeping  the  MXene/ST-ZnO  mass  ratio  of  2:1.  The  MTW
nanocomposite  films  with  0.5  wt%,  1  wt%,  2  wt%,  5  wt%,  10
wt%,  20  wt%,  30  wt%,  40  wt%  and  50  wt%  of  MXene  were
designated as MTW0.5, MTW1, MTW2, MTW5, MTW10, MTW20,
MTW30,  MTW40  and  MTW50,  respectively.  Similarly,  the  MTW
ternary  films  with  a  constant  content  of  MXene  (10  wt%)  but
different  MXene/ST-ZnO  mass  ratios  (1/1  and  3/1)  were  also
prepared,  and  designated  as  a-MTW10  and  c-MTW10,
respectively.  For  comparison,  MXene/WPU  (MW)  binary
nanocomposite  films  with  0.5  wt%,  1  wt%,  2  wt%,  5  wt%,  10
wt%, 20 wt%, 30 wt% and 50 wt% of MXene were prepared by
direct  mixing  of  MXene  and  WPU  followed  by  casting,  and
designated as MW0.5, MW1, MW2, MW5, MW10, MW20, MW30
and  MW50,  respectively.  In  the  absence  of  the  MXene,  the
binary  ST-ZnO/WPU  film  (TW15)  was  also  prepared  by
compounding 15 wt% of ST-ZnO with WPU.

Characterizations
Microstructures  were  observed  with  a  Hitachi  7700
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transmission electron microscope (TEM), and a Hitachi S4700
scanning  electron  microscope  (SEM).  X-ray  diffraction  (XRD)
patterns  were  recorded  using  a  Rigaku  D/Max  2500  X-ray
diffractometer.  The chemical compositions were analyzed by
a  Thermo  VG  RSCAKAB  250X  X-ray  photoelectron
spectroscopy  (XPS),  and  a  Nicolet  8700  Fourier-transform
infrared  (FTIR)  spectrometer.  Zeta  potentials  were  measured
by a Malvern Nano-ZS Zetasizer. Electrical conductivities were
evaluated  with  a  Keithley  6517B  resistivity  meter  and  a  4-
probes  Tech  RST-8  resistivity  meter.  The  EMI  shielding
performances  were  measured  on  a  Keysight  N5224B  PNA
series vector network analyzer within the frequency range of
8.2–12.4 GHz. A UTM4502XH universal tensile tester was used
to  measure  tensile  properties  of  the  films  at  a  speed  of  5
mm/min.  Infrared thermal  images were recoded with a  FLIR-
E40 thermal imager.

RESULTS AND DISCUSSION

Microstructures of the MXene/ST-ZnO Nanofillers
Fig.  1(a)  illustrates  the  fabrication  process  of  multifunctional
MTW  ternary  films.  First,  to  enhance  the  interfacial  interaction
between  MXene  nanosheets  and  the  T-ZnO  whiskers,  the
whiskers are modified by the silane coupling agent to introduce
active amine groups. Because of the interaction of the positively
charged ST-ZnO (12.8 mV) with the negatively charged MXene
nanosheets (−44 mV), the surface of ST-ZnO can be wrapped by
polar  MXene  nanosheets  to  form  MXene/ST-ZnO  hybrid
nanofillers.  Subsequently,  the  hybrid  nanofillers  are
compounded with WPU, and the mixture is casted and dried to
generate multifunctional MTW ternary films, which are expected
to  exhibit  excellent  EMI  shielding  efficiency,  and  satisfactory
Joule  heating  and  solar-thermal  conversion  performances  for
wearable electronics served in cold environments (Fig. 1b).

