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Abstract   The  dynamic  behaviors  of  a  single  vesicle  bounded  by  the  cylindrical  wall  in  a  Poiseuille  flow  were  investigated  by  considering

different confinements and dimensionless shear rates. By observing the evolution of two adjacent particles attached to the internal and external

surfaces of the spherical vesicles, we found they had the same frequency. The vorticity trajectories formed by the time-tracing of the particles on

the  membrane  are  parallel,  which  can  be  identified  as  the  unsteady  rolling  motion  of  the  membranes  due  to  the  unfixed  axis.  The  dynamic

behaviors of  vesicles are associated with the confinement degree and the dimensionless shear rate.  The smaller dimensionless shear rate will

result in the slower frequency of the rolling by examining the velocity of the rolling. The weakened rolling motion under stronger confinements is

observed  by  measuring  the  evolution  of  the  orientation  angles.  The  changes  of  revolution  axes  over  time  can  be  interpreted  by  the  lateral

excursion of the center of mass on the orthogonal plane of the flow.
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INTRODUCTION

The  flow  field  system  basically  consists  of  a  flow  field
environment  and  research  objects  such  as  red  blood  cells
(RBCs), vesicles, or capsules, which are widely used in the fields
of sorting cell,[1−3] cell analysis,[4,5] drug delivery.[6,7] For example,
Henry et al. proposed an improved strategy of sorting based on
deterministic  lateral  displacement  (DLD)  experimentally,  which
is more effective in sorting deformable RBCs by tuning different
dynamic  behaviors, i.e.,  tank  treading  and  tumbling.[8] Merola
et  al.  experimentally  made  the  technological  improvement
depending on determining the angles of tumbling cells which is
suitable  for  obtaining  3D  morphologies  of  single  healthy  or
pathological cell under the condition of a continuous flow.[9]

There have been a number of  numerical,[10−16] experimen-
tal,[17−19] and  theoretical[20−23] work  regarding  the  dynamic
behaviors  (steady  behaviors,  unsteady  behaviors, etc.)  of  ve-
sicles  or  shaped objects  in  the  flow including the  shear  flow
and  Poiseuille  flow.  An  experiment  of  erythrocytes  at  low
hematocrits is designed by Goldsmith to study the dynamics
of  single  RBC,  finding  deformation  and  the  steady  tumbling
motion  with  different  directions  of  the  rotation  in  Poiseuille
flow.[24] Furthermore,  the  occurrence  of  multiple  modes  of
motion, such as tank-treading,[18] trembling (also called vacil-

lating-breathing,  swinging,  or  oscillating),[25] rolling,[26] and
chaotic[27] were  demonstrated  in  flow.  The  critical  viscosity
ratios of transition from tank treading to trembling, and even-
tually  to  tumbling  were  calculated.[28] The  transition  from
rolling to tank treading was observed in the experiment.[26]

However,  the  studies  about  unsteady  behaviors  are  rare.
Keller  and  Skalak  provided  a  model  for  theoretically  predic-
ting the motion mode, e.g., unsteady tumbling in flow by con-
sidering the viscosity ratio and ellipsoidal axis ratio.[21] Noguchi
and Gompper found that the vesicles in shear flow can trans-
form from steady tank treading to unsteady tumbling motion
by tuning the membrane viscosity.[11] The unsteady tumbling
with  a  nonconstant  velocity  was  analyzed  from  the  dissipa-
tion  in  numerical  work  of  Beaucourt.[29] Junot et  al.  experi-
mentally proved the typology of bacteria trajectories as non-
tumbling in Poiseuille flow and found the collapsing of oscil-
lating trajectories after a rotation.[30]

Since the vesicles provide a reliable model of obtaining the
physical rules in blood, there have many attempts to explore
the  key  factors  of  influencing  the  behaviors  of  vesicles  in
flow.[12,31,32] The  parameters  of  confinement  degrees  and
shear rates are the crucial conditions of the flow field system,
though the investigation regarding the influence of  confine-
ment  is  limited.  They  were  considered  in  the  experiment  of
Holme et  al.  because  the  confinement  degree  can  characte-
rize  the  constricted  arteries  caused  by  the  atherosclerosis
with  respective  to  healthy  arteries  and  shear-stress  sensitive
vesicles  are  promising to  accomplish  the targeted drug deli-
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very.[6] The  effect  of  confinement  degrees  on  the  inclination
and velocity  of  membrane in tank treading motion are stud-
ied by Kaoui.[33] They found that decreasing the confinement
degree  can  trigger  the  transition  from  tank  treading  to  un-
steady tumbling motion.[32] Abkarian et al. experimentally re-
vealed  the  dependence  of  motion  transition  on  the  shear
stress.[25] The confinement degrees and the shear rates influ-
ence the dynamics of steady chaotic states.[34]

