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Abstract   A family of  highly bulky bis(salicylaldiminate)  Co(II)  complexes bearing cavity-like conformations are disclosed herein.  Due to their

unique bulky nature around the cobalt atoms that are reflected from space-filling models and the buried volume percentages, obviously longer

bond distances of Co―N and Co―O are revealed from those complexes. Moreover, because of these well-protected active species, the cobalt

complexes are able to catalyze 1,3-butadiene polymerization in high yields at extreme low catalyst concentrations, revealing a ultra high catalytic

efficiency. At a ratio of 50000, all the complexes can afford polybutadiene with yields higher than 90%. Furthermore, the highly steric bulkiness of

the  ligand  can  also  significantly  enhance  the  thermostability  of  the  active  species.  At  temperature  of  80−120  °C,  the  complexes  are  able  to

successfully maintain high activities, giving polymer yields up to 90%.
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INTRODUCTION

Late-transition  metal  is  an  indispensable  block  of  the  whole
catalysts building. Thanks to their inherent low oxophilic nature,
which brings good heteroatom tolerance ability and therefore a
broader  reaction  substrate  scope,  multitudinous  late-transition
metal  based  precatalysts  have  been  designed  during  the  past
century  for  promoting  small  molecule  transformations,
polymerizing  C＝C-containing  monomers.  Regarding  the
olefin/diene polymerization field, such a less oxophilic property
become  more  meaningful  because  these  precatalysts  are
capable of one-pot catalyzing olefin/diene monomer with polar
comonomer  to  directly  afford  functional  polymer  products,
which  greatly  outbalance  traditional  non-polar  polymer
counterparts  in  regard  to  compositing  with  inorganic  fillers,
affinity  for  dyes,  adhesive  properties, etc., and  has  long  been
recognized as the “Holy Grail”  for  such a field.[1−25] Despite of
these  superiorities,  late-transition  metal  based  catalysts  also
suffered  from  some  issues  that  are  urgent  to  be  addressed:  (i)

general  lower  catalytic  efficiency  due  to  lower  electrophilicity
and therefore lower monomer binding ability when comparing
to the early-transition metals; (ii) relative lower molecular weight
of  the  resultant  polymers  due  to  the  greater  tendency  for β-H
elimination;  (3)  poor  thermostability  of  the  active  species.
Designing effective catalyst that is  able to conquer these three
issues is highly desired for the polyolefin/polydienes industry.

Late  transition  metal  mediated  diene  polymerizations  is
currently one of the widely used strategy to access commer-
cial  available  polydiene  synthetic  rubbers.[26−39] Two  repre-
sentative  systems  are  CoCl2/donor/AlEtxCl3-x and  Ni(OCOR)2/
BF3·OEt2/AlEt3.  Despite  of  their  large-scale  industrialization,
their  ill-defined  nature  of  the  corresponding  active  species
prompts more scientists to design single-site precatalyst sys-
tems  that  demonstrate  better  controllability  of  the  whole
polymerization process. One prominent example is the imine-
based  cobalt(II)  system.  Due  to  the  ease  manipulation  of
imine structure, which allows facile fine-tuning the polymeri-
zation performances from steric and electronic aspects, diver-
sified  imine-based  ligands,  including  bis(imino)pyridine,[31,40]

α-diimine,[41] β-triketimine,[42] salicylaldimine,[43−47] pyridine-
2-imine,[32,48] 1,10-phenanthroline-2-pyrazolyl,[49] bis(oxazo-
linyl)pyridine,[50,51] bis(imidazolyl)pyridine,[52,53] etc.,  have
been  employed  to  support  cobalt  metal  to  regulate  diene
polymerization behaviors from molecular level.  Nevertheless,
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these systems also more or  less  reveal  the above-mentioned
deficiencies. For some of them, comparatively higher precata-
lyst  loading  is  required  in  order  to  achieve  acceptable
product  yields,  and  for  some  ones,  polymerizations  are  re-
stricted  to  relative  lower  temperatures  (20−50  °C)  because
high  temperature  imposes  strong  negative  influence  on  the
catalytic efficiency. In this contribution, we disclose a family of
highly  bulky  bis(salicylaldiminate)  Co(II)  complexes  that  bear
cavity-like  conformations.  Because  of  the  unique  location  of
the cobalt  center  in  the cavity  of  the complexes,  the formed
active  species  could  be  well-protected  from  the  impurities
from the polymerization medium, and thereafter reveal ultra-
high  catalytic  efficiency  even  at  an  extreme  low  precatalyst
loading.  Moreover,  the being protected active species simul-
taneously  reveals  high  thermal  robust,  which  could  afford
very  high  polymer  yields  at  high  temperature  up  to  120  °C.
These  findings  provide  an  effective  strategy  to  enhance  the
overall  catalytic  performance  of  late-transition  metal  cata-
lysts. Details discussion will be shown in the following.

