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Abstract   In spite of the impending flattening of Moore's law, the complexity and size of the systems we are interested in keep on increasing.

This  challenges  the  computer  simulation  tools  due  to  the  expensive  computational  cost.  Fortunately,  advanced  theoretical  methods  can  be

considered as alternatives to accurately and efficiently capture the structural and thermodynamic properties of complex inhomogeneous fluids.

In  the  last  decades,  classical  density  functional  theory  (cDFT)  has  proven  to  be  a  sophisticated,  robust,  and  efficient  approach  for  studying

complex  inhomogeneous  fluids.  In  this  work,  we  present  a  pedagogical  introduction  to  a  broadly  accessible  open-source  density  functional

theory software package named "an advanced theoretical tool for inhomogeneous fluids" (Atif) and of the underlying theory. To demonstrate Atif,
we take three cases as examples using a typical laptop computer: (i) electric double-layer of asymmetric electrolytes; (ii) adsorptions of sequence-

defined semiflexible polyelectrolytes on an oppositely charged surface; and (iii) interactions between surfaces mediated by polyelectrolytes. We

believe  that  this  pedagogical  introduction  will  lower  the  barrier  to  entry  to  the  use  of Atif by  experimental  as  well  as  theoretical  groups.  A

companion website, which provides all of the relevant sources including codes and examples, is attached.
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INTRODUCTION

Classical  density  functional  theory  (cDFT)  has  proven  to  be  a
versatile,  powerful,  efficient,  and  widely  used  method  in  the
study  of  complex  inhomogeneous  fluids  such  as  liquid-vapor
interfaces,  wetting  and  drying  on  substrates,  and  soft  matters
(including  electrolytes,  polymers,  sequence-defined  polyelec-
trolytes  and  so  on)  in  confined  geometries.[1−3] cDFT  connects
the  microscopic  structural  features  to  the  physiochemical
properties of macro- and mesoscopic confined systems at a very
low computational cost via an analytical expression for the free
energy  (grand  potential  or  Helmholtz  free  energy)  functional
based  on  a  given  equation  of  state.  In  cDFT,  the  many-body
problem  is  described  by  the  unique  free  energy  functional  of
the  spatially  varying  particle  for  a  given  external  potential.[4,5]

Thus the complex many-body problem is reduced into a simple
single-field  theoretical  problem.  This  makes  cDFT  calculations
be  generally  much  less  expensive  than  particle-based
simulation methods. Therefore, cDFT has a particular advantage
over particle-based computer simulation methods in studies of

complex  inhomogeneous  fluids  (especially  for  the  confined
systems with multi-chain polyelectrolytes).

Dramatic  progress  in  cDFT took place throughout  the late
1970s  to  the  early  1990s.  In  these  two  decades,  the  general
formalism  of  cDFT  was  established  for  both  uncharged  and
charged  systems  based  on  the  hard-sphere  model  (i.e.,  the
basic  units  of  the molecules  are  modeled as  hard spheres  or
charged hard spheres) where the solvent is represented by a
continuous  dielectric  medium  (i.e.,  the  primitive  model  for
electrolytes).[6−10] Later  on,  cDFT  has  been  extended  to  de-
scribe uncharged[11,12] and charged[13] polymeric  fluids  using
Wertheim's  thermodynamic  perturbation  theory  (TPT)[14−20]

and  its  extensions.[21,22] The  central  task  in  cDFT  is  to  con-
struct the analytical free energy functional with respect to the
density  distributions  of  the  components.  Generally,  the  total
Helmholtz free energy can be written as

F = Fid + Fex (1)
Fid Fexwhere  is the ideal part and the excess part  is

Fex = Fhs + FvdW + FC (2)

Fhs = F
o
hs + F

ch
hs F

o
hs

On  the  right-hand  side  of  Eq.  (2),  the  terms,  from  left  to
right,  account  for  the  hard-core  excluded  volume  interac-
tions,  van  der  Waals  interactions  and  Coulomb  interactions,

respectively.  In  general, .  is  the  excluded

volume effects from the hard-core interactions which can be

 

* Corresponding author, E-mail: jiangj@iccas.ac.cn

Invited Research Article
Received August 5, 2021; Accepted September 1, 2021; Published online
November 9, 2021

Chinese Journal of
POLYMER SCIENCE RESEARCH ARTICLE 
 

   
© Chinese Chemical Society www.cjps.org
     Institute of Chemistry, Chinese Academy of Sciences link.springer.com

 



Fch
hs

accurately described by fundamental measure theory (FMT)[8]

and its extensions (MFMT).[23,24] The agreements between the
MFMT and Monte Carlo simulations are excellent for inhomo-
geneous  hard-sphere  fluids  including  both  one  component

and mixture systems for the entire range of densities.[23,24] 
is the non-bonded chain connectivity correlations in the poly-
meric  fluid  systems  due  to  hard-core  interactions  which  can
be approximated using TPT.[25] The free energy due to Coulomb
interactions is

FC = FC
MF + Fel (3)

FMF
Fel

Fel = F
o
el + F

ch
el

Fo
el

Fch
el

F

F

where  is  the Coulomb interactions at  mean field level  and
 is  the  contributions  from electrostatic  correlations  (which is

beyond  the  mean  field  level).  Generally, ,  where

 is  the  electrostatic  correlations  of  charged  hard  spheres
which  can  be  approximated  using  the  mean  spherical  app-
roximation (MSA)[26−28] or a "soft correlation hole" method;[29,30]

and  is  the  the  non-bonded  chain  connectivity  due  to  the
electrostatic  correlations  in  the  polymeric  fluid  systems,  which
can  be  captured  using  a  sticky-point  model.[21,22] After  the
construction of analytic expression of  in Eq. (1) is completed,
one can obtain the structural and thermodynamic properties of
the  inhomogeneous  systems  by  finding  the  extrema  of  the
Helmholtz  free  energy  or  the  grand  potential  (which  can  be
obtained  from  the  Helmholtz  free  energy  functional via the
Legendre  transform).  The  details  of  and  the  implementation
of cDFT will be presented in the next two sections.