Ti3C2Tx MXene  nanosheets  are  obtained  by  selective  etch-
ing  of  the  Ti3AlC2 MAX  phase  with  the  HCl/LiF  solution  fol-
lowed  by  ultrasonic  exfoliation.[39] As  confirmed  by  the  XRD
patterns, the successful removal of the Al layer is reflected by
the weakening or almost disappearance of some peaks of the

Ti3AlC2,  including  (101),  (103),  (104),  (105),  (107),  (108),  and
(109)  lattice planes (Fig.  S1a in  the electronic  supplementary
information, ESI). After the etching, the (002) diffraction peak
of  the  MXene shifts  from 9.5°  to  7.1°,  indicating enlarged in-
tra-galleries due to the intercalation of lithium ions and water
molecules.[40] After the ultrasonic exfoliation, the (002) diffrac-
tion  peak  shifts  further  to  6.8°,  and the  remaining character-
istic  peaks  of  the  Ti3AlC2 disappears,  confirming  the  forma-
tion of ultrathin Ti3C2Tx MXene nanosheets (Figs. S1b and S1c
in ESI).[6]

To enhance the adhesion of the MXene nanosheets with T-
ZnO, the surface of the T-ZnO is modified by the silane coup-
ling  agent  of  APTES  to  generate  active  amine  groups.  The
MXene nanosheets can be coated on the surface of the modi-
fied whiskers (ST-ZnO) by the attractive positive and negative
charges.[27,41,42] The modification of  T-ZnO can be verified by
the XPS and FT-IR spectra of ST-ZnO (Figs. S2a and S2b in ESI).
Compared with the T-ZnO, the ST-ZnO present two addition-
al peaks at 399.6 and 102.0 eV, corresponding to N 1s and Si
2p,  respectively.  Moreover,  the  FTIR  spectrum  of  the  ST-ZnO
shows  representative  absorbance  bands  of  stretching  vibra-
tions of ―OH and Zn―O at 3442 and 507 cm−1,  respectively
(Fig.  S2b  in  ESI).  The  characteristic  absorption  band  of
Zn―O―Si bond appears at 1093 cm−1, and the typical bands
at  2926  and  2854  cm−1 can  be  attributed  to  the  asymmetric
and  symmetric  stretching  vibrations  of ―CH2 of  APTES.[43,44]

In  addition,  the  ST-ZnO  exhibits  the  same  typical  diffraction
peaks as the T-ZnO at 31.9°, 34.6°, 36.4°, 47.6°, and 56.7°, cor-
responding  to  the  (100),  (002),  (101),  (102),  and  (110)  lattice
planes,  respectively,  which  is  consistent  with  the  hexagonal
wurtzite  structure  of  ZnO  (JCPDS36-1451),[27,41,45] implying
that  the  crystal  structure  of  T-ZnO  is  not  affected  by  the  sil-
ane modification.[46]

The  influences  of  the  MXene/ST-ZnO  mass  ratio  (1/0,  1/1,
2/1 and 3/1)  on the electrical  conductivity and EMI shielding
performance  of  their  WPU  nanocomposite  films  (MW10,  a-
MTW10, MTW10, and c-MTW10) are compared (Fig. S3 in ESI).
Clearly, the MTW10 film containing the hybrid nanofillers with

 
Fig.  1    (a)  Schematic  illustrating  the  fabrication  of  a  MXene/ST-ZnO/WPU  (MTW)  nanocomposite  film  and  (b)  its  multifunctional
applications.
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an MXene/ST-ZnO mass ratio of 2/1 exhibits the highest elec-
trical conductivity and average EMI shielding efficiency in the
X-band. Therefore, the MXene/ST-ZnO nanofillers with a mass
ratio  of  2/1  are  chosen  for  fabricating  the  ternary  nanocom-
posite films unless otherwise specified.

The coating of MXene on the ST-ZnO whiskers is crucial for
constructing  efficient  conduction  networks  in  WPU  matrix.
The  chemical  compositions  of  MXene,  and  the  MXene/ST-
ZnO hybrid nanofillers are identified by their XPS spectra (Fig.
2a). The Ti 2p XPS spectrum of MXene presents distinct C-Ti-Tx
2p3/2 (455.4 eV) and C-Ti-Tx 2p1/2 (461.5 eV) peaks, and abund-
ant  surface  functional  groups  (―OH, ―F,  and ―O),  endow-
ing  the  MXene  with  strong  electronegativity  and  good  dis-
persability in water (Figs. S4a and S4b in ESI). The introduced
amine  groups  on  the  ST-ZnO  are  also  verified  by  the  two
strong fitting peaks at ~399.4 eV for C―NH2 and 400.7 eV for
protonated ―N+H3 in the N 1s XPS spectrum of ST-ZnO (Fig.
2b).[47] However,  in  the N 1s  spectrum of  the MXene/ST-ZnO
nanofillers, both the peaks of C―NH2 and protonated ―N+H3