EXPERIMENTAL

General Considerations
All  manipulations  of  air  and/or  moisture  sensitive  compounds
were  carried  out  under  a  dry  and  oxygen-free  argon
atmosphere  by  using  Schlenk  techniques  or  under  a  nitrogen
atmosphere  in  a  glovebox.  The  solvents  were  refluxed  over
CaH2 or  sodium-benzophenone  and  distilled  prior  to  use.  1,3-
Butadiene was obtained from Lanzhou Petrochemical Company
and purified by passing through four columns packed with 4 Å
molecular  sieves  and  KOH.  Other  chemicals  were  purchased
commercially. 1H-NMR (400 MHz) and 13C-NMR (100 MHz) were
recorded  on  a  Varian  Unity  spectrometer  in  CDCl3 at  ambient
temperature  using  tetramethylsilane  as  an  internal  standard.
FTIR  spectra  were  recorded  using  a  BRUKER  Vertex-70  FTIR
spectrometer.  Mass  spectrograms  of  cobalt  complexes  were
recorded using the Brooker  IMPACT II  TOF UHR-TOF ultra-high
resolution  ESI-Quadrupole  Time-of-Flight  mass  spectrometry
system  The  proportion  of cis-1,4  and trans-1,4  units  of  the
polymer was determined by FTIR spectra. The number-average
molecular  weights  (Mn)  and  molecular  weight  distributions
(Mw/Mn) of polymers were measured at 30 °C by gel permeation
chromatography  (GPC)  equipped  with  a  Waters  515  HPLC
pump,  four  columns  (HMW  7  THF,  HMW  6E  THF  ×  2,  HMW
2THF),  and  a  Waters  2414  refractive  index  detector.
Tetrahydrofuran  was  used  as  the  eluent  at  a  flow  rate  of  1.0
mL·min−1 against polystyrene as the calibration.

Synthesis and Characterization of the Ligands and
Complexes
L1.  A  mixture  of  3,5-di-tert-butyl-2-hydroxybenzaldehyde  (3.54
mmol,  0.83  g),  2,6-bis[bis(4-methoxyphenyl)methyl]-4-methyl
benzenamine  (3.54  mmol,  2.0  g)  and  a  catalytic  amount  of p-
toluenesulfonic  acid  (0.03  g)  in  50  mL  of  ethanol  was  refluxed
for  6  h  and  cooled  down  to  room  temperature.  The  resultant
precipitate  was  filtered  and  dried  in  vacuo  at  40  °C  overnight,
and  light  brown  powder  was  obtained  as  the  product.  Yield
88.3%. 1H-NMR  (400  MHz,  chloroform-d, δ,  ppm):  12.99  (s,  1H),
7.35 (d, J=2.4 Hz, 1H), 6.99 (d, J=7.9 Hz, 2H), 6.92 (d, J=8.6 Hz, 8H),
6.75 (d, J=2.8 Hz,  4H),  6.68 (d, J=32.7 Hz,  6H),  6.24 (d, J=2.4 Hz,
1H), 5.35 (s, 2H), 3.75 (s, 12H), 2.17 (s, 3H), 1.46 (s, 9H), 1.23 (s, 9H).

13C-NMR  (101  MHz,  chloroform-d, δ,  ppm):  169.77,  158.17  (d,
J=29.0 Hz), 157.97, 145.97, 139.86, 136.37 (d, J=18.4 Hz), 135.55,
133.35,  130.66,  128.73,  127.50,  126.91,  117.64,  113.97,  113.64,
55.28, 50.73, 35.15, 34.12, 31.55, 29.60, 21.59. ESI-MS (m/z): calcd.
for C52H57NO5: 775.42; Found 775.40[M]+.

L2 was prepared in a similar method to L1. Yield 86.9%. 1H-
NMR  (400  MHz,  chloroform-d, δ,  ppm):  12.67  (d, J=15.4  Hz,
1H),  7.38  (d, J=2.3  Hz,  1H),  6.99–6.94  (m,  7H),  6.94–6.89  (m,
7H), 6.87 (s, 3H), 6.60 (s, 2H), 6.21 (d, J=2.2 Hz, 1H), 5.40 (s, 2H),
2.18 (s, 3H), 1.45 (s, 9H), 1.24 (s, 9H). 13C-NMR (101 MHz, chlo-
roform-d, δ,  ppm):  169.77,  158.17  (d, J=29.0  Hz),  157.97,
145.97,  139.86,  136.37  (d, J=18.4  Hz),  135.55,  133.35,  130.66,
128.73,  127.50,  126.91,  117.64,  113.97,  113.64,  55.28,  50.73,
35.15,  34.12,  31.55,  29.60,  21.59.  ESI-MS  (m/z):  calcd.  for
C48H45F4NO: 727.34; Found 727.30[M]+.