Unsteady dynamic behaviors of a single vesicle in confined
Poiseuille  flow  are  complex.  However,  most  of  the  existing
studies  focused on several  basic  questions, i.e.,  steady mode
of  motion  and  their  transition.  Few  studies  focus  on  the  un-
steady behaviors, especially in terms of the rolling.

In  this  study,  we  consider  the  behaviors  of  the  motion  of
vesicles  in  confined  Poiseuille  flow  along  the  flow  direction
and  its  orthogonal  direction,  respectively.  Firstly,  we  analyze
the stable morphology regime drawn in the phase diagram of
the confinement degree and the dimensionless shear rates at
a certain time. We find the phase boundary of the leakage of
vesicles. Then, we determine the motion as the rolling by the
time-tracing of particles around the vesicle. The rolling of ve-
sicle  membrane over  time presents  unsteady behaviors  with
the characteristic of an unfixed axis. We calculate the orienta-
tion  angle  with  respect  to x-axis  direction.  Furthermore,  the
relative  strong  confinement  degree  is  also  tested.  The  rela-
tionship between the dimensionless shear rates and the evo-
lution velocity is also displayed. Finally,  the excursions of the
center  of  the mass of  the vesicle  on the orthogonal  plane of
the  flow (plane yz)  are  measured to  reveal  the  reason of  the
occurrence of the shifting axes.

METHOD
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We use the simulation method of dissipative particle dynamics
(DPD)  to  study  the  dynamic  behaviors  of  a  single  vesicle  in
confined Poiseuille flow. The DPD method treats the particles as

the  coarse-grained  beads, whose  motion  is  governed  by  the

internal  forces  resulting  from  the  sum  of  the  conservative

force,  dissipative force ,  and  random  force .  The  block

copolymers are  modelled  as  linked  beads  connected  by  the
finite  extensible  nonlinear  elasticity  (FENE)  potential.[35] An

external  force  along  the x-axis direction  is  exerted  on
solvent particles constantly after equilibrium time of 6×103 time
steps (t = 180τ) as a driving force of vesicles.[36] The time unit τ in

our simulation is expressed as , where the mass

of the particle m, the energy scale kBT and cutoff radius rc all take
the  value  of  1.  Here, kB and T are  the  Boltzmann constant  and
system temperature, respectively. The dimensionless shear rate
is denoted as , which can reflect the magnitude of shear stress
and  facilitate  comparisons  with  other  works.[37,38] The  detailed

processes of the transformation from  to  can be derived
according to our previous work.[39] Generally,  is used for
the calculation of . The  and  are the average shear rate and
the  vesicle  relaxation  characteristic,  respectively.  can  be
calculated  by   and  are  the  average  fluidic  flow
velocity and the diameter of the channel,  respectively.  is  the
characteristic  parameter  related  to  relaxing  to  a  new  steady

τ0 = ηD3
V/kr

kr η

kr η

state.[40] It  is obtained from the formula ,  where DV,
 and  are  the  diameters  of  the  vesicle,  the  bending  rigidity

and  the  fluid  dynamical  viscosity  of  vesicle  membrane,
respectively.[37] The  details  about  the  and  are  provided  in
the electronic supplementary information (ESI).

νx/ν̄ = 2(1 − r2/R2)

aii=25
aAB=85 aBS=110 aAS = 25

The fluid environment consists  of  a  confined channel  flow
and a single vesicle, and the profile of the flow basically satis-
fies ,  which  can  refer  to  our  previous
work.[39] The initial  vesicle  consists  of  A2B4 amphiphilic  block
copolymers where beads A and B are hydrophilic and hydro-
phobic,  respectively.  It  is  formed  during  the  time  steps  of
2×106 in selective solvent in a cubic box (203) under the peri-
odic boundary conditions. The polymer centration is 0.1. The
number density of the system is set to be 3. The interactions
between DPD particles take the values of  (i = A, B, or S),

, , and . We further measure the cen-
ter  of  mass  and the radius  of  the initial  vesicle  for  determin-
ing geometric parameters of the channel.