Although  the  accuracy  and  efficiency  of  cDFT  in  studying
non-uniform  complex  fluids  have  been  proven,  cDFT  has
been neither widely used by experimental groups nor by the-
oretical  and  computational  groups.  The  major  roadblocks  to
the widespread use of cDFT by both experimental and theor-
etical/computational groups are the complexity of the theory
itself and the lack of an easy-to-use software about cDFT. On
the one hand, there were many different versions of cDFTs in
the  literature  which  make  the  researchers  confused  about
how to make a right choice. Moreover, the learning barrier of
cDFTs (such as FMT, MSA, TPT and so on) is relatively high, es-
pecially  for  experimental  groups.  On the other hand,  the ab-
sence of an easy-to-use and robust software makes the imple-
mentation  of  cDFT  be  difficult  to  our  chemical  physics  and
physical chemistry communities. Although the Sandia National
Laboratories in USA has released a software named "Tramonto"
based  on  cDFT  in  2000s,[31] the  cumbersome  software  pack-
age and complicated installation process make the entry bar-
rier  of  "Tramonto"  extremely  high.  Furthermore,  the last  ver-
sion of "Tramonto" was released in 2011.  In the past decade,
impactive progress has been made in both cDFT itself and its
applications  which  were  not  involved  in  "Tramonto".  There-
fore, an easy-to-use and broadly accessible software based on
the up-to-date cDFT is requisite.

cDFT  has  experienced  half  a  century  of  development.  The
pedagogy  for  cDFT  framework  is  now  reasonably  mature.  In
this  work,  we  provide  a  pedagogical  introduction  to  the
open-source  software  named  "an  advanced  theoretical  tool
for inhomogeneous fluids" (Atif) developed by us, and the de-
tails  of  the  underlying  theory  are  also  introduced.  Here  "ad-
vanced"  means  more  accuracy  and  efficiency.  The  comparis-
ons between Atif and other methods are shown in Sec. IV. Us-
ing Atif,  one  can  study  the  structural,  thermodynamic,  and

electrochemical  properties  (such  as  electric  double-layer,  ca-
pacitance,  adsorption  behaviors,  interactions  between  two
surfaces  and  so  on)  of  inhomogeneous  complex  fluids  (in-
cluding uncharged hard-sphere fluids,  electrolytes with sym-
metrical/asymmetrical  size  and  multivalency,  charged/un-
charged  flexible/semiflexible  block/sequence-defined  poly-
mers and polymer blends and so on) in the vicinity of a single
surface or confined by two surfaces. Moreover, Atif integrates
both  cDFT  and  a  self-consistent  field  theory  (SCFT).[32,33] The
users  can choose one of  the  two methods  arbitrarily  to  start
their  projects.  In  order  to  make  it  unnecessary  for  users  to
either  know  the  computer  language  (such  as  C++  or  FOR-
TRAN)  or  seek  an  experienced  collaborator,  this  designed
software  can  be  controlled  completely via a  readable  input
file.  Even  people  who  know  nothing  about  computer  lan-
guage  can  install  successfully  and  run  their  first  example  on
their  laptop  in  minutes. Atif is  compiled  using  C++  and  it  is
very easy to be extended. If one is interested in the theory it-
self and wants to contribute to Atif, one can integrate his/her
own subroutines into Atif easily.

To  demonstrate Atif clearly,  we  take  three  cases  as  ex-
amples. In the first example, we study the electric double-lay-
er  of  electrolytes  with  asymmetrical  size  in  the  vicinity  of  a
charged  surface.  In  the  second  one,  we  present  the  adsorp-
tion  behaviors  of  semiflexible  sequence-defined  polyelectro-
lytes  on  an  oppositely  charged  surface.  In  the  third  one,  we
show  the  interactions  between  two  charged  surfaces  medi-
ated by polyelectrolytes.

This study is organized as follows. In the next section we in-
troduce the formalism and model considered in Atif. In Sec. III,
the installation and implementations of Atif are described. In
Sec. IV, we consider the three examples one by one to further
demonstrate the implementations of Atif.  Sec. V contains our
conclusions and outlook.

MODEL AND THEORY

Np mth

pth Nm
p p ∈ [1,⋯, P]

m ∈ [1,⋯, Np]

In  general,  the  system  in Atif can  contain  charged/uncharged
flexible/semiflexible  homopolymers,  copolymers,  sequence-
defined  polymers,  charged/uncharged  small  molecules.  To
simplify  the  demonstration,  we  present  the  cDFT  equations  in
this work for the case of charged semiflexible sequence-defined
polymer  blends  with  salts  in  the  vicinity  of  a  charged  surface.
Assume that the system contains P species of sequence-defined
polymers, where each polymer has  blocks and the  block
of the  polymer consists of  monomers with 
which  is  the  index  of  different  species  of  polymers  and

 which  is  the  index  of  different  blocks.  We  start
our  discussions  by  considering  the  grand  potential  of  the
system.  The  grand  potential  can  be  obtained  from  the
Helmholtz  free  energy  functional via the  Legendre  transform,
i.e.,

W =Fid + Fex +∑P

p=1
∫ dRρp(R) [Ψp(R) − μ p]+

∑
α
∫ drρα(r) [ψα(r) − μα] (4)

dR = dr1dr2⋯drNp ρp(R) Np

p Np = ∑Np
m=1 N

m
p

α

where ,  and  is  the  3 -dimensional

density  distribution  of  the  polymer  with  as

the  polymerization.  In  this  work,  the  subscript  refers  to
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p
i j

μp μα

Ψp(R)
pth Ψp(R) =

∑Np
m=1 ∑

Nmp
k=1

ψp,m(rkp,m) k
ψp,m

ψα(r)

small  ions  only  and refers  to  entire  polymers,  and  herein-
after  the  subscript  or  refers  to small  ions  (including  salts
and  counterions)  and  monomers. and  are  the  chemi-
cal  potentials  of  the  entire  polymers  and  small  ions,  resp-
ectively.  The  non-electrostatic  external  potential is
applied  to  the  entire  chain  of  the polymers, i.e., 

,  where is  the  index  of  monomer  and

is  the  external  potential  imposed  on  the  individual
segments.  is  the  non-electrostatic  external  potential  for
small  ions.  The  non-electrostatic  external  potential  in Atif is
modeled as Square-well (SW) or 9-3 Lennard-Jones potential as
shown  in  Sec.  I  in  the  electronic  supplementary  information
(ESI).

Np

mth pth σmp zmp

σα zα

εr{σi} {σj} {σmp }⋃{σα} {zi} {zj}{zmp }⋃{zα}

In  this  work,  the  semiflexible  sequence-defined  polymers
are  modeled  as tangentially  connected  hard  spheres
(monomers)  with  diameter  and  valency  of  the  monomers  in
the  block  of  the polymer  being and ,  respect-
ively. We assume that the salts and counterions are modeled
as  charged  hard  spheres  with  diameter and  valency ;
and  the  solvent  is  treated  as  a  continuum  dielectric  back-
ground with  dielectric  constant .  We have to  note  that  the
set or  is equal to and  or  is equal

to .  The  schematic  of  the  model  under  considera-
tion in this work is shown in Fig. 1.