L3 was prepared in a similar method to L1. Yield 83.4%. 1H-
NMR (400 MHz, chloroform-d, δ, ppm): 12.96 (d, J=3.5 Hz, 1H),
7.34 (d, J=2.4 Hz,  1H),  6.99 (d, J=7.9 Hz,  8H),  6.91 (t, J=7.1 Hz,
9H),  6.66  (s,  2H),  6.16  (d, J=2.4  Hz,  1H),  5.36  (s,  2H),  2.28  (s,
12H), 2.16 (s, 3H), 1.46 (s, 9H), 1.23 (s, 9H). 13C-NMR (101 MHz,
chloroform-d, δ, ppm): 169.93, 158.04, 146.11, 141.03, 139.71,
136.43,  135.55,  135.29,  133.29,  129.69,  129.36,  128.91  (d,
J=14.3  Hz),  127.44,  126.94,  117.66,  51.64,  35.15,  34.09,  31.56,
29.59,  21.59,  21.15.  ESI-MS (m/z):  calcd.  for  C52H57NO: 711.44;
Found 711.50 [M]+.

L4 was prepared in a similar method to L1. Yield 77.9%. 1H-
NMR (400 MHz, chloroform-d, δ, ppm): 12.92 (d, J=7.3 Hz, 1H),
7.34 (d, J=2.1 Hz, 1H), 7.17 (d, J=14.1, 6.9 Hz, 1H), 6.98 (t, J=7.8
Hz,  8H),  6.93–6.86 (m, 9H),  6.17 (d, J=2.3 Hz,  1H),  5.38 (s,  2H),
3.72 (q, J=7.0 Hz, 2H), 2.28 (s,  10H), 1.45 (s,  9H), 1.25 (d, J=7.0
Hz, 3H), 1.23 (s, 9H), 1.09 (d, J=6.1 Hz, 9H). 13C-NMR (101 MHz,
chloroform-d, δ,  ppm):  169.82,  158.03  (d, J=5.9  Hz),  146.41,
145.96,  141.19,  139.69,  136.46,  135.47,  134.67,  129.74  (d,
J=17.7  Hz),  128.92,  128.28,  127.42,  126.93,  126.24,  125.27,
117.66 (d, J=7.3 Hz), 51.90, 35.17, 34.59, 34.10, 31.51 (d, J=11.6
Hz),  29.60,  21.15.  ESI-MS  (m/z):  calcd.  for  C55H63NO:  753.49
Found 753.50 [M]+.

L5 was prepared in a similar method to L1. Yield 85.2%. 1H-
NMR  (400  MHz,  chloroform-d, δ,  ppm):  13.02  (s,  1H),  7.34  (d,
J=2.0 Hz, 1H), 7.02–6.88 (m, 17H), 6.43 (s, 2H), 6.15 (d, J=2.1 Hz,
1H), 5.38 (s, 2H), 3.56 (s, 3H), 2.28 (s, 12H), 1.46 (s, 9H), 1.23 (s,
9H). 13C-NMR (101 MHz, chloroform-d, δ, ppm): 170.25, 157.99,
155.92, 142.04, 140.67, 139.61, 136.77, 136.35, 135.58, 129.54,
128.93,  127.34,  126.82,  117.57,  113.82,  55.18,  51.73,  35.06,
34.00, 31.46, 29.49, 21.04. Found: C, 85.49 H, 7.60 N, 1.85 ESI-
MS (m/z): calcd. for C52H57NO2: 727.44; Found 727.40 [M]+.

L6 was prepared in a similar method to L1. Yield 70.4%. 1H-
NMR  (400  MHz,  chloroform-d, δ,  ppm):  12.96  (d, J=17.5  Hz,
1H),  7.34  (d, J=2.4  Hz,  1H),  7.24–7.11  (m,  12H),  7.07–7.00  (m,
8H),  6.43 (s,  2H),  5.48 (s,  2H),  3.55 (s,  3H),  1.46 (s,  9H),  1.22 (s,
9H). 13C-NMR  (101  MHz,  chloroform-d, δ,  ppm):  170.10,
158.43, 158.12, 157.87, 146.84, 140.01, 137.84, 136.49, 135.22,
134.18, 130.50, 130.25 (d, J=10.8 Hz), 129.65, 127.94 (d, J=11.5
Hz), 126.98, 117.33, 114.07, 113.76, 113.40, 55.23 (d, J=2.8 Hz),
50.71,  35.07,  34.02,  31.42,  29.49.  ESI-MS  (m/z):  calcd.  for
C48H49NO2: 671.38; Found 671.40 [M]+.

All  the  complexes  were  prepared  in  a  similar  method.  Ta-
king Co6 for instance, to a stirred solution of the L6 (0.4 mmol)
at  room  temperature,  an  ethanol  solution  containing  0.5
equiv. of Co(OAc)2·4H2O (0.2 mmol, 0.055 g) reaction mixture
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was refluxed for 24 h and cooled down to room temperature.
The  resultant  precipitate  was  filtered,  subsequently  washed
with hexane, and dried in vacuo at 40 °C overnight finally af-
fording brown powder.