shift to higher binding energies and a new peak of Ti-N bond-
ing at  ~396.8  eV appears  (Fig.  2c),  which should derive  from
the interfacial interaction between the unstable titanium ter-
minations of MXene and the amine groups of the ST-ZnO.[42]

The enhanced interaction between the MXene and the modi-
fied whiskers would facilitate the coating of the whiskers with
the MXene. The presence of the strong peaks of C-Ti-Tx 2p3/2

(455.4  eV)  and C-Ti-Tx 2p1/2 (461.5  eV)  in  the  Ti  2p  XPS spec-
trum of MXene/ST-ZnO (Fig. 2d) further confirms the coating
of MXene on the whiskers.[6,18]

Furthermore,  the  successful  coating of  MXene nanosheets
on the surfaces of ST-ZnO can be confirmed by SEM images of
ST-ZnO,  and  MXene/ST-ZnO  hybrid  nanofillers  (Figs.  2e and
2f).  Clearly,  ST-ZnO shows a  tetrapod stereo structure  with  a
smooth surface (Fig. 2e). As expected, the MXene/ST-ZnO ex-
hibits a similar tetrapod stereo conformation, but has a rough
surface  because  of  the  coated  MXene  sheets  (Fig.  2f).  The

conductive  coating makes  the  whiskers  conductive,  which  is
highly  efficient  in  constructing  an  interconnecting  conduc-
tion network at a much lower MXene content.[9,46]

Microstructures, Electrical Conductivities and EMI
Shielding Performances of MTW Ternary Films
To  confirm  the  advantage  of  the  unique  3D  structure  of  the
MXene/ST-ZnO, Figs.  3(a)  and  3(b)  compare  the  electrical
conductivities  of  the  MTW  ternary  nanocomposite  films  with
those of the MW binary nanocomposite films. Pure WPU film is
typically  insulating  with  a  low  conductivity  of  2.8×10−12 S/m.
Although  the  electrical  conductivities  of  both  the  ternary  and
binary  films  improve  with  increasing  the  MXene  content,  the
MTW  ternary  films  exhibit  higher  electrical  conductivities  than
those  of  the  MW  binary  films  at  the  same  MXene  contents.
Moreover, the MTW ternary films present a faster transition from
electrically  insulating  to  conducting  at  a  much  lower  MXene
content  than  those  of  the  MW  binary  films  (Fig.  3a).[48] For
example,  although  the  electrical  conductivities  of  MTW0.5  and
MW0.5 films are 4.0×10−9 and 9.4×10−10 S/m, respectively, when
the MXene content increases to 1.0 wt%, MTW1 film exhibits a
rapidly increased electrical conductivity of 4.3×10−3 S/m, nearly
6  orders  of  magnitude  higher  than  that  of  the  MW1  film.  In
addition,  as  the  MXene  content  increases  from  20  wt%  to  50
wt%,  the  electrical  conductivity  of  the  MTW  ternary  film
improves  further  from  1.3×103 S/m  to  4.8×104 S/m,  while  the
conductivity of the MW binary film increases only from 5.4×102

S/m to 2.0×104 S/m (Fig. 3b). The better electrical performances
of  the  MTW  ternary  films  can  be  attributed  to  the  volume-
exclusion effect of the ST-ZnO skeleton, leading to an increase in
the effective concentration of MXene in the WPU matrix.[49] The
unique  3D  structure  of  the  ST-ZnO  whiskers  facilitates  their
interconnection  to  form  a  conductive  network  at  a  smaller
MXene  content.[50−52] Similarly,  at  a  given  MXene  content,  the
MTW ternary films exhibit better EMI shielding performances in
the X-band than those of their binary counterparts (Fig. 3c).