In Eq. (4), the ideal free energy is given by

βFid =∑P

p=1
∫ dRρp(R) {ln[ρp(R)Λp] − 1}+

∑P

p=1
∫ dRρp(R)β [Vb

p(R) + Ub
p(R)]+

∑
α
∫ drρα(r) {ln [ρα(r)aα] − 1}

(5)

Λp = πNp
m=1(amp )Nmp amp aα

amp aα

a = amp = aα
k 1 ≤ k ≤ Np

p Vb
p(R)

with ,  where and  are  volume  scale

which can be taken as the cube of the thermal de Broglie length;

the precise definition of and  are immaterial as they have

no thermodynamic consequences.  Therefore,  for  simplicity,  we

set .  In  order  to  explain  the  bonding  and  bending

potentials clearly, we redefine the monomer index : 

for  polymer .  Then  the  bonding  potential in  the  ideal

part (Eq. (5)) is written in the form

exp [−βVb
p(R)] = aNp−1

Np−1

∏
k=1

δ(∣rkp − rk+1
p ∣ − dkp)

4π(dkp)2 (6)

rkp kth pth

Ub
p(R)

βH =
κb

2
∫ L0 ds(d2r(s)/d2s)2 r(s)

β = 1/(kBT)
kB

κb lp ∝ κb lp

where is the spatial coordinate of the monomer of the 

polymer. The bending potential  in the ideal part (Eq. 5) is

commonly approximated using the Kratky-Porod (KP) wormlike
chain (WLC) model.[34−39] The Hamiltonian of KP WLC (hereafter

referred to  as  WLC)  is  with  the

chain in continuum space and  is the inverse thermal
energy with  the Boltzmann constant. The local rigidity of the
polymer  chain  is  determined  by  a  single  parameter---the
bending  modulus with ,  where is  the  persistence
length of the polymer. In this work, we make use of the discrete
version of WLC. The bending potential is

exp [−βUb
p(R)] = Np−2

∏
k=1

exp [−βEb(skp, sk+1
p )] (7)

Eb(skp, sk+1
p )where is  the  bending  potential  between  two

successive bonds, i.e.,

βEb(skp, sk+1
p ) = κb

⎛⎜⎝1 −
skp ⋅ sk+1

p

dkpd
k+1
p

⎞⎟⎠ (8)

skp = rk+1
p − rkp

dkp
dkp = σmp ∑m−1

m̂=1 Nm̂
p < k < ∑m

m̂=1 N
m̂
p ∑0

m̂=1 N
m̂
p = 0

dkp = (σmp + σm+1
p )/2 k = ∑m

m̂=1 N
m̂
p

where is the bond vector between two successive

monomers.  In  Eqs.  (6)  and  (8),  is  the  bond  length,  where

for with and

 for . This discrete WCL model

has been widely used for simulations and theoretical studies of
semiflexible  chains,[40−48] and  its  success  has  already  been
proved  by  the  molecular  dynamics[40] and  Monte  Carlo  (MC)
simulations.[41,43]

As  discussed  in  the  section  above,  the  excess  free  energy
density can be written as

Fex = Fo
hs + F

o
el + F

ch
hs + F

ch
el + FC

MF + FvdW (9)

Fo
hs

The  excess  free  energy  due  to  the  hard-core  excluded

volume  effect, ,  is  calculated  using  MFMT,[8,23,24] which  is

given by

Fo
hs [{ρα(r)}] = ∫ drΦo

hs [{nl(r)}] (10)

where

βΦo
hs [{nl(r)}] = −n0ln(1 − n3) + n1n2 − n⃗1 ⋅ n⃗2(1 − n3) +

n3
2 − 3n2n⃗2 ⋅ n⃗2

36π [ ln(1 − n3)
n2

3

+
1

n3(1 − n3)2 ]
(11)

{nl(r)}The weighted densities  are

nl(r) = ∑i ∫ ρi(r′)wl(r − r′; Ri)dr (12)

Ri Ri = σi/2 {ρi(r)} ={ρmp (r)}⋃{ρα(r)}
mth pth

where  the  radius is .  We  have 

,  where  the  density  distribution  of  the

monomers in the  block of the  polymer is

ρmp (r) = ∑Nmp
k=1

∫ dRδ(r − rkp,m)ρp(R) (13)

wl(r; x)In Eq. (12), the weighted functions are

Fig. 1    Schematic of the model under consideration in this work. The
connected  spheres  are  the  semiflexible  sequence-defined  polymers,
where the red, blue, and light gray beads are the positively charged,
negatively charged, and neutral monomers, respectively. The isolated
dark  orange  (positive)  and  green  (negative)  spheres  denote  the
counterions  and  salts;  and  the  gray  filling  rectangle  is  the
structureless, charged, planar, and impenetrable surface.

222 Jiang, J. / Chinese J. Polym. Sci. 2022, 40, 220–230

https://doi.org/10.1007/s10118-021-2646-4



w3(r; x) = Θ(x − ∣r∣), w2(r; x) = δ(x − ∣r∣)
w⃗2(r; x) = r∣r∣δ(x − ∣r∣), w⃗1(r; x) = w⃗2(r; x)

4�x

w1(r; x) = w2(r; x)
4�x

, w0(r; x) = w2(r; x)
4�x2

(14)

Θ(r) δ(r)where and  is  the Heaviside function and Dirac's  delta
function, respectively.

Fo
el{q(l)i }

As presented in our previous work,[49] we construct the free
energy  due  to  the  electrostatic  correlations using  four

FMT-like weighted densities , i.e.,

q(l)i (r) = (Ri
λi
)l ∫ ρi(r′)wl(r − r′; λi)dr (15)

λi = Ri + 1/2Γb Γbwhere with the  screening  length  parame-
ter  for  the  bulk  systems  in  MSA.  Then  the  functional  for
electrostatic correlations is given by

Fo
el [{ρi(r)}] = ∫ drΦo

el [{q(l)i (r)}] (16)
where

Φo
el [{q(l)i (r)}] = Γ(r)3

3π − Γ(r)lB∑i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
z2
i q

(0)
i (r)

1 + Γ(r)σi + γziq
(1)
i (r)

1 + Γ(r)σi
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (17)

γ= χ∑iq
(2)
i (r)zi {Γ(r)σi [1+Γ(r)σi]}−1 χ={3∑i

q(3)i (r) [1 + Γ(r)σi]−1 + [1 − q(3)(r)]}−1 q(3)(r) = ∑iq
(3)
i (r)

Γ(r)
∂Φel[{q(l)i (r)}]/∂Γ(r) = 0

with ,  where 

and .