Co1.  Yield  64.3%.  FTIR  (KBr,  cm−1):  2952,  2832,
1616(ν(C＝N)),  1507,  1455,  1438,  1359,  1300,  1246,  1173,
1105,  1032,  868,  830,  768,734,  669,  576.  Anal.  Calcd.  for
C104H112CoN2O10:  C,  77.64  H,  7.02  N,1.74.  Found:  C,  77.18  H,
7.17 N, 1.65. ESI-MS (m/z): required 1608.98; Found 1608.9035
[M]+.

Co2.  Yield  68.4%.  FTIR  (KBr,  cm−1):  2956,  2866,  1891,
1619(ν(C＝N), 1503, 1434, 1356, 1225, 1153, 1118, 1095, 1012,
974,  830,  796,  723,  565.  Anal.  Calcd.  for  C96H88CoF8N2O2:  C,
76.23  H,  5.86  N,  1.85.  Found:  C,  76.14  H,  5.7  N,  1.74.  ESI-MS
(m/z): required 1512.69; Found 1512.0365 [M]+.

Co3.  Yield  65.2%.  FTIR  (KBr,  cm−1):  2953,  2926,  2860,
1618(ν(C＝N)), 1506, 1436, 1245, 1196, 1169, 1121, 1021, 984,
870,  806,  726,  665,  569.  Anal.  Calcd.  for  C104H112CoN2O2:  C,
84.35  H,  7.62  N,  1.89.  Found:  C,  84.07  H,  7.43  N,  1.78.  ESI-MS
(m/z): required 1480.99; Found 1480.3930 [M]+.

Co4.  Yield  60.1%.  FTIR  (KBr,  cm−1):  2956,  2867,
1621(ν(C＝N)),  1587,  1506,  1436,  1351,  1252,  1165,  1111,
1021,  874,  813,  767,  720,  662,  569.  Anal.  Calcd.  for
C110H124CoN2O2:  C,  84.41  H,  7.99  N,  1.79.  Found:  C,  84.08  H,
7.47 N, 1.75. ESI-MS (m/z): required 1565.15; Found 1565.0721
[M]+.

Co5.  Yield  67.6%.  FTIR  (KBr,  cm−1):  2953,  2863,
1618(ν(C＝N)),  1570,  1502,  1450,  1313,  1248,  1193,  1165,
1131, 1049, 867, 840, 813, 760, 720, 672, 569. Anal.  Calcd. for
C104H112CoN2O5:  C,  81.70  H,  7.38  N,  1.83.  Found:  C,  81.16  H,
7.22 N, 1.73. ESI-MS (m/z): required 1528.98; Found 1528.7744
[M]+.

Co6.  Yield  63.9%.  FTIR  (KBr,  cm−1):  2953,  2826,
1618(ν(C＝N)),  1574,  1489,  1457,  1313,  1252,  1193,  1169,
1135,  1049,  1031,  840,  760,  699,  596.  Anal.  Calcd.  for
C96H96CoN2O4: C,82.32 H, 6.91 N, 2.00. Found: C, 82.11 H, 6.35
N, 1.95. ESI-MS (m/z): required 1400.77; Found 1400.6528 [M]+.

Polymerization of Butadiene
A  typical  procedure  for  the  polymerization  is  as  follows:  a

toluene (10 mL) solution of 1,3-butadiene (1 g, 0.0185 mol) was
added  to  a  moisture  free  ampule  bottle  preloaded  with
complex Co6 (2.5  mg,  0.0018  mmol),  then  EASC  (0.54  mmol)
was injected to initiate  the polymerization at  50 °C.  After  24 h,
methanol  was  added  to  the  system  to  quench  the
polymerization. The mixture was poured into a large quantity of
methanol containing 2,6-di-tert-butyl-4-methylphenol (1.0 wt%)
as  a  stabilizer.  Filtered  and  dried  under  vacuum  at  40  °C,
polybutadiene was resulted at a con-stant weight (0.92 g, 92%).
We chose EASC(Al2Et3Cl3) as the co-catalyst and Co6 as the main
catalyst to optimize the polymerization conditions.

RESULTS AND DISCUSSION

Synthesis and Characterization of the Cobalt
Complexes Co1−Co6
The  salicylaldimine  ligands L1−L6 bearing  bulky  substituted
benzhydryl  groups  were  prepared  in  high  yields  by
condensation reaction between 3,5-di(tert-butyl)salicylaldehyde
and  1.0  equiv.  of  aniline  derivatives.  Subsequent  coordination
with  Co(OAc)2·4H2O  in  refluxing  ethanol  afforded  the  targeted
complexes Co1−Co6 (Scheme  1).  All  the  ligands  were  well
identified  by 1H-NMR, 13C-NMR,  FTIR  analysis,  and  the  cobalt
complexes were characterized by FTIR and elemental analysis. In
order  to  establish  the  coordination  environment  around  the
metal  center,  single  crystal  of  complex Co6 was  successfully
isolated (Fig. 1), and its selective bond distances and angles and
crystallographic  details  are  shown  in  Table  S1  and  S2  (in  the
electronic  supplementary  information,  ESI).  Moreover,  to
confirm the steric  bulky nature at  the metal  center  in Co6 and
highlight its differences after incorporating benzhydryl moieties,
comparisons  with  its  structurally  similar  analogues  bearing
different  2,6-disubstituted  anilinyl  groups, i.e.,  2,6-iPr2 for
complex N-(2,6-diisopropylanilinyl)salicylaldiminate  cobalt
(CoiPr)  and  2,6-H2 for  complex N-(4-methoxylanilinyl)salicylal-
diminate cobalt (CoH), were also implemented.[54,55]