In  addition,  the  electrical  conductivities  and  EMI  shielding
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Fig.  2    (a)  XPS  survey  spectra  of  MXene,  and  MXene/ST-ZnO.  N  1s  XPS  spectra  of  (b)  ST-ZnO,  and  (c)  MXene/ST-ZnO.  (d)  Ti  2p  XPS
spectrum of MXene/ST-ZnO. SEM images of (e) ST-ZnO, and (f) MXene/ST-ZnO.
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properties of MTW30, MW30, and TW15 films are compared to
highlight  the  advantages  of  the  MTW  ternary  films  (Fig.  3d,
Fig. S5 in ESI). The electrical conductivities of MTW30, MW30,
and  TW15  films  are  8.7×103,  3.4×103 and  4.7×10−9 S/m,  re-
spectively (Fig. 3d). Reasonably, the TW15 film has a low elec-
trical  conductivity  of  4.7×10−9 S/m,  only  slightly  higher  than
that of pure WPU film, indicating that 15 wt% of ST-ZnO alone
has  a  negligible  improvement  in  the  conductivity  of  WPU.
Consistent  with  the  electrical  properties,  the  MTW30  film
shows  better  EMI  shielding  performances  compared  to  the
MW30 film and the TW15 film (Fig. S5 in ESI). As a comparison,
the TW15 film exhibits poor average EMI SE (~0.2 dB) in the X-
band due to its low electrical conductivity. On the other hand,
the fractured surfaces of MW30 film and MTW30 film are ob-
served to ascertain the dispersion states of the fillers, thereby
analyzing  the  reasons  for  the  different  electrical  conductivit-
ies of various films (Figs.  3e and 3f,  Fig.  S6 in ESI).  Compared
with  the  MTW30  film,  MXene  nanosheets  in  the  MW30  film
are randomly distributed in WPU matrix (Fig.  3e and Fig.  S6a
in ESI),  which is responsible for its lower electrical conductiv-
ity  and  poorer  EMI  shielding  performance.  As  mentioned
above, the surfaces of ST-ZnO are readily coated with MXene
nanosheets  to  form  MXene/ST-ZnO  hybrid  nanofillers  with
typical  “core-shell”  structure  (Fig.  2f).  Importantly,  when  the
MXene/ST-ZnO  hybrid  nanofillers  are  dispersed  in  WPU  ma-
trix,  most  of  MXene  nanosheets  are  still  tightly  attached  to
the  surfaces  of  ST-ZnO  and  remain  connected,  thus  forming
continuous and dense conductive networks in the matrix (Fig.
3f and Fig. S6b in ESI).[50] Therefore, for the MTW30 film, based
on  the  volume-exclusion  effect  of  ST-ZnO  with  a  unique  3D
skeleton, the MXene nanosheets are interconnected to form a
conductive  network,  resulting  in  higher  electrical  conducti-
vity  and  better  EMI  shielding  performance  compared  with
MW30 binary films.[52,53]