The  first  term  in  the  right-hand  side  of  Eq.  (17)  is  the
contribution  from  entropy,  and  the  second  term  is  the  self-
energy  which is  similar  to  the  born  energy.  The  space-
dependent  can be defined in a  similar  way as the MSA for

bulk electrolytes by requiring . Then we

have

Γ2=πlB∑i

z2
i q

(0)
i (r)(1+Γσi)2 +πlBγ∑i

ziq
(1)
i (r)(1 + Γσi)2 +πlBΓ∂γ∂Γ∑i

ziq
(1)
i (r)

1 + Γσi
(18)

where

Γ
∂γ
∂Γ

= 3γχ∑i

q(3)i (r)Γσi(1 + Γσi)2 − χ∑i

q(2)i (r)zi(1 + 2Γσi)
Γσi(1 + Γσi)2 (19)

Γ2
b = πlB ∑i ρ

b
i z

2
eff,i

ρb
i

zeff,i =(zi − 0.5γΓσ2
i )/(1 + Γσi)

lB = βe2
0/(4πε0εr) e0

ε0 εr

{q(i)0 }
{q(1)i } {q(2)i }{q(0)i } {q(0)i } {q(3)i }

{q(0)i }

In  the  bulk  limit,  Eq.  (18)  reduces  to 

with is  the  corresponding  bulk  density,  where

 is  the  effective  valency  of  spe-

cies i and is the Bjerrum length with the
elementary charge and and are the vacuum permittivity
and  relative  dielectric  constant  of  the  background  (which
mimics the implicit solvent), respectively. Note that although
we  employ  four  FMT-like  scalar  weighted  densities,  our  res-
ults  are  not  substantially  different  from  the  ones  from  Roth

and  Gillespie's  work  in  which  only used.[50] These  four

FMT-like  scalar  weighted  densities  are  chosen  to  be  consist-
ent  with  the  weighted  density  terms  in  the  MSA.  Further-

more,  since and  can  be  obtained  directly  from

 one only need to calculate  and .  Therefore,

the time cost of calculating the four FMT-like scalar weighted

densities is comparable to the calculation of only.

Fch
hs Fch

el

In Eq. (9),  the chain connectivities due to the hard-core in-

teractions  and  the  electrostatic  correlations  are,  re-

spectively,

Fch
hs [{ρi(r)}] = ∑P

i=p ∫ drΦch
hs,p [{nl(r)}] (20)

and

Fch
el [{ρi(r)}] = ∑P

p=1 ∫ drΦch
el,p [{q(l)i (r)}] (21)

Φch
hs,iThe  free  energy  density can  be  approximated  by  re-

placing the bulk densities in the first-order TPT treatment for
uniform  polymeric  systems  with  the  weighted  densities  as
shown in Eq. (12), i.e.,[25]

Φch
hs,p [{nl(r)}] =np0(r)Np

[∑Np
m=1

(1 − Nm
p )lnghs,p

m,m−

∑Np−1

m=1
lnghs,p

m,m+1] (22)

with[51]

ghs,p
m1,m2

= 1
1 − n3

+
n2

2(1 − n3)2 σm1
p σm2

p

σm1
p + σm2

p
+

n2
2

18(1 − n3)3 ( σm1
p σm2

p

σm1
p + σm2

p
)2

(23)

Φch
el,pAnalogously,  the  free  energy  density can  be  approx-

imated by

Φch
el,p [{q(l)i (r)}] =q(0)p (r)

Np
×

[∑Np
m=1

(1 − Nm
p )yel,p

m,m −∑Np−1

m=1
yel,p
m,m+1] (24)

with[21,22]

yel,p
m1,m2

=
2lB [zm1zm2 − zeff,m1zeff,m2]

σm1
p + σm2

p
(25)

np0 q(0)p

pth

In Eqs. (22) and (24),  and  are the weighted densities

for the total monomers of the  polymers.

FC
MFThe mean field Coulomb interaction has the form

FC
MF [{ρi(r)}] = 1

2
∑i,j ∫ dr1 ∫ dr2ρi(r1)ρj(r2)Ψij(r1, r2) (26)

Ψij(r1, r2)
βΨij(r1, r2) = βΨC

ij (r1, r2) = lBzizj/∣r1 − r2∣ zi

where  is the Coulomb interaction. In the point charge

model, ,  where is

the valency of ion species i. Eq. (26) can be rewritten as

FC
MF [{ρi(r)}] = Fsh

MF [{ρi(r)}] +∑izie0 ∫ drρi(r)ϕ(r) −
∫ dr

ε0εr

2
[∇ϕ(r)]2

(27)

where

Fsh
MF [{ρi(r)}] = 1

2
∑i,j ∫ dr1 ∫ dr2ρi(r1)ρj(r2)ΔΨi,j(r1, r2) (28)

ΔΨi,j(r1, r2) = Ψij(r1, r2) − ΨC
ij (r1, r2) ϕ(r)

bα

with .  In  Eq.  (27),  is  the

electrostatic potential.  It  is known that the point charge model
overcounts  the  electrostatic  interaction  in  the  mean-field
treatment.  Therefore,  similar  to  the  work  in  Ref.  [50],  we
proposed  a  truncated  charge  shell  model  in  our  previous
work,[49] where  the  charge  was  evenly  distributed  on  the
spherical shell with radius . According to the truncated charge
shell model, we have
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βΔΨij(r1, r2) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if r12 ≥ hij

−
lBzizj

4bibjr12
(r12 − bij)2 if ∣Δbij∣ ≤ r12 < hij

lBzizj [ 1

max{bi, bj} − 1
r12

] if 0 < r12 < ∣Δbij∣
(29)

bij = bi + bj Δbij = bi − bj hij = hi + hj r12 =∣r1 − r2∣ bi hi

λi = Ri + A/2Γb hi = Ri + B/2Γb A = 1
B = 0 bi = λi hi = Ri

bi

with , , ,  and 
, where and are the radius of the charge shell and

the  truncated  length,  respectively.  In  general,  we  have
 and .  In  this  work,  we  set 

and , i.e.,  and . We have to note that although
the  radius  of  charge  shell is  very  large  in  dilute  charge
solutions,  this  truncated  charge  shell  model  is  still  reliable.  In
dilute charged solutions, the first term in the right-hand side of
Eq.  (27)  is  not  important.  The  second  and  third  terms  will
domain the mean field Coulomb interactions.