Single crystal of complex Co6 was isolated by layering Et2O
onto its saturated dichloromethane solution. As the structure
shown  in Fig.  1,  the  cobalt  center  is  coordinated  by  two
bidentate salicylaldiminate ligands, and its coordination geo-
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Scheme 1    Synthesis procedure for cobalt complexes Co1−Co6.
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metry  can  be  best  described  as pseudo-tetrahedral.  The
Co―O  and  Co―N  bond  distances  are  1.9178(14)  Å  and
2.0030(16)  Å,  respectively,  which  are  obviously  longer  than
other  reported  bis(salicylaldiminate)  Co(II)  complexes  that
generally revealed Co―O bond distances of 1.87−1.91 Å and
Co―N  of  1.96−2.03  Å  (Table  1).  Such  a  structural  difference
was probably due to the presence of steric bulky benzhydryl
groups on the ligand, which repelled each other to avoid ste-
ric  overlapping.[56−61] Probably  because  of  the  same  reason,
the cobalt atom deviated from the salicylaldimine plane con-
structed  by  (O2,  C40,  C35,  C34,  N1)  by  a  value  of  0.590  Å,
which was much greater than those in other reported bis(sali-
cylaldiminate) Co(II) complexes, in which the cobalt atom was
generally located on such a plane.[56−61]

Besides  the  above  structure  differences,  the  steric  bulky
nature around the metal  center  in Co6 can be also reflected
from  its  space-filling  model. Fig.  2 demonstrates  its  space-
filling  difference  with  complexes CoiPr and CoH,[54,55] from

which it can be clearly observed that the cobalt atom in Co6
is  buried  tightly  in  its  surrounded  ligand  skeletons,  leaving
only  one “cavity”  for  further  reactions;  whereas  for CoiPr and
CoH,  the metal  centers  are more exposed,  giving them more
reaction  possibilities  with  outer-accessed  substrates.  The
same conclusion can be also drawn from an alternative para-
meter  of  the  buried  volume  (Vbur),[62−64] which  has  been  ex-
tensively used to evaluate the steric environments around the
metal center.[65−67] As shown in Fig. 3, the Vbur value of cobalt
atom in Co6 (44.7%) is significantly higher than those in CoiPr

(40.6%) and CoH (38.6%), indicative of the more bulky nature
for the cobalt atom in Co6. Because of this unprecedent bulky
characteristic,  the  formed  active  species  in Co6 can  be  well
protected  from  impurities  from  the  polymerization  medium,
and therefore  brings  a  much higher  Catalytic  efficiency (vide
infra).

1,3-Butadiene Polymerization Performances
Cobalt complexes have been extensively evaluated as high cis-

Table 1    Bond distance differences between Co6 and other reported bis(salicylaldiminate) Co(II) complexes.

Complex Co―O (Å) Co―N (Å) Complex Co―O (Å) Co―N (Å)

Co6 1.9178(14) 2.0030(16)
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Fig.  1    Single-crystal  structure  of  complex Co6 with  with  50%  probability  thermal  ellipsoids  (in  the  right
figure, benzhydryl moieties were omitted for clarity).
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1,4-selective  catalysts  for  1,3-butadiene  polymerization.
Nevertheless,  for  most  of  these  studies,  comparatively  higher
precatalyst loading is generally required if good polymer yields
are  desired  (vide  supra).  Considering  the  unique  bulky  nature
around the cobalt atoms for the present complexes,  when low
catalyst  loading  was  applied  for  the  polymerization,  the  active
species  can  be  well  protected  from  possible  impurities  in  the
reaction  medium,  and  therefore  is  anticipated  to  work  well  in
such a condition.  Based on these considerations,  complex Co6
was selected as a representative precatalyst for subsequent 1,3-
butadiene  polymerization  at  low  catalyst  concentrations.  In
order to explore the limiting value of the catalytic efficiency, low
catalytic  loading  with  a  ratio  of  [BD]/Co6 in  the  range  of
5×104–2×105 was  mainly  investigated.  It  is  of  note  that,  when
extremely low precatalyst concentration was applied, increased
aluminum alkyl compounds are generally required to scavenge
impurities,  therefore,  relative  higher  cocatalyst  ratios  of
[EASC]/Co6 are  applied  in  the  present  studies.  As  the  results
shown  in Table  2,  initial  evaluation  of  1,3-butadiene
polymerization  at  a  ratio  of  [BD]/Co6=5×104 give  satisfying
results. In the presence of 100 equiv. of EASC, the polymer yield
could  reach  as  high  as  77%,  and  this  value  can  be  further
improved  to  92%  when  300  equiv.  of  EASC  was  applied.
Continuous  decreasing  the  precatalyst  concentration  to
[BD]/Co6=8×104 led  to  a  slightly  decreased  yield  of  71%,  and