Constructing  continuous  and  highly  efficient  conductive

networks  in  the  WPU  matrix  through  MXene/ST-ZnO  hybrid
nanofillers  with  special  3D  structures  is  crucial  for  obtaining
highly  conductive  MTW  ternary  films. Fig.  4(a)  depicts  the
electrical  conductivity  of  MTW  ternary  films  with  various
MXene  contents.  Clearly,  the  electrical  conductivity  of  the
MTW  ternary  films  rises  rapidly  with  increasing  MXene  con-
tent. For instance, the electrical conductivity increases swiftly
from  2.5×101 S/m  for  the  MTW10  to  8.7×103 S/m  for  the
MTW30  film,  and  further  rises  to  2.5×104 S/m  when  the
MXene  content  increases  to  40  wt%  (MTW40).  Finally,  the
conductivity of the MTW50 film is as high as 4.8×104 S/m. The
superb  electrical  conductivities  endow  MTW  ternary  films
with  excellent  EMI  shielding  performances.[54] As  shown  in
Fig.  4(b),  the  EMI  SE  increases  with  the  rising of  MXene con-
tent, consistent with the variation tendency of electrical con-
ductivity.  Compared  to  pure  WPU  film  (~0  dB),  the  MTW20
film with a thickness of 0.1 mm exhibits an average EMI SE of
31.8  dB in  the X-band,  which exceeds the minimum require-
ment  of  20  dB  for  commercial  applications.[18] With  the  fur-
ther increase of MXene content, the EMI SE of the MTW50 film
in  the  X-band  exceeds  70  dB  (0.1  mm),  which  can  block
99.99999%  of  incident  electromagnetic  waves  to  meet  the
strict  requirements  of  some  military  and  civilian
applications.[6,33,37,55] Furthermore,  when  the  content  of
MXene  increases  from  10  wt%  to  50  wt%,  the  contribution
from  absorption  (SEA)  to  the  total  attenuation  of  incident
electromagnetic  waves  (SETotal)  at  12  GHz  increases  rapidly
from 9.9 dB to 52.7 dB, while the contribution from reflection
(SER)  just rises from 7.8 dB to 19.2 dB (Fig.  4c),  indicating the
existence  of  an  absorption-dominated  EMI  shielding  mecha-
nism in MTW ternary films.[33] The strengthened conductance
network with increment of MXene content enhances the con-
duction loss of the MTW ternary films. Besides, massive inter-
faces  extend  the  transmission  path  of  the  electromagnetic
waves  inside  the  nanocomposite  films,  resulting  in  great  in-
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terfacial  polarization  and  current  accumulation  for  efficient
absorption  dissipation  of  electromagnetic  waves.  Moreover,
the  surface  terminations,  defects  and  heterogeneous  inter-
faces  could  also  enhance  the  electromagnetic  wave  dissipa-
tion by providing versatile dipole polarizations, leading to im-
proved SEA and SETotal.[6,20,54]

In addition, the EMI shielding performances of the MTW50
films  with  various  thicknesses  are  compared.  Clearly,  as  the
thickness  increases  from  0.04  mm  to  0.06  mm  and  0.1  mm,
the average EMI SE in X-band improves from 49.4 dB to 55.1
dB and 71.4  dB,  respectively  (Fig.  4d).  Moreover,  as  depicted
in Fig.  4(e),  the  increased  thickness  leads  to  a  large  rise  in
SETotal and SEA, but the SER is almost unchanged, thus still ex-
hibiting  an  absorption-dominated  EMI  shielding  mechanism
in the MTW ternary films. The EMI shielding advantage of the
prepared MTW ternary films is further highlighted by compar-
ing with  other  polymer-based EMI  shielding materials  repor-
ted  (Fig.  4f,  Table  S1  in  ESI).  Recently,  more  and  more  re-
searchers  focus  on  conductive  polymer  composites  to
achieve  outstanding  EMI  shielding  properties.[2,56] However,
in view of the low conductivity of polymer composites,  large
sample  thicknesses  are  generally  required  to  reach  satisfact-
ory EMI SE,  such as the annealed Ti3C2Tx/epoxy nanocompo-
site (41 dB) with a thickness of 2 mm[20] and the CNT/polypro-
pylene  composite  (48.3  dB)  with  a  thickness  of  2.2  mm.[25]

This  inevitably  results  in  poor  flexibility,  thereby  limiting  the
application  of  shielding  materials.  Alternatively,  graphene,
CNT,  or  MXene-based  polymer  nanocomposite  films  are  re-
ported for thin and flexible EMI shielding materials,  whereas,
their EMI shielding performances are generally non-ideal due
to the large contact resistance. For instance, the EMI SE of the
MXene/cellulose nanofiber composite paper with a thickness

of 0.047 mm is 24 dB,[10] and the EMI SE of the CNT/NR com-
posite  film  with  a  thickness  of  0.05  mm  is  21.4  dB.[16] Com-
pared  with  the  above  results,  MTW50  film  exhibits  a  higher
EMI SE of 49.4 dB at a thinner thickness of 0.04 mm, and has a
ultrahigh normalized EMI SE/thickness of 1235 dB/mm, which
is among the best performances of polymer-based EMI shield-
ing materials (Fig. 4f, Table S1 in ESI).[6,15,57,58]