FvdWThe free energy due to the van der Waals interactions 
is usually treated using a mean-field approximation,[52] that is

FvdW [{ρi(r)}] = 1
2
∑i,j ∫ dr1 ∫ dr2ρi(r1)ρj(r2)uij(r1, r2) (30)

uij(r1, r2)Usually, is  modeled  as  Lennard-Jones  potential,
Yukawa  potential,  or  Square-well  potential.  In Atif,  we  use
Square-well potential, i.e.,

βuij(r1, r2) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+∞ r12 < σij
εij σij ≤ r12 ≤ γcσij
0 r12 > γcσij

(31)

σij = (σi + σj)/2 γcwhere and the potential  width parameter is
fixed to 1.2 in Atif (which can be changed easily).

ρp(R) ρα(r) ϕ(r)
Combining Eqs. (4), (5) and (9), we obtain the full grand po-

tential  for  the  system  considered  in  this  work.  Extremization
of the grand potential Eq. (4) with respect to , , 
yields respectively the Euler-Lagrange equations for the dens-
ity  profiles  of  the  polymers  and  small  ions,  and  the  Poisson
equation:

ρp(R)aNp = exp {β (μp − Vb
p(R) − Ub

p(R) −∑Np
k=1

ωk
p(rkp))} (32)

ρα(r)aα = exp {β [μα − ωα(r)]} (33)

∇2ϕ(r) = −
e0
εrε0

∑iziρi(r) (34){ωk
p(r)}In Eqs. (32) and (33), the effective fields are

ωk
p(r) = ψp,m(r) + zmp e0ϕ(r) + δ(Fhs + FvdW + Fel + F

sh
MF)

δρmp (r) (35)

∑m−1
m̂=1 Nm̂

p < k ≤ ∑m
m̂=1 N

m̂
p ∑0

m̂=1 N
m̂
p = 0 {ωα(r)}for with ;  and 

are

ωα(r) = ψα(r) + zαe0ϕ(r) + δ(Fhs + FvdW + Fel + F
sh
MF)

δρα(r) (36)

kth pth
Substitution  of  Eq.  (32)  into  Eq.  (13),  the  density  profile  of

the  segment in the  polymer can be obtained, that is,

ρkp(r)a = exp {β [μp − ωk
p(r)]}Ωk

p(r) (37)

where

Ωk
p(r) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ e−βω
k−1
p (r′)Gk−1

L (r′, r)dr′ k = Np

∫ e−βω
k+1
p (r′)GkL(r, r′)GkR(r′, r)dr′ k < Np

(38)

GjL GjRIn Eq. (38), the propagators and  are determined from

the recurrence relations

GkL(rkp, rk+1
p ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 k = 1

∫ δ(»»»»»rkp − r′
»»»»» − dk−1

p )
4πdk−1

p dk−1
p

exp [−βωk−1
p (r′)]×

ε(r′, rkp, rk+1
p )Gk−1

L (r′, rkp)dr′ 1 < k < Np
(39)

and

GkR(rk+1
p , rkp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
∫ δ(»»»»»rk+1

p − r′
»»»»» − dk+1

p )
4πdk+1

p dk+1
p

exp [−βωk+2
p (r′)]×

ε(rkp, rk+1
p , r′)Gk+1

R (rk+1
p , r′)dr′ k < Np − 1

1 k = Np − 1
(40)

ε(rkp, rk+1
p , rk+2

p ) = exp [−βEb(skp, sk+1
p )]where .

{ρi(r)} {ωk
p(r)}{ωα

p(r)} GkL GkR{ρnew
i (r)}

ρi(r) = ρi(r)p0 + ρnew
i (r)(1 − p0) p0

0.01

{ρnew
i (r)} {ρi(r)}

etot etot=10−7

Γ(r)
ϕ(z)

Eqs. (33)−(38) can be solved numerically by Picard iteration
constrained  by  specific  boundary  conditions.  The  numerical
procedure starts  with an initial  guess  for  the density  of  each

species  as  input.  Then  the  effective  fields and

 and propagators  and  are calculated, which res-

ult  in the new density profiles .  Then the new input
densities  are  assigned  by  the  following  mixing  rule:

,  where is  a  mixing  para-
meter,  typically  on  the  order  of .  The  procedure  is  re-
peated  until  the  difference  between  successive  iterations  in
the  densities  of and at  all  positions  normal-
ized by their respective bulk densities is less than an error tol-
erance ,  typically .  Some  details  about  the  nu-
merical algorithm used in Atif are provided as follows. Firstly,
the current Atif can only do one-dimensional calculations, i.e.,
the density  profiles  of  all  species  and electric  potentials  vary
only in the direction perpendicular to the surface (z direction).
Secondly,  all  the  integrals  are  obtained  numerically  using
Simpson  integral  method.  Thirdly,  the  space-dependent
screening  parameter  are  obtained  using  Newton-Raph-
son  method  based  on  Eq.  (18).  Finally,  for  one-dimensional
calculations, the electric potential  is given by

βe0ϕ(z) = βe0ϕ(0) + 4πlBz∑i
∫ ∞

0
ziρi(z′)dz′+

4πlB∑i
∫ z

0
ziρi(z′)(z′ − z)dz′ (41)

ϕ(0)
dϕ(z)/dz∣z=0 = −4πlBQ ϕ(0) = ϕ0

ϕ(∞) = 0 Q

Q

ϕpse(z) {ρi(z)}

The  potential  at  the  surface  is  determined  from  the
boundary  conditions (or )
and , where is the surface charge density. We have
to  note  that  Eq.  (41)  is  not  robust  for  the  systems with  fixed
surface  charge  density .  In Atif,  we  use  a  smart  method  to
obtain  electric  potential.  We  first  obtain  the  pseudo  electric
potential  based on the density profiles  via

βe0ϕ
pse(z) = 4πlBz∑i

∫ ∞

z
ziρi(z′)dz′−

4πlB∑i
∫ ∞

z
ziρi(z′)z′dz′ (42)

{ρ∗i (z)}
ϕpse(z) {ρ∗i (z)}Then we can get the new density profiles  based on

the pseudo potential .  Usually,  does not satisfy
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ϕ0the charge neutrality condition. We introduce a parameter 
that satisfies

e0∑i∫
∞

0
ziρ

∗
i (z′)exp(−βe0ziϕ0)dz′ = −Q (43)