again,  such  a  yield  can  be  improved  to  81%  when  further
increasing  the  EASC  equivalents  to  500.  These  results  clearly
indicated  the  high  catalytic  efficiencies  of  the  formed  active
species,  that  were  guaranteed  by  the  bulky  nature  of  the
salicylaldimine  ligands.  Moreover,  it  was  also  found  that,
complex Co6 could successfully  maintain to be active at  ratios
of  [BD]/Co6=1×105 and  2×105,  which,  to  the  best  of  our
knowledge,  were  the  lowest  catalyst  concentrations  that  have
been  reported,  although  much  lower  polymer  yields  were
revealed.

For  a  typical  coordination  polymerization,  the  molecular
weights  of  the  resultant  polymers  are  generally  reversely  re-
lated to the concentrations of precatalyst, i.e., a lower concen-
tration of precatalyst usually generates comparatively higher
molecular  weights.  Nevertheless,  for Co6 mediated  systems,
although their  catalyst  concentrations were much lower,  the
resultant molecular weights of polybutadienes were very sim-
ilar to other Co(II) mediated diene polymerizations in which a
range of molecular weights Mn=10.0×104−30.0×104 were ob-
tained  at  high  precatalyst  concentrations.  Such  unusual  res-
ults  were  probably  caused by  the  chain  transfer  reactions  to
aluminum  compounds.  Due  to  the  presence  of  excessive
amounts  of  cocatalyst  EASC  in Co6 mediated  polymeriza-
tions, chain transfer to EASC was greatly facilitated and there-
fore played a larger role in reducing the molecular weights of
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polybutadienes,  which  eventually  gave  rise  to  comparable
molecular  weights.  Similar  chain  transfer  reactions  to  alkyl
aluminum  chloride  compounds  was  reported  in  many  other
Co(II)  promoted  diene  polymerizations.[68] Inspired  by  the
above  high  catalytic  efficiencies  of Co6 at  low  catalyst  con-
centrations, other cobalt complexes Co1−Co5 were also eval-
uated at  similar  conditions  to  establish  the  structure-reactiv-
ity relationship. As the results shown in Table 3,  all  the other
five complexes reveal  comparable high activities  to Co6 at  a
ratio of [BD]/[Co]=5×104, indicating the universal high catalyt-

ic efficiency caused by positive shielding effect of benzhydryl
groups.  Moreover,  varying  the  substituents  on  benzhydryl
moieties  seemed  to  bring  little  influence  on  the  catalytic
activities, and all the polymer yields were around 90%. These
results  can  be  explained  from  the  similarity  of  the  buried
volume  (Vbur),  as  revealed  the  topographical  steric  maps  of
the structures of Co1−Co6 that were optimized by DFT calcu-
lations (Fig. 4). Due to the remote distances of R1 and R2, vary-
ing  these  substituents  brought  subtle  influence  on  the  co-
ordination/insertion  environment  around  the  active  species,

Table 2    1,3-Butadiene polymerization under different conditions using Co6. a

Run BD/Co6 EASC/Co Yield (wt%) Mn (×104) b Mw/Mn

Microstructure c (%)

Cis-1,4 Trans-1,4 1,2

1 50000 100 77 11.1 1.7 87.2 11.0 1.8
2 50000 300 92 8.2 2.5 84.5 13.5 2.0
3 80000 300 71 11.8 2.0 88.4 9.6 2.0
4 80000 500 81 18.8 2.9 85.3 11.6 3.1
5 100000 300 39 20.1 2.4 84.7 12.6 2.7
6 100000 500 70 29.1 2.2 84.3 11.6 4.1
7 200000 300 29 20.1 5.6 81.6 15.8 2.6
8 200000 500 48 14.9 7.5 86.2 11.6 2.2

a Polymerization  conditions:  in  toluene  for  24  h  at  50  °C,  [Bd]=1.85  mol/L,  EASC:  ethylaluminum  sesquichloride; b Determined  by  GPC  eluted  with  THF
(polystyrenes as standards); c Determined by FTIR.