ρ

We  define  the  confinement  degree Cd as Cd=DV/DT,  which
can  reflect  the  size  of  the  channel  diameter  with  respect  to
the diameter of the vesicle. An equilibrated initial vesicle with
the  diameter  of  11.02  prepared  is  placed  into  the  center  of
the  channel  of  length Lx=60.  The  channel  satisfies  periodic
boundary condition along x-axis direction (flow direction) and
a specular reflection boundary is employed at the wall of the
channel.[41] The ratio  of  viscosity λ equals  1  due to  the  same
particles  inside  and  outside  the  vesicles.  Matching  viscosity
(λ=1) is usually adopted in the experiment.[42] The density  of
particles  is  set  as  3.  The interaction parameters  between dif-
ferent  kinds  of  particles  are  same  with  the  system  of  initial
formed  vesicle.  Each  simulation  takes  the  time  exceeding
9×104τ.

RESULTS AND DISCUSSION

Morphological Diagram Formed by Vesicles in the
Flow

γ̇∗

γ̇∗

Systematic  scan  of  morphologies  has  been  performed  in  the
parameter  space  ( , Cd)  at t=9×104 τ as  shown  in  the
morphological  diagram  of Fig.  1.  We  observed  six
morphologies:  vesicles,  bullet-like  vesicles,  leaking  vesicles,
hamburger-like  micelles,  bilayers,  and  sphere  micelles.  The
different morphological regions are drawn with different colors
for  convenience  of  observation.  The  detailed  information  of
morphologies  can refer  to our  previous work.[39] The black line
presents  the  boundary  between  the  morphologies  with  the
unimpaired membranes  and the others  that  have experienced
the leakage. Vesicles with no leakage occur when <6. The grey
and purple regions correspond to the morphologies of vesicles
and bullet-like  vesicles,  respectively.  The bullet-like  vesicles  are
elongated morphologies with tapered heads and their values of
asphericity  parameters A exceed  0.1.  This  morphology  was
found  in  the  experimental[43] and  theoretical[44] studies  of  the
vesicles and RBCs under the flow. The bullet-like vesicles occur
with the larger Cd values (Cd=0.8 and 0.9). However, the shape of
vesicle morphology near Cd=0.5 is nearly spherical due to weak
deformation  of  morphologies  as  analyzed  before.[39] The
vesicles  under  weak  confinement  are  difficult  to  undergo  the
deformation  compared  with  the  strong  confinements.  But  the
rotation  motion  can  be  discovered  under  weak  confinement
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according  to  the  theory  that  the  elongational  behavior  is  not
expected  when  it  is  the  pure  rotational  flow.[45] Therefore,  we
mainly  focus  on  the  motion  of  the  vesicle  at Cd=0.5  in  the
following.

Movement of Particles on the Vesicle Membrane
The  vesicles  can  exhibit  different  behavior  of  motion  in  the
Poiseuille flow.[34] The two particles on the internal and external
surfaces  of  the  membrane  are  chosen  as  the  markers  to
qualitatively  reflect  the  relative  motion  of  particles  on  the
membrane as shown in Fig. 2. This method was usually used in
the  simulation[46] and  experimental[18] research.  The  blue  and
yellow colors are used to label the particles on the internal (Fig.

2a)  and external  membrane (Fig.  2b),  respectively.  The moving
of  particles  attached  on  the  external  membrane  is  also
illustrated  in  Movie  S1  (in  ESI).  Meanwhile,  the  sizes  of  the
particles chosen are enlarged and the hydrophobic particles are
not  drawn  in Fig.  2(a)  for  clarity.  When t=240τ,  particles  with
blue color  are  in  the right  corner  of  the inner  cavity  as  viewed
from  the  front  of  the  vesicle.  The  two  particles  move  with  the
increase in time, and two characteristic snapshots are presented
at t=6360τ and  8580τ.  The  arrows  show  the  direction  of  the
motion of the two particles. These two particles in the vicinity of
the edge at time of 8580τ move away from the left edge of inner
cavity and enter the area at the back of the vesicle at t=12420τ.
There  is  no  significant  change  in  their  position  along y-axis
direction within the selected time. The two blue particles move
with the same frequency in Fig. 2(a).