Considering  that  good  mechanical  properties  are  an  im-
portant  prerequisite  for  the  application  of  electromagnetic
shielding  materials  in  practical  environment,[22,59] the  mech-
anical properties of MTW nanocomposite films, pure WPU film
and  pure  MXene  film  are  further  tested. Fig.  5(a)  shows  the
tensile  stress-strain curves of  MTW ternary films with various
MXene  contents,  where  the  inset  shows  the  digital  photo-
graph of MTW50 film in the bending state. Fig. 5(b) shows the
corresponding  tensile  strength  and  elongation  at  break  of
MTW  ternary  films  with  various  MXene  contents.  Obviously,
the tensile strength of the MTW ternary films improves gradu-
ally as the MXene content increases from 20 wt% to 50 wt%,
while  their  elongation  at  break  decreases.  In  addition,  Table
S2 (in ESI)  details the respective tensile strength and elonga-
tion  at  break  of  MTW10  film,  MTW20  film,  MTW30  film,
MTW40  film,  MTW50  film,  pure  WPU  film,  and  pure  MXene
film.  The  tensile  strength  of  pure  WPU  film  is  only  8.2  MPa,
while that of MTW10 film increases to 16.2 MPa. When MXene
content  increases  to  30  wt%,  the  tensile  strength  of  MTW30
film further increases to 29.8 MPa. As the MXene content fur-
ther increases to 50 wt%, the tensile strength of the prepared
MTW50  film  can  reach  39.6  MPa,  which  is  383%  higher  than
that of the pure WPU film, and much higher than that of the
pure MXene film (22.2 MPa). It should be pointed out that, al-
though the elongation at break of the prepared MTW ternary
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films decreases gradually with increasing MXene content, the
MTW50 film still retains the ideal elongation at break of 5.2%,
while the elongation at break of the pure MXene film is only
0.7% at the same tensile rate of 5 mm/min. In addition, the in-
set in Fig. 5(a) shows that the MTW50 film with a thickness of
0.1 mm still has good flexibility. On the other hand, the above
conductivities  and  EMI  shielding  performances  test  results
show  that  the  conductivity  of  MTW50  film  is  as  high  as
4.8×104 S/m, and the average EMI SE in X-band reaches 71.4
dB at a thickness of 0.1 mm (Fig. 4b). Therefore, the MTW ter-
nary  films  not  only  have  excellent  conductive  and  electro-
magnetic  shielding  performances,  but  also  have  satisfactory
mechanical properties.

Joule Heating Performances of MTW Ternary Films
In  addition  to  excellent  EMI  shielding  properties,  the  MTW
ternary  films  also  exhibit  outstanding  Joule  heating
performances. Fig. 6 presents the Joule heating performances of
MTW20 film (10 mm × 20 mm) at low driving voltages ranging
from 1 V to 3 V. The almost linear I-V curve in Fig. 6(a) indicates
that  the  film  has  a  low  and  steady  resistance  (~14.5  Ω),  which
ensures the safety of low driving voltage heating to the human
body, and allows the film to achieve outstanding Joule heating
performances.[39,60,61] Moreover, it can be seen from the inset of
Fig. 6(a) that the MTW20 film can be used as a wire in the circuit
to  light  up  a  blue  LED  bulb,  suggesting  the  good  electrical
conductivity  of  the  film. Fig.  6(b)  compares  the  Joule  heating
performances  of  MTW20  films  at  various  driving  voltages.
Clearly,  the  equilibrium  temperature  of  the  film  rises  rapidly
with  increasing  driving  voltage,  indicating  the  controllability
and safety of Joule heating performances. For example, the film
can  reach  an  equilibrium  temperature  of  ~51  °C  at  a  lower
driving voltage of 1.5 V, which further rises to ~92 and 113 °C at
2.5 and 3 V, respectively. In particular, at the driving voltage of 3
V, the film can attain a high temperature of ~78 °C within only 5
s, showing a rapid thermal response and efficient electrothermal
conversion.[23,60] It  is  worth  noting  that,  the  equilibrium
temperature  of  the  film  exhibits  a  superb  linear  relationship
with  the  square  of  the  driving  voltage  (Fig.  6c),  which  is
consistent  with  the  theoretical  predictions  for  Joule  heaters
reported  in  previous  researches.[22,61] Furthermore,  as  depicted
in Fig. 6(d), the surface temperature of the film can be easily and
rapidly  adjusted  by  switching  the  driving  voltage  between  1