Table 3    1,3-Butadiene polymerization of complexes Co1−Co6. a

Run Cat. EASC/Co Yield (wt%) Mn (×104) b Mw/Mn

Microstructure c (%)

Cis-1,4 Trans-1,4 1,2

1 Co1 300 92 13.1 2.4 93.8 3.9 2.3
2 Co2 300 90 6.6 2.4 92.7 5.6 1.7
3 Co3 300 91 13.1 2.7 93.9 4.3 1.8
4 Co4 300 89 16.7 2.4 92.5 5.9 1.6
5 Co5 300 93 8.8 2.9 88.7 9.0 2.3
6 Co6 300 92 8.2 2.5 84.5 13.5 2.0

a Polymerization  conditions:  in  toluene  for  24  h  at  50  °C,  [Bd]  =  1.85  mol/L,  [BD]/[Co]  =  50000; b Determined  by  GPC  eluted  with  THF  (polystyrenes  as
standards); c Determined by IR.
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Fig. 3    Topographical  steric maps and percent of buried volume (Vbur)  for complexes CoH (left),[54] CoiPr (middle)[55] and Co6 (right)  (only one
salicylaldimine ligand was taken into account to be consistent with the hypothesized active species that contains only one ligand[43]).

1374 Fang, L. et al. / Chinese J. Polym. Sci. 2022, 40, 1369–1379  

 
https://doi.org/10.1007/s10118-022-2758-5

 

https://doi.org/10.1007/s10118-022-2758-5


and  therefore,  very  similar  catalytic  activities  were  given
eventually.  Nevertheless,  ligand  structures  imposed  signifi-
cant influence on the molecular weights of the resultant poly-
butadienes. These results might be relevant to both steric and
electronic effects. As indicated above, due to the presence of
excessive amount of EASC, chain transfer to aluminum played
a pivotal  role  in  governing the molecular  weights,  therefore,
any  factors  that  were  beneficial  to  chain  transfer  reactions
would  result  in  smaller  molecular  weights.  Generally,  chain
transfer to aluminum occurs through a bimetallic Co-Al inter-
mediate  and  decreasing  the  steric  bulkiness  and  enhancing
the  electropositivity  at  the  metal  center  suppresses  favors
greatly  the  formation  of  such  bimetallic  intermediate.  Based
on this consideration, tert-butyl groups on the outer space of
complex Co4 would  retard  the  accessing  of  EASC  to  the  co-
balt  center  to  generate  bimetallic  intermediate,  and  eventu-
ally resulted in much higher molecular weight (16.7×104);  for
complex Co2 bearing  strong  electro-withdrawing  fluoro-
group on the N-phenyl moiety, a more positive charge on the
cobalt  center  would  be  revealed,  that  was  in  favor  of  the
formation of bimetallic intermediate, and eventually, resulted
in  the  smallest  molecular  weight  (6.6×104).  After  combining
the  steric  and  electronic  reasons,  a  general  trend  of Co4 >
Co1~Co3 > Co5~Co6 > Co2 was  demonstrated in  our  stud-
ies.  Regarding  the  microstructure  of  the  afforded  poly-
butadienes, Co1, Co2, Co3 and Co4 gave much similar cis-1,4-
contents  that  were  in  the  range  of  92.9%−93.9%,  however,
Co5 and Co6 demonstrated  much  lower cis-1,4-selectivities.

Currently,  specific  reasons  for  these  results  were  still  unclear
yet,  but  might  be  relative  to  the  strong  electron-donating
ability  of  MeO― groups,  that  is  unfavorable  for  the  1,3-
butadiene monomer to coordinate the metal center in a cis-η4

fashion.
Increasing the axial  bulkiness of late-transition metal com-

plexes  could  enhance  their  thermostabilities  during  olefin
polymerizations.[23,69−73] For  the  present  cobalt  complexes
Co1−Co6,  significantly  increased  bulkiness  is  also  provided
by the benzhydryl moieties, therefore, their catalytic thermo-
stabilities  for  1,3-butadiene  polymerization  were  also  evalu-
ated. Initial studies revealed that conducting the polymeriza-
tion  at  extreme  low  precatalyst  concentrations  ([Bd]/[Co]=
5×104)  gave  much  poor  catalytic  activities  at  high  tempera-
ture of 120 °C, therefore, during the subsequent thermostabi-
lity  studies,  all  the  polymerizations  were  implemented  at  a
decreased ratio of [BD]/[Co] = 1×104, and for such a ratio, the
cocatalyst  loading  could  be  lowered  to  a  common  value  of
10. As the results summarized in Table 4 and Fig. 5, the six co-
balt  complexes Co1−Co6 demonstrated  very  high  catalytic
efficiencies  at  relative  lower  temperatures  of  30  and  50  °C,
giving  very  high  polymer  yields.  Increasing  the  polymeriza-
tion temperature to 80 °C brought little influence on the cata-
lytic  activities,  and  all  the  polymer  yields  were  higher  than
80%,  indicative  of  the  high  thermostabilities  of  the  corres-
ponding  cobalt  active  species  that  were  enhanced  by  the
bulky benzhydryl moieties. Moreover, it was also satisfying to
find that all  the six complexes could successfully survive at a
temperature  as  high  as  120  °C,  which  confirmed  again  the
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Fig. 4    Topographical steric maps and percent of buried volume (Vbur) for the structures of Co1−Co6 that were optimized by DFT calculations
(only one salicylaldimine ligand was taken into.
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thermal robustness of the active species. Increasing the poly-
merization temperature imposed significant influence on the
molecular weight as well as the microstructures of the result-
ant  polybutadiene  products.  Generally,  elevating  temperat-
ure would facilitate the chain transfer reactions, that gave rise
to gradually decreased molecular weights; and at higher tem-
perature,  the  growing  polybutadienyl  propagating  active
species would shift from an anti-η3 to a syn-η3, and eventually
more trans-1,4-  content  would  be  generated  from  the  latter
configuration.