Furthermore,  the  similar  phenomenon  of  the  two  yellow
particles on the external surface of the membrane can be ob-
served in Fig.  2(b).  The positions  of  the  selected particles  on
internal and external surface of the membrane are similar rel-
ative to the vesicles at the same time. One can conclude that
the  internal  and  external  surfaces  of  the  membrane  move
with  the  same  frequency.  Therefore,  the  characterization  of
motion  frequency  of  the  membrane  can  be  approximately
described  by  using  a  single  particle.  The  motion  of  multiple
particles  on  the  membrane  with  same  frequency  was  also
found in the research of Fischer et al.[18] This motion performs
like the rolling in the two dimensional research of the RBCs as
referred  by  Tusch et  al.[47] We  further  demonstrate  the  mo-
tion  type  in  the  next  section.  Furthermore,  we  infer  that  oc-
currence of this motion is related to membrane displacement
caused by the off-center of vesicles.[37] Goldsmith et al. experi-
mentally  observed  tumbling  motion  of  single  RBC  with  op-
posite rotation on opposite sides of  a  tube under the micro-
scope in Poiseuille flow.[24]
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Fig. 1   The morphological diagram formed by vesicles in the flow for
different  values  of and Cd at  time t=9×104τ. Different  colors  are
used  to  mark  the  various  morphologies.  The  snapshots  of  the
morphologies are shown in the right. The morphologies in the phase
regions below the black line do not experience the leakage.

y y

z

Front viewa

b

t=240τ t=6360τ t=8580τ t=12420τ

t=240τ t=6360τ t=8580τ t=12420τ

Back  view

x
z

x

y

z

x

y

z

x

γ̇∗=5.88 Cd=0.5
Fig.  2 Snapshots  of  vesicles  with  two  attached  blue  (yellow)  hydrophilic  beads  on  the  (a)  inner  hydrophilic  layer  and  (b)  outer
hydrophilic layer of vesicle when and . Here, the coordinate axes in the left corners of the images correspond to the view
of the observed vesicles and they are not labeled when the same view appears as in the left front image. Arrows mark the direction of
bead motion. The fluorescent beads chosen are properly enlarged.
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Vesicle Movement with Unfixed Axes

γ̇∗=5.88 Cd=0.5

Measurements  of  the  motion  axes  were  conducted  in  the
Poiseuille flow via finding the almost motionless beads. It allows
us  to  capture  the  motion  characteristics.  We  exhibit  the  time-
stacking  of  bead  trajectories  marked  by  different  colors  at
different intervals of time when and  in Fig. 3(a).
The  orange  arrows  reflect  the  directions  of  the  rotation  of  the
membrane  and  red  beads  are  the  hydrophobic  particles  of
membranes.  The  highlighted  beads  around  the  vesicle  are
marked  in  different  colors  for  distinguishing  to  visualize  the
membrane  motion.  The  rotational  axis  and  the  direction  meet
the  right-hand  rule.  The  time  interval  between  every  two
consecutive points on the trajectory is  60τ,  and  they  are  close
packing  of  the  consecutive  points  owing  to  slow  paces  for
each time interval. Before the axes shift, the time- stacking of
a  certain  bead  is  approximately  a  circle  and  it  forms  the
vorticity  trajectories  like  the  “parallel”.  We  can  observe  the
orbits  formed  by  the  trajectories  of  beads  over  time  are
parallel to each other and they can maintain the stabilization
of the relative position as stated above. These trajectories also
occur  at  the  surfaces  of  giant  lipid  vesicles  immersed  in  a
shear flow, as observed in the experiment of Vézy et al.[48] We

classify  this  motion  as  rolling.  Dupire et  al.  described  the  RBC
rolling as the wheel on the road, and it steadily spins around the
vorticity  axis.[26] The occurrence of  rolling motion in shear flow
can induce less deformations by avoiding energetical cost.  The
full orbits are not observed because of the unsteady changes of
the  axes.  The  orbital  variations  are  easy  to  be  observed.  Time
intervals are determined by the state of the orbit. There are four
time-intervals,  corresponding  to  four  orbits  with  different
orientations  formed  by  the  particle  trajectories.  The  orbit
remains  constant  in  the  same  interval.  Due  to  the  unfixed-
orientations  of  the  orbit  over  time,  we  consider  the  motion  of
membrane as the unsteady periodic rolling.