ϕ0
ϕ(z) = ϕpse(z) + ϕ0

ρnew
i (z) = ρ∗i (z)exp(−βe0ziϕ0)
 can  be  obtained  numerically.  Then  the  electric  potential  is

and  the  new  density  profiles  are

.
Fig. 2 gives a schematic flowchart for the iterative numeric-

al  algorithm  that  is  used  to  solve  the  Euler-Lagrange  equa-
tions (Eqs.  (33) and (37))  and Poisson equation (Eq. (34))  self-
consistently.  We have to note that Picard iteration algorithm
is  not  the  only  option.  Some  other  advanced  numerical  al-
gorithms  such  as  Newton-Raphson  method  and  Broyden's
method can be used to solve the self-consistent equations.[53]

However,  Picard  iteration  algorithm  is  very  robust  and  effi-
cient  in  one-dimensional  calculations.  A  more  advanced  nu-
merical  method  will  be  considered  in  three-dimensional  cal-
culations  in Atif in  the  future.  The  framework  of  the  main
function of Atif is shown in Fig. 3.

Once a solution to Eqs. (33)−(38) is obtained, the grand po-
tential of the whole system is calculated as

βW =βFex −∑
α
∫ drρα(r) [βω̂α(r) + 1]−

∑P

p=1
∑Ni

k=1
∫ drρkp(r) [βω̂k

p(r) + 1
Ni
] (44)

ω̂α = ωα − ψα ω̂k
p = ωk

p − ψp,m

∑m−1
m̂=1 Nm̂

p < k ≤ ∑m
m̂=1 N

m̂
p ∑0

m̂=1 N
m̂
p = 0

where and with

 and .

INSTALLATION AND IMPLEMENTATION

The present  contribution of  this  work is  an attempt to remove
the  roadblock  for  researchers  (especially  experimental  groups)
to use self-consistent mean-field theory (SCFT) (see Sec. II in ESI)
and  DFT  in  studying  the  structural  and  thermodynamic

properties  of  inhomogeneous  complex  fluids.  There  is  no  big
obstacle  for  researchers  with  sufficient  computational
experience  to  compile  the  code.  However,  a  significant  barrier
may  exist  to  entry  for  potential  users  who  do  not  do
computational work. We thus provide the open-source Atif code
including  makefile  as  well  as  binary  executables  for  OS  X
(named  AtifOS)  and  Linux  (named  AtifLx)  for  public
downloaded.[54] The  computations  through Atif is  completely
controlled  by  a  readable  input  file.  We  are  also  providing  the
input  files  for  all  examples  in  this  work.  In  this  section,  we  will

Guess densities {ρi(r)}

Calculate effective fields
{ωk

p(r)} and {ωα(r)}

Calculate chain conformational
contributions: Eqs. (38)–(40)

Error criteria: 
max {|ρi

new(r) − ρi(r)|/ρi
b}

< etot

Density profiles & free energy

yes

Update densities
ρi(r) = ρi

new(r)p0 = ρi(r) (1 − p0)

no

Calculate new densities
{ρi

new(r)}: Eqs. (33) and (37)

ρi(r) = ρb
i

Fig. 2 A schematic flowchart for self-consistently solving the Euler-
Lagrange  equations  and  Poisson  equation.  In  most  cases,  the  bulk
density  of  each  species  can  be  simply  chosen  as  the  initial  guess
density profiles, i.e., .  However, a better choice of the initial
guess density profiles will accelerate the convergence.

int main( )
{

return 0;
}

readSystem();
/*read all of the physical parameters from input file*/

BulkChemPotential( );
/*calculate the chemical potentials for each species*/

FileOpen(); /*prepare the output files*/

Initialization(); /*initialize the simulations*/

do{

}while(condition of convergence);

EulerLagrange();
/*solve the Euler-Lagrange equations as shown in
Eqs. (32)–(40) with given density profiles {ρi(r)}*/

EnergyCalculation(); /*Calculate the grand potential*/

FileOutPut(); /*write the results in the output files*/

Prepare the simulation

Solve the Euler-Lagrange
equations self-consistently
as shown in Fig. 2

Output the results

Fig. 3    The pseudo-code for the main function of Atif.
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briefly  explain  how to install  and implement Atif on a  Linux or
OS X laptop.

∼
∼

∼

16th

To use Atif,  we first  need to download the source files, i.e.,
"Atif.zip", from the website[54] and then uncompress them in-
to  our  local  path, e.g.,  " /".  We  can  find  the  executables  and
makefile  under  the  directory  path  " /Atif/cmake/".  One  can
use the existing executables or make a new executable file us-
ing  the  command  "make".  The  example  input  files  can  be
found  under  the  directory  path  " /Atif/example/".  For  the
users who just want to know how to use Atif but not the the-
ory  or  algorithm  itself,  they  only  need  to  understand  the  in-
put file. We will explain the details of the input file in the next
section via three illustrative examples, while in this section we
will  only  demonstrate  how  to  implement Atif without  con-
cerning  the  specific  details  in  simulation.  Before  we  run Atif,
we have to assign the absolute directory path for the output
files in the last line (see the line in Fig. 4) in the input file.
Then the following command (see Fig.  5)  can be used to im-
plement Atif in the background. Now, our first example is run-
ning  in  my  laptop.  In  the  next  section,  we  will  demonstrate
the input file in detail via three specific examples.

CASE STUDIES

We  demonstrate  part  of  the  applicability  of Atif  via three
examples:  1,  electric  double-layer  (EDL)  of  asymmetric  electro-
lytes; 2, flexible/semi-flexible sequence-defined polyelectrolytes
near  a  surface;  3,  interactions  between  two  surfaces  mediated
by polyelectrolyte solution. The operation of Atif is controlled by
an  input  file  that  contains  all  the  parameters  of  the  mimic
system.  In  this  section,  we  will  explain  the  input  file  in  depth
without  concerning  the  details  of  the  numerical  procedures  in
Atif.