CONCLUSIONS

A  family  of  bis(salicylaldiminate)  Co(II)  complexes  are
synthesized and their catalytic performances towards butadiene

polymerization  is  reported  herein.  Due  to  the  highly  bulky
nature  of  the  ligands  that  are  caused  by  the  steric  congested
benzhydryl  moieties,  the  cobalt  metal  centers  can  be  well
protected  from  any  possible  impurities,  and  therefore,  the
complexes  reveal  ultra-high  catalytic  efficiencies  even  at
extreme  low  catalyst  concentrations.  At  a  ratio  of  [BD]/[Co]  =
5×104,  all  the  complexes  could  well  catalyze  1,3-butadiene
polymerizations,  giving  polymer  yields  higher  than  90%.  Li-
gand structures brought little influence on the catalytic activities
but  influenced  significantly  the  molecular  weights  of  the
resultant polybutadienes, giving an order of Co4 > Co1~Co3 >
Co5~Co6 > Co2, that is relevant to chain transfer efficiencies. In
addition,  such a  highly  bulky nature also brings in  significantly
enhanced thermostabilities of the active species, that give quite
high polymer yields at temperatures up to 120 °C, implying the
positive influence of congested benzhydryl moiety in achieving
thermo  robust  catalysts.  Nevertheless,  increasing  the
polymerization  temperature  resulted  in  gradually  decreased
molecular  weights  and cis-1,4-  contents  due  to  the  facilitated
chain transfer and anti-syn isomerization of the active species.
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Crystallographic data for Co6
CCDC  2132656  contains  the  supplementary  crystallographic
data  for  this  work.  These  data  can  be  obtained  free  of  charge
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data_request@ccdc.cam.ac.uk, or by contacting The Cambridge
Crystallographic  Data  Centre,  12  Union  Road,  Cambridge  CB2
1EZ, UK; fax: +44 1223 336033

Table 4    1,3-Butadiene polymerization by Co1−Co6 at different temperatures.a

Run Cat. T (°C) Yield (wt%) Mn (×104) b Mw/Mn

Microstructure c (%)

Cis-1,4 Trans-1,4 1,2

1 Co1 30 88 29.5 2.1 95.6 3.1 1.3
2 50 93 16.4 3.0 91.7 5.8 2.3
3 80 88 8.1 3.9 83.5 12.0 4.5
4 120 62 9.9 3.3 79.7 15.2 5.1

5 Co2 30 81 27.3 2.1 95.4 3.2 1.4
6 50 87 13.5 3.1 92.2 5.7 2.1
7 80 90 9.3 3.9 84.0 12.3 3.7
8 120 70 9.2 3.8 80.1 16.0 3.9

9 Co3 30 82 27.3 2.0 95.2 3.3 1.5
10 50 90 16.2 3.1 91.3 6.7 2.0
11 80 86 8.2 3.8 82.7 13.1 4.2
12 120 78 10.6 3.1 83.6 12.8 3.6

13 Co4 30 74 28.3 2.0 95.0 3.8 1.2
14 50 94 13.4 3.1 92.0 5.8 2.2
15 80 89 8..8 4.0 81.4 15.0 3.6
16 120 77 7.1 3.8 82.7 13.0 4.3

17 Co5 30 82 30.0 2.0 96.4 2.3 1.3
18 50 97 8.1 4.1 91.0 5.9 3.1
19 80 87 7.2 4.5 84.5 10.5 5.0
20 120 74 8.0 3.3 82.7 12.3 5.0

21 Co6 30 93 35.0 2.3 95.8 3.0 1.2
22 50 100 19.2 2.4 89.7 8.4 1.9
23 80 83 8.8 4.0 83.2 13.9 2.9
24 120 86 7.0 3.8 78.1 17.8 4.1

a Polymerization  conditions:  in  toluene  for  3  h,  [Bd]/[Co]=1×104,  [Al]/[Co]=10,  [Bd]  =  1.85  mol/L; b Determined  by  GPC  eluted  with  THF  (polystyrenes  as
standards); c Determined by FTIR.
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Fig.  5    Polymer  yields  of  different  cobalt  complexes Co1−Co6 at
30 °C, 50 °C, 80 °C and 120 °C.
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