−→n1=
−→n2= −→n3=

−→n4=

The  trajectories  of  the  beads  near  the  axes  of  the  mem-
brane are also investigated in Fig. 3(b). Due to their positions
in  the  close  vicinity  of  two  stagnation  points,  their  trajector-
ies exhibit circular rotations with small radii. Their location ap-
pears within a certain range, which is the trajectory character-
istic  of  beads near  the axes.  The qualitative  directions  of  the
rotation axes of the membranes are also presented as the or-
ange  arrows.  Their  unit  vectors (0.1219,  −0.9270,
0.3546), (0.4437, −0.4454, −0.7776), (−0.1875, 0.1280,
0.9739), and (0.3682, −0.1018, 0.9242) along the axes can

γ̇∗=5.88 Cd =0.5

−→n1 = −→n2 = −→n3 =
−→n4 =

Fig.  3    (a)  The  time-stacking  formed  by  trajectories  of  characteristic  hydrophilic  particles  marked  by  the  different  colors  outside  the
vesicle when and  at  different intervals of  time. Here,  the same view is  chosen as in the lower left  image. The red and
orange arrows present the directions of  the rotation and axes;  (b)  Time-stacking of  the beads chosen near the axis  are marked by the
pink  color;  (c)  The  unit  vectors  of  axes  at  different  time: (0.1219,  −0.9270,  0.3546),  (0.4437,  −0.4454,  −0.7776), (−0.1875,
0.1280, 0.9739), (0.3682, −0.1018, 0.9242).
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−→n1
−→n4

be obtained according to the two dots on the axes, which are
drawn in the Cartesian coordinate system of Fig. 3(c) for intu-
itive  observation.  The  orientational  angles  between  the  unit
vectors  including  to  and  the yz plane  are  appro-
ximately 7°, 26.4°, 10.8°, and 21.6°, respectively. We can see the
four  vectors  are  nearly  parallel  with  the yz plane  in Fig.  3(c).
This  indicates  the x-axis  and  orbits  of  trajectories  formed  by
the beads on the membrane of the vesicles with time are par-
allel  because  the  unit  vectors  is  perpendicular  to  the  orbit
plane. The axis for motion is unfixed with the increase of time
in  our  work.  Fedosov et  al.  also  reported the unfixed axes  of
tumbling,  the shift  of  orbits,  and oscillations along the vorti-
city direction in the study of RBCs under the tube flow.[37]

Rolling Orientation of Vesicles

−→r »»»»»−→r »»»»»−→r

In  this  part,  we  focus  on  the  deviation  of  the  particles  on  the
vesicle  from  the x-axis  caused  by  the  flow,  and  thus  the
orientations  with  respective  to  the x-axis  are  discussed.  We
define that the vector  is from the mass center of the vesicle to

particles and distance r can be expressed as r= . θ is the angle
between  the  vector  and  the  positive  direction  of x-axis  as
shown  in Fig.  4(a).  The  dynamic  evolution  behaviors  in x-axis
direction and its orthogonal direction are considered. We mainly
discuss the velocity of motion of particles with respective to the
x-axis.  Usually,  the  particles  on  the  equator  are  chosen  to
describe  the  movement  of  the  membrane  (Fig.  4b). Fig.  4(c)
presents the evolution of the angles θ and distance r2 using the
particle (the yellow bead in Fig. 4b) on the internal membrane of
the  vesicles,  respectively.  They  have  the  similar  trend.  The  red
arrows point the peaks of the distributions. The first and second
peaks  occur  near t=1.5×104τ and t=5.3×104τ for  both θ and r2.
This  characteristic  is  similar  to  the  tank-treading.  There  are

changes of distance r when vesicles move in the mode of tank-
treading but no change in the tumbling. The similar results are
also found in particle (the blue bead in Fig. 4b) on the external
surface of membrane shown as the Fig. 4(d).

γ̇∗=
Cd=0.5 t=0−1.8×105τ

γ̇∗

γ̇∗=2.35

γ̇∗

γ̇∗

The above analysis shows that we can detect the temporal
evolution of angles of movement with respect to the flow dir-
ection  using  particles  near  the  equatorial  region.  The  mea-
surements  of θ by  choosing  a  single  particle  at  proximity  of
central  trajectories  were  carried  out  for 5.88,  4.71,  3.53,
and 2.35 with a  fixed  when  as  shown
in Fig.  5.  Due  to  the  changes  of  axes,  different  particles  are
chosen as the markers. The successive changes of angles over
time can be observed as muti-periodic and stable rolling from
Fig.  5(a)  to Fig.  5(c).  We  observe  the  similar  tendency  of  the
angle  variation  before  and  after  changes  of  the  axes.  Their
angles  vary  from 0  to  3.14  (radian).  The  period of  the  rolling
increases with the decrease of . We observe the decrease of
θ over time and then its value tends to zero with small fluctu-
ations  after t=27077τ when  shown  as Fig.  5(d).  It  is
not  sufficient  to  drive  the  rolling  motion  for  the  stress  exer-
ted by the flow with a weaker  as previously reported.[23,26]

The  vesicles  become  the  “fluidization”  from  the  solid-like
state  by  overcoming  the  energy  barrier.[26] This  implies  the
critical  value  of reaching  “fluidization”  of  membranes  is
between 2.35 and 3.53.