EDL of Asymmetric Electrolytes
The EDL of electrolytes has been studied extensively in the past
and is still a hot topic in many fields such as supercapacitors. To
predict correctly the EDL of electrolytes with asymmetrical ions
is  a  particular  challenge,  especially  for  the  cases  when  the
external  field  is  weak.  However,  in  most  cases,  the  cDFT  can
quantitatively  predict  the  EDL  compared  to  the  Monte  Carlo
simulations based on the primitive model (which is a commonly

z+ = 2 σ+ = 6
σ− = 3

Fsh
MF = 0

used model for electrolyte systems in analytic theory, numerical
computation,  and  molecular  simulation).  In  this  section,  we
demonstrate  that  our  tool  (Atif)  can  be  used to  accurately  and
easily  study  the  electrolyte  systems  with  size/valency
asymmetry. In Fig. S1 in ESI, the parts of the input file specify all
the physical parameters that determine an assigned electrolyte
system  with  size/valency  asymmetry  is  presented  and  the
explanations  of  this  input  file  are  also  provided.  By  using  the
similar command to the one shown in Fig. 5, one can obtain the
EDL  structure  near  a  single  surface. Fig.  6 shows  the  density
profiles  for  cations  ( ,  Å,  and  0.1  M)  and  anions
(z−=1,  Å and 0.2 M) in the vicinity of a neutral surface. In
order to show the advance of Atif, we will provide comparisons
between Atif and  other  theoretical  methods  such  as  a  DFT
method  based  on  the  bulk  fluid  density  (BFD)  expansion
proposed  by  Wu's  group,[1] a  DFT  method  based  on  the
reference  fluid  density  (RFD)  expansion  proposed  by  Gillespie
and  coworkers,[55] and  the  self-consistent  mean-field  theory
(SCFT,  see  Sec.  II  in  ESI).  Both  in  BFD  and  RFD  methods,  the
mean  field  Coulomb  interactions  are  calculated  based  on  a
point  charge  model  (i.e., )  and  the  electrostatic
correlations  are  obtained  using  Taylor  expansion.  In Atif,  the
mean  field  Coulomb  interactions  are  calculated  using  a
truncated  charge  shell  model  (Eq.  29)  and  the  electrostatic
correlations  are  obtained  using  a  FMT-like  weighted  density
approximation (Eqs.  15−19).  According to Fig.  6,  we know that
both  BFD  (orange  curves)  and  SCFT  (blue  curves)  cannot
provide even qualitative predictions for both cations and anions
in  such  a  strongly  asymmetrical  system.  However,  the
predictions  (red  curves)  from Atif (red  curves)  and  RFD  (cyan
curves)  show  excellent  agreement  with  the  ones  from  MC
simulations  (black  circles).  More  specifically, Atif shows  much
better  predictions  than  RFD  close  to  the  surface;  while  RFD
shows  better  predictions  than Atif in  the  area  far  from  the
surface. One can refer to our previous work[49] to see more direct
comparisons between cDFT calculations and MC simulations for
inhomogeneous  electrolyte  systems.  In Fig.  6,  we  also  provide
the  simulation  time  consumption  of  each  method  under  the
same  simulation  conditions, i.e.,  the  same  simulation
parameters  and  Central  Processing  Unit  (Intel  Xeon  Platinum
9242  CPU  2.30GHz).  The  time  consumption  of Atif,  BFD,  RFD,
and SCFT are 0.63,  24.73,  40.32,  and 0.05 minutes,  respectively.
In a word, both in terms of the accuracy and the efficiency, Atif is
an advanced theoretical tool.

Flexible/Semi-flexible Sequence-defined
Polyelectrolytes Near a Surface
Polyelectrolyte  (PE)  is  a  polymer  whose repeating units  can be

==============================================================
/*********** The lines beloware for the parameters of the system ************/
==============================================================

…

==============================================================
/******************** Set the path for the output files *********************/
FILEPATH:

16

1

15

—

~/Atif/output/examples/
==============================================================

Fig. 4    Part of the input file named "input_example.dat". The numbers as shown in the left-most column are the index of the lines, which do not
actually exist in the input file.

echo "~/Atif/example/input_example.dat" | nohup ./AtifOS &

Fig.  5    In  this  example,  the  executable  file  named "AtifOS"  is  used.
One  can  generate  their  own  executable  file  using  the  command
"make" under the directory path "~/Atif/cmake/".
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Np = 8

N1
p = N2

p = ⋯ = N8
p = 5

Np = 40

partially  or  fully  charged in  a  specific  solvent.  The sequence of
monomers along a polyelectrolyte chain can have a significant
impact  on  the  surface  and  interfacial  properties  and  structure
and function of  its  self-assembly materials.[57−59] In this  section,
we  will  not  discuss  the  effects  of  monomer  sequence  on  the
surface/interfacial  or  self-assembly  properties.  We  will  only
explain how to use Atif to  study structure and thermodynamic
properties  of  sequence-defined  polyelectrolytes  (PEs)  near  a
single surface (see Fig. 7). The parts of the input file that contain
the physical parameters for a given sequence-defined polyelec-
trolyte  systems  are  provided  in  Fig.  S2  in  ESI  and  the
corresponding  explanations  are  also  presented.  In Fig.  8,  the
density  profiles  for  AB  (alternating)  multiblock  copolymers  are
shown, where block A is fully charged and block B is neutral. The
total  number  of  blocks  is  and  each  block  consists  of  5

monomers, i.e., .  That  is,  the  degree  of
polymerization  is  (see Fig.  7).  According  to Fig.  8,  we
know  that  the  charged  blocks  prefer  to  accumulate  at  the
surface  due  to  the  electrostatic  attraction.  Although  the  peaks
of  the  density  distributions  for  different  charged  blocks  are

7th
almost  at  the  same  position,  the  magnitude  of  the  peaks
are  quite  different.  The  peak  magnitude  of  the block  (the
green  solid  curve  in Fig.  8)  is  much  smaller  than  the  ones  of
the  other  charged  blocks  due  to  the  suspending  end  block
(the  green  dash  curve  in Fig.  8).  The  non-terminal  neutral
(athermal)  blocks also show remarkable accumulation near the
surface,  where the peak positions of  the density profiles of  the
non-terminal  neutral  blocks  are  farther  than  the  ones  of  the
charged  blocks.  Those  phenomena  mentioned  above  are
predictable.  In  fact,  the  surface  and  interfacial  behaviors  of
sequence-defined  PEs  are  rich  and  complicated.[33] The
systematical  study  on this  issue  will  be  discussed in  our  future
work. It is worth noting that in this work we only take a simple
AB  alternating  semiflexible  copolymer  as  example.  Actually,
Atif can be used to investigate surface and interfacial properties
for  arbitrary  linear  flexible/semiflexible  polymers  or  polymer
blends  systems  based  on  the  tangentially  connected  hard-
sphere model.