and 3 V.
Moreover,  in  order  to  evaluate  the  heating  stability  of  the

films,  the  temperature-time  variation  curve  with  a  constant
driving voltage of 3 V is investigated. As can be seen from Fig.
6(e), the surface temperature of the film is rapidly elevated to
the  equilibrium  temperature,  and  shows  only  slight  fluctu-
ations  during  the  long  duration  of  ~1200  s,  demonstrating
the satisfactory long-term heating stability of the film. In addi-
tion, the heating/cooling cycles are performed on the film at a
driving voltage of 3 V to assess the cyclic stability of the film
heater  (Fig.  6f).  Clearly,  the temperature evolution curves for
the 1st, 5th and 10th cycles are almost overlapped, demonstra-
ting the stability of the film during cyclic heating. To sum up,
the  MTW20  film  demonstrates  a  satisfactory  long-term  hea-
ting  reliability  and  wide  temperature  tunability  at  moderate
and  safe  driving  voltages,  as  well  as  rapid  thermal  response,
which is  superior  to  most  film-based heaters  reported in  the
literature  (Table  S3  in  ESI).[60,62] The  outstanding  Joule  heat-
ing performances of the film may be ascribed to its high elec-
trical conductivity and low resistance.[22,42,61]

Furthermore,  in  order  to  explore  the  potential  application
of  the  MTW  ternary  film  heater  for  de-icing  or  even  heating
water in outdoor icy weather, we connect the film (10 mm ×
20 mm) to an external UTP1306S DC power supply by pieces
of  copper  foil  and  crocodile  clips,  and  then  place  a  glass
bottle with ice on the surface of the film to fabricate a simple
deicing device. As shown in Figs. 6(g) and 6(h), after applying
a constant  voltage (3  V),  the ice  cube (~2.7  cm3)  in  the glass
bottle  starts  to  melt  rapidly,  and  can  be  completely  melted
within  840  s,  while  the  temperature  of  the  water  increases
from the original −0.3 °C to 20.9 °C.  Moreover,  the water can
be  further  heated  to  a  high  temperature  of  50.7  °C  with  the
water vapor generated inside the glass bottle (Fig. 6h). In con-
trast,  the  temperature  of  the  unheated  ice  cube  increases
slightly within 840 s (Fig. S7 in ESI).

Solarthermal Conversion Performances of MTW
Ternary Films
It  should be noted that the heating method utilizing the Joule
heating effect requires a wired power supply,  thus limiting the
application  scenarios  of  MTW  ternary  films.[63] Interestingly,  in
addition  to  the  excellent  EMI  shielding  properties  and
outstanding Joule heating performances, the MTW ternary films
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Fig.  5    (a)  Typical  tensile  stress-strain  curves  of  MTW  ternary  films  with  various  MXene  contents.  The  inset  shows  the  digital  photograph  of
MTW50 film under bending state. (b) Comparison of tensile strength and elongation at break of MTW ternary films with various MXene contents.
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also  exhibit  decent  solar-thermal  conversion  performances,
which  may  be  attributed  to  the  localized  surface  plasmon
resonance  (LSPR)  effect  of  MXene  nanosheets.[64−66] It  can  be
seen  from Fig.  7(a)  that  the  surface  temperature  of  pure  WPU
film  only  slightly  increases  from  room  temperature  (27  °C)  to
~40 °C after 30 min of light irradiation with an intensity of  100
mW/cm2 (one-sun irradiation).  In contrast,  the MTW20 film can
quickly reach a high surface temperature around 63 °C and keep
almost  unchanged  for  a  long  time,  indicating  the  superb  and
stable  solar-thermal  conversion  performances  of  the  MTW20
film.