The temporal evolution of θ under Cd=0.8 shown in Fig. 6 is
detected to reflect the dependence of θ on the confinement
degrees  to  compare  with Fig.  5.  At  the  initial  state,  their
particle  markers  start  from the same value of θ,  and the cor-
responding position  is  pointed by  an  orange arrow in  the  il-
lustration of Fig.  6.  In these cases,  the θ reaches steady-state

a

r θ x xΔt

b

x

y
z

z

y

x

0

1.57

3.14

0

1.57

3.14

0 3.0×10
4

6.0×10
4

9.0×10
4

2

4

6

r2 r2

c

27

30

33

d

θ θ

t (τ)

0 3.0×10
4

6.0×10
4

9.0×10
4

t (τ) 

t=0

γ̇∗=5.88 Cd =0.5

Fig. 4    (a) The schematic model to define the orientation angle θ and distance r from the center of the vesicle; (b) The particles chosen
on the vesicles are marked as blue and yellow at  and arrows point to them. The left snapshot is in the front view and the right one is
in  the right  view.  The sizes  of  particles  chosen are enlarged for  clarity.  One-quarter  of  the vesicle  is  cut  away in  left  snapshot  and the
hydrophobic beads are not shown in the right one. The θ and r2 of hydrophilic particles inside (c) and outside (d) the vesicle as functions
of time when  and .

  Liu, D. et al. / Chinese J. Polym. Sci. 2022, 40, 1679–1687 1683

 
https://doi.org/10.1007/s10118-022-2774-5

 

https://doi.org/10.1007/s10118-022-2774-5


values  after  slight  increases.  The  increases  of θ occur  when
the deformation degree of  vesicles  is  small  at  the  beginning
of the tests. Rolling is hardly observed for the whole period of
time. Less change in θ occurs as compared to the Cd value of
0.5. This indicates the rolling of vesicle is difficult at the high-
er Cd and  the  vesicles  require  more  energy  for  obtaining
rolling.  In  other  words,  the  strong confinement  weakens  the
rolling.  However,  the  significant  change  of  vesicles  induced
by  the  flow  is  the  shape  transformation  according  to Fig.  1

when the magnitude of the Cd is relatively large, i.e., Cd = 0.8.
It is consistent with the results of Kaoui et al.[32]

Overall Motion of the Vesicle
ωτ

ωτ γ̇∗ ω
ω = Δθ/Δt

ωτ

The  dimensionless  angular  velocity is  calculated  based  on
the data of Fig.  5.  Time intervals  when large fluctuations occur
are  not  considered.  According  to Figs.  5(a)−5(c),  we  chose  10,
10,  and 13 time-interval  samples for statistics,  respectively.  The
relationship  between and is  displayed  in Fig.  7. is
computed  using  the  equation ,  which  is  used  to
describe  the  behaviors  of  motion.[11,37,48] The can  be
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ωτ
γ̇∗

ωτ γ̇∗

measured using the trajectories located on the vesicles.[48] Here,
the  choice  of  trajectories  rarely  influences  the  results  due  to
their same frequency as stated above. The fitting line is drawn as
a  solid  line.  The  extension  of  the  line  can  pass  through  the
coordinate origin. The values of  can characterize the velocity
of the rolling and increase linearly upon increasing , implying

the positive dependence of  on .  Meanwhile,  the slope of

the  line  in Fig.  7 is  small  compared  to  the  results  in  tumbling
and tank-treading in shear flow because of the small gradient of
velocity induced by the lateral excursion of the center of mass in

Poiseuille flow, which will be discussed in the next paragraph.