Interactions Between Two Surfaces Mediated by
Polyelectrolyte Solution
Polymers  play  an  important  role  in  industrial  manufacture.  For

2:−1 σ+ = 6
σ− = 3

Fig. 6    The density profiles for cations (top) and anions (bottom) for
 electrolytes  near  a  neutral  surface.  The  diameters  are Å

and  Å and the ion concentration is 0.1 M. The temperature and
dielectric constant are 298.15 K and 78.5, respectively, to mimic room
temperature  aqueous  solution.  The  numbers  in  the  parentheses  in
the top figure are the time consumptions of each methods with unit
minutes  (mins).  "MC"  (black  circle)  means  GCMC.[56] The  corres
ponding input file is shown in Fig. S1 in Sec. III of ESI.

Np

Np

Nm
p

Fig.  7    Schematic  of  the  sequence-defined  semiflexible
polyelectrolytes (AB-type multiblock copolymers). The blue and light
gray  blocks  are  the  negatively  charged  and  neutral  monomers,
respectively.  The  dark  orange  spheres  denote  the  positive
counterions and the gray filling rectangle is  the charged surface. 
and are  the  degree  of  polymerization  and  number  of  blocks,
respectively. is the number of monomers of block m.
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Fig.  8    The  density  profiles  for  monomers  and  counterions  near  a
charged  surface.  The  diameters  for  monomers  and  counterions  are

 Å and the monomer concentration is 0.1 M. The surface charge
density  and  bending  potential  are  0.02 and .  The
temperature  and  dielectric  constant  are  298.15  K  and  78.5,
respectively. The solid and dash vertical lines show the peak positions
of  the  charged blocks  and non-terminal  neutral  blocks,  respectively.
The corresponding input file is shown in Fig. S2 in ESI.
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h
W(h)

Π(h) = −∂w(h)/∂h
w = W/A

h Π(h) − Π(∞)
h

example,  PEs  are  extensively  used  as  additives  in  broad
applications,  such  as  flocculation  and  stabilization  of  colloidal
suspensions,  emulsions  and  foams,  water  purification,
papermaking and so on.[60−62] For this reason, the studies of the
interaction  between  surfaces  mediated  by  PE  solutions  attract
a  lot  of  attention  of  researchers.  In  this  section,  we  will
demonstrate how to calculate PE solution-induced interactions
between  two  charged  surfaces  (the  schematic  of  this  system
is  shown  in Fig.  9).  For  a  given  separation  distance  between
two charged surfaces, we can calculate the grand potential 
using  Eq.  (44).  Then  the  osmotic  pressure  is 
where with  A  the  area  of  each  surface  and  the  force
per unit area between the two surfaces with separation distance

is .  In  this  work,  the  osmotic  pressure  for  the
confined system with separation distance is estimated by

Π(h) ≈ w(h) − w(h + 0.01σ)
0.01σ

(45)

h
Π(h)

h > σ

According  to  Eq.  (45),  we  can  obtain  the -dependent  os-
motic  pressure .  According  to Fig.  10,  the  interactions
between the two charged surfaces under the conditions con-
sidered in this  section are pure repulsion when  due to
the EDL overlapping,  and the two surfaces will  not  feel  each

h > 6σother when .  Although the behavior  of  PE solution-in-
duced interactions shown here seems simple and obvious,  it
can  be  very  interesting  and  complicated  in  other  parameter
space.[63,64] One  can  use Atif to  explore  broad  parameter
space  for  better  understanding  the  interaction  behaviors  of
confined  systems  with  different  kinds  of  polymers  or/and
salts.  In  this  work,  we  only  show  one  simple  example  to  ex-
plain  how  to  calculate  the  interactions  between  two  surface
using Atif.

CONCLUSIONS

Classical  density  functional  theory  (cDFT),  as  an  advanced
theoretical  method,  has  proven  to  be  a  sophisticated,  robust,
and  efficient  approach  for  studying  the  structural  and
thermodynamic  properties  of  inhomogeneous  complex  fluids.
However,  cDFT is  more  esoteric  compared to  other  theoretical
and  simulation  methods,  such  as  self-consistent  field  theory
(SCFT)  and Monte Carlo simulation and so on.  Therefore,  there
are big roadblocks in the extensive use of cDFT. In this work, our
goal is to build a bridge between cDFT and the researchers who
are interested in complex fluid systems.

We have presented three examples to pedagogically intro-
duce  an  easy-to-use  and  broadly  accessible  open-source
cDFT software package named "an advanced theoretical tool
for  inhomogeneous  fluids"  (Atif).  Although,  in  this  work,  we
only  consider  simple  systems  such  as  asymmetric  salts  or
simple  semiflexible  block  copolymers  in  the  vicinity  of  a
single  charged surface and flexible  polyelectrolytes  confined
by  two  charged  surfaces, Atif can  be  used  to  study  various
systems  with  symmetric/asymmetric  salts  or/and  almost  all
kinds of linear flexible/semiflexible polymers (including poly-
mer  blends).  And  the  interactions  between  species  and  sur-
faces are optional, i.e., electrostatic, non-electrostatic, or both.
Moreover, Atif can  be  used  to  study  systems  with  dielectric
constant  discontinuity  across  the  surface-solution  interface.
Additionally,  one  can  easily  extend Atif to  investigate  other
systems which have not yet been covered by our original ver-
sion of Atif such as polymer brush systems. Therefore, it is ex-
pectable that one can use Atif to explore new and interesting
physical  phenomena  in  inhomogeneous  complex  fluid  sys-
tems. It is worth noting that the current Atif can only be used
to consider  systems with planar  surfaces and do one dimen-
sional  calculations.  Our  group  will  keep  update  on  the  new
version of Atif.  In the near future,  we will  add modules to in-
volve spherical and cylindrical surfaces. And consideration of
two and three dimensional systems in Atif are also in our plan.
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Fig.  9 Schematic  of  the  model  for  PE  solution  confined  in  two
charged  surfaces.  The  blue  and  light  gray  and  isolated  dark  orange
spheres  are  the  negatively  charged  monomers  and  positive
counterions,  respectively.  The  gray  filling  rectangles  are  the  two
charged surfaces. and are the degree of polymerization and the
number of blocks, respectively.
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Fig.  10    PE  solution-induced  interactions  between  two  charged
surfaces. The bending potential and the monomer concentration are

 and 0.1 M, respectively.  The other parameters are the same as
the ones in Fig. 8. The corresponding input file is shown in Fig. S3 in
ESI.
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