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Abstract   Helical polymers have attracted a great deal of attention and been extensively investigated due to their various applications. One of

the most important applications of helical polymers is chiral recognition and resolution of enantiomers for the reason that a pair of enantiomers is

commonly with different physiological and toxicological behaviors in biological systems. Helical polymers usually present unexpected high chiral

recognition ability to a variety of racemic compounds. What’s more, the chiral recognition and resolution abilities of the system are dependent on

the highly ordered helical  structures of the helical  polymers.  This mini review mainly focuses on the recent progress in chiral  recognition and

resolution based on helical polymers. The synthetic methodology for helical polymers is firstly discussed briefly. Then recent advances of chiral

recognition and resolution systems based on helical polymers, especially polyacetylenes and polyisocyanides, are described. We hope this mini

review will inspire more interest in developing helical polymers and encourage further advances in chiral-related disciplines.
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1. INRTODUCTION

Helix  is  not  only  one  of  the  essential  and  important  structural
moieties  in  biological  macromolecules,  but  also  a  universal
object  in  nature  from  microscope  to  macroscope.[1−3] Inspired
by nature,  scientists,  especially  chemists,  have  done enormous
efforts  to  design  and  prepare  artificial  helical  materials,
including  molecules,[4,5] oligomers,[6,7] polymers,[8,9] as  well  as
supramolecular  aggregates,[10,11] etc.  Among  them,  helical
polymers  have  attracted  a  great  deal  of  attention  due  to  their
theoretical  and  practical  significance.[12−15] Lots  of  helical
polymers have been developed, such as vinyl polymers bearing
large  pendent  groups,[16] polyacetylenes,[17] polyisocyanides,[18]

polyamides,[19] polyguanidines,[20] etc. as shown in Fig. 1. These
helical  polymers  present  some  interesting  and  distinctive
properties.  For  example,  helical  polymer  can  be  obtained
through copolymerization of an achiral monomer with a small
amount  of  optically  active  monomer,  which  is  known  as
“chiral  amplification”  effect.  Meanwhile,  since  the  helical
conformation is  chiral  in nature, i.e. the right helices are with
mirroring  relationship  to  the  left  ones,  helical  polymers  are
inherently  chiral.  What’s  more,  benefitting  from  the
development  of  synthetic  chemistry,  novel  helical  polymers
with excellent performance can be elaborately prepared and
investigated,  with  more  still  under  rapid  development
currently.

One of the most distinguished applications of helical poly-
mers  is  the  chiral  recognition  and  resolution  of  enantio-
mers.[21−24] Since  a  pair  of  enantiomers  is  usually  with  differ-
ent  physiological  and  toxicological  behaviors  in  biological
systems, the development of chiral drugs with a single enan-
tiomer  is  of  great  significance  on  people’s  life.  This  means
that  the  selective  preparation  and  chiral  resolution  of  ra-
cemates  are  essential  in  this  field.  As  for  the  chiral  recogni-
tion  and  resolution  of  racemates,  helical  polymers  are  com-
monly used as chiral  stationary phase (CSP) of high-perform-
ance  liquid  chromatography  (HPLC),  as  well  as  to  fabricate
membrane.[25−27] Moreover, the chiral recognition and resolu-
tion abilities of the system depend on the highly ordered hel-
ical structures of the helical polymers.

Here, the methodology for the preparation of helical poly-
mers  will  be  firstly  introduced.  Then,  the significant  research
progress  (from  2010  to  2021)  of  the  synthetic  helical  poly-
mers,  such  as  polyacetylenes,  polyisocyanides, etc.  in  the
fields of chiral recognition and resolution will be described.

2. METHODOLOGY FOR THE SYNTHESIS OF
HELICAL POLYMERS

In  general,  the  most  forthright  and  easy  method  to  synthesize
chiral  helical  polymer  is  through  the  polymerization  of  chiral
monomers  directly.  However,  chiral  monomers  are  usually
expensive and their kinds are limited. Therefore, the helix-sense-
selective  polymerization  (HSSP)  of  achiral  monomers  with  the
help  of  chiral  initiators,  catalysts,  or  additives  to  afford  chiral
helical  polymers  becomes  important.  In  the  meantime,  chiral
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induction  of  racemic  helical  polymers,  or  copolymerization  of
achiral  monomer with a small  amount of chiral  monomers can
afford chiral helical polymers, too. This part will mainly introduce
HSSP of achiral  monomers (Section 2.1) and chiral  induction of
racemic helical polymers (Section 2.2).

2.1 Synthesis of Helical Polymers by HSSP of Achiral
Monomers
Owing  to  the  advantages  of  using  achiral  monomers  to  afford
chiral  helical  polymers  with  desired  optical  activity,  HSSP
strategies  attract  a  great  deal  of  attention  and  have  been
extensively employed recently. The HSSPs are mainly conducted
with the help of chiral initiators, chiral catalysts, chiral additives,
and so forth.