τ
γ̇∗=5.88

Cd value of 0.5

The  intricate  behaviors  of  the  vesicle  also  include  the  ver-
tical position change of the mass center of the vesicle with re-
spective to the flow direction in the Poiseuille flow.[37,49] It can
characterize the amplitude of the snaking. In Fig. 8, the excur-
sion  of  position  of  the  mass  center  with  respective  to  the
centerline in three-dimension parameter space (t/ , y/Rv, z/Rv)
is  shown  when ,  4.71,  3.53  and  2.35  with  a  fixed

.  Here, Rv is  the  radius  of  the  vesicle.  The  blue
line is along the centerline of the channel. The curves formed
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by the position of the center of mass present a spiral zigzag-
ging  around  the  centerline  of  the  channel.  We  can  observe
the  complex  state  with  multi-periodic  oscillations.  By  redu-
cing ,  we  can  obtain  larger  period  of  the  oscillation  and
lower frequency. But the period and the amplitude of the os-
cillations  are  irregular.  Similarly,  Aouane et  al.  presented  the
unstable motion with off-centered snaking when the confine-
ments  are  weaker  than  the  critical  confinements.[34] We  can
observe centered and off-centered snaking in our simulation,
which have the characteristics  of  symmetrical  and asymmet-
rical  lateral  excursion of the center of  mass over a oscillation
period,  respectively.[49] The  amplitude  of ycm/Rv basically  re-
mains unchanged with the increase in  as shown in Fig. S1
(in  ESI).  The  motion of  vesicle  in  the  shear  flow is  usually  at-
tributed to the velocity gradient. We find reversal oscillations
of  the  vesicle  around  the  centerline  of  the  channel  are  re-
lated to the axis change by comparing Fig. 3 and Fig. S1(a) (in
ESI).  The  values  of  time  when  the  axes  change  are  12000 ,
30600 , 60000 , and 78000  in Fig. 3(a). At these time points,
turning  points  occur  in  Fig.  S1(a)  (in  ESI),  owing  to  the  vari-
ations  of  directions  of  shear  in  3D  space.  In  the  case  of

,  4.71,  3.53  and  2.35,  and  fixed ,  the  aspheri-
city A varies  with  time  in  the  range  of  as  shown  in
Fig.  S2  (in  ESI).  The  shapes  of  vesicles  are  approximately
spherical over the simulation time in these situations. The di-
rectional  changes  of  shear  induced  by  the  vesicle  rotation
and  lateral  excursion  are  helpful  for  the  vesicle  to  avoid  be-
ing  constantly  elongated  in  a  single  direction.  Hence,  there
are oscillation changes of A values in Fig.  S2 (in ESI).  The dif-
ferent  can affect the lateral motion behaviors, as shown in
Fig. S3 (in ESI). It presents the excursion of the center of mass
in  the y-axis  and z-axis  direction  as  a  function  of  time  when

, ,  and  with  a  fixed Cd value  of  0.8.
There is no obvious position variation in the yz plane as com-
pared to Fig. 8. Because the shape of the initial vesicle and its
position in the plane (y, z)  of  the channel  are symmetric,  the
symmetry  of  pressure  around the  vesicle  is  not  broken lead-
ing to the absence of the rolling as shown in Fig. 6.

CONCLUSIONS

In  summary,  we  utilized  the  DPD  method  to  explore  the
dynamic  behaviors  of  vesicles  suspended  in  the  confined
Poiseuille  flow  by  tuning  the  parameters  including  the
dimensionless  shear  rates  and  the  confinement  degrees.  The
morphological  diagram  formed  by  vesicles  at  given  time  as  a
function of  dimensionless shear rate and confinement degrees
is  constructed.  The  motion  of  vesicles  induced  by  the  flow  is
identified  as  the  rolling  by  judging  the  trajectory  of  particle
markers  attached  on  the  membrane.  However,  the  axes  of
rolling  unsteadily  change  with  time.  We  also  examined  the
dependence  of  rolling  angle  evolution  on  the  confinement
degrees  or  dimensionless  shear  rates.  It  is  based  on  the  same
frequency of  motion of  particles  on the membrane of  vesicles.
The results show that the strong confinement degree constrains
the occurrence of the rolling. Vesicles under smaller shear rates
have the lower frequency of the rolling and the slower angular
velocity  of  the  rolling.  Finally,  we  propose  a  possible
interpretation  of  the  unfixed  axes  by  measuring  the  lateral
excursions for different dimensionless shear rates. Therefore, we

can  describe  the  motion  of  vesicles  as  the  complicated  and
unsteady 3D rolling around the unfixed axes.
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