Furthermore, Fig.  7(b)  exhibits  the  temperature  change
curves of  the MTW20 film under different illumination inten-
sities for 90 s. Clearly, with the increase of illumination inten-
sity,  the  MTW  20  film  can  obtain  a  higher  surface  tempera-
ture  within  the  same irradiation time.  Impressively,  even un-
der  extremely  low  illumination  intensity  of  50  mW/cm2,  the
MTW20 film can still  reach a satisfactory surface temperature

of  around  40  °C  within  90  s.  Besides,  a  cyclic  test  (100
mW/cm2)  with an illumination period of 90 s is performed to
assess  the  cycling  stability  of  the  MTW20  film  (Fig.  7c).  It
should  be  pointed  out  that,  the  temperature  change  curves
of the 1st, 15th, and 30th cycles are almost overlapped, demon-
strating  the  very  steady  solar-thermal  conversion  perfor-
mances  of  the  film  for  periodic  practical  application.[35] Sur-
prisingly,  the  MTW20  film  still  shows  decent  solar-thermal
conversion  performances  even  in  a  very  cold  environment.
Fig.  7(d)  schematically  illustrates  the  experimental  setup
where  the  MTW20  film  is  irradiated  by  sunlight  above  liquid
nitrogen to simulate a very cold environment (below −30 °C).
Obviously, the surface temperature of the film drops dramat-
ically with the decrease of the ambient temperature,  making
the  originally  flexible  film  gradually  become  brittle  (Fig.  7e).
As expected, when the film is irradiated at an illumination in-
tensity of 100 mW/cm2 for 800 s,  its surface temperature can
reach a satisfactory temperature of 20 °C with a temperature
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increment  of  50  °C,  while  the  ambient  temperature  remains
very  low  (Fig.  7f).  The  decent  solar-thermal  conversion  per-
formances of the MTW20 film ensure its self-heated ability by
light irradiation, thereby avoiding the deterioration of flexibil-
ity and EMI shielding performance in extremely cold environ-
ment.[36] To  sum  up,  MTW  ternary  films  demonstrate  decent
Joule  heating  and  solar-thermal  conversion  performances,
which ensures their normal application in cold environments
and expands their potential applicability.

CONCLUSIONS

Multifunctional  MTW  ternary  films  with  high  electrical
conductivities,  satisfactory  EMI  shielding  performances,  and
excellent  electrothermal  and  solar-thermal  conversion
properties are prepared by mixing MXene/ST-ZnO hybrids with
WPU  emulsion  followed  by  casting  and  drying.  Based  on  the
unique  3D  framework  and  volume-exclusion  effect  of  ST-ZnO,
MXene  nanosheets  can  form  a  continuous  and  dense
conductive  network  in  the  WPU  matrix,  which  plays  a  crucial
role in enhancing the electrical conductivities and EMI shielding
performances  of  WPU  nanocomposite  films.  Therefore,  the
resultant  MTW  ternary  nanocomposite  films  exhibit  higher
electrical  conductivities  and  EMI  shielding  performances  than
those  of  their  MW  binary  counterparts  with  the  same  MXene
mass contents and at similar sample thicknesses. Moreover, the
MTW ternary film with a thickness of only 100 μm demonstrates
a  high  EMI  SE  of  over  70  dB  in  the  X-band.  The  MTW  ternary
films also exhibit outstanding Joule heating performances with
an equilibrium temperature of 113 °C at a low driving voltage of
3  V.  The  multifunctional  MTW  ternary  films  have  broad
application prospects in wearable electronics and EMI shielding
devices served in extremely cold environments.
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