2.1.1 HSSPs with chiral catalysts
HSSPs  of  achiral  monomers  using  chiral  catalytic  system  are
an  easy  and  effective  method  for  preparing  chiral  helical
polymers.[28−35] Generally,  a  chiral  catalytic  system  contains  an
achiral  transition  metal  complex  and  chiral  molecular  ligands,
and  they  together  can  offer  a  chiral  active  species.  Helical
polymers  with  optical  activity  will  be  obtained via HSSPs  of
achiral  monomers  in  the  presence  of  chiral  active  species.
Teraguchi et  al. explored  the  HSSP  of  achiral  phenylacetylene
monomers  bearing  two N-alkylamide  groups  using  the  chiral
catalyst  of  [Rh(nbd)Cl]2-(R)-(+)-1-phenylethylamine  (nbd  =
norbornadiene)  as  shown  in Fig.  2.[28] The  resulted  polymers
presented  Cotton  signals  at  the  absorption  regions  of  the
polymeric  backbone,  indicating that  the excess  of  one-handed
helical  structure was  induced.  What’s  more,  benefiting  from
intramolecular  hydrogen  bonds,  the  induced  helical

conformations  could  be  maintained  for  a  long  time  in  the
solution  of  toluene  at  room  temperature.  By  using
[Rh(nbd)Cl]2 and  chiral  amine  as  the  binary  catalyst,  Aoki’s
group  achieved  HSSP  of  achiral  phenylacetylene  monomer
with  bulky tert-butyl  substituents.[29] The  degree  of
polymerization was controlled, and the obtained optically active
helical  polymer  could  act  as  the  macroinitiator  for  the
polymerization  of  the  second  monomer  to  afford  a  block
copolymer.

Optically  active  helical  polyisocyanides  can  also  be  ob-
tained via HSSPs  using  chiral  catalysts.[30,31] Schraff et  al. in-
vestigated  the  polymerization  of  fulvenyl-functionalized  iso-
cyanide monomers using nickel(II)-aryl complexes with chiral
chelating phosphine ligands or a chiral aryl-group as the cata-
lyst.[30] The two catalysts both presented HSSP of the isocyan-
ide  monomers  to  afford  optically  active  polyisocyanides  in
poor solvent, which prevented the racemization of polyisocy-
anides in solution.

2.1.2 HSSPs with chiral additive
In addition to chiral catalysts, chiral additives are usually used as
chiral  source  in  the  HSSPs  to  synthesize  helical  polymers
too.[36−39] Deng and coworkers have done wonderful research of
chiral  additive-assisted  HSSPs  to  prepare  different  chiral
materials.[36,37] They  constructed  optically  active  physical  gels
by  one-handed  helical  polyacetylene  through  HSSPs  of  achiral
substituted  acetylene  monomer  with  (R)-  or  (S)-1-phenyle-
thylamine  as  chiral  additive.[36] The  results  showed  that  the
obtained  substituted  polyacetylenes  were  with  one-handed
helical  conformations,  and  the  optically  active  physical  gels
were  constructed via helical  nanofibers  which  presented
prominent  one-handed  screw  sense.  Because  of  the  strong
intra-  and  intermolecular π-π interaction  between  the  phenyl
groups along the polymer chains,  the gels  were with excellent
chiral  memory  ability  and  still  maintained  the  optical  activity
after  removal  of  all  the  chiral  additives.  Meanwhile,  they
achieved  the  preparation  of  chiral  polymeric  particles  by  HSSP
of  achiral  acetylenic  monomer bearing bulky adamantyl  group
catalyzed by (nbd)Rh+B−(C6H5)4 with Boc-L- or Boc-D-alanine as
chiral  additive.[37] The  obtained  chiral  particles  were  regular
spherical  and  with  an  average  diameter  of  ~300  nm.  The
authors  suggested  that  the  formation  of  stable  helical
structures  might  result  from  double  hydrogen  bonds  of  the
chiral  additive  molecules  with  the  neighboring  two  amide
structures of the polymer’s pendant groups.

Zhang’s group designed and constructed photoresponsive
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Fig. 1    Chemical structures of synthetic helical polymers.
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Fig.  2    HSSP  of  phenylacetylene  monomers  bearing  two N-alkylamide  groups.  (Reprinted  with  permission
from Ref. [28]; Copyright (2012) American Chemical Society).
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polymeric  particles  with  supramolecular  helicity  from  achiral
monomers  through  HSSP  of  achiral  azobenzene-functional
monomer with the addition of R-  or S-octanol (Fig.  3).[38] The
optical  activity  of  the  supramolecular  particles  was  from  the
π-π stacking  of  achiral  side trans-azobenzene  groups  and  it
was  dependent  on  the  volume  fraction  of  the  added  chiral
solvent, the time of polymerization, as well as the time of UV
irradiation.  What’s  more,  the  chirality  of  the  polymeric
particles  could  be  completely  maintained  in  dispersions  for
more than two months.

2.2 Synthesis of Chiral Helical Polymers by Chiral
Induction of Racemic Helical Polymers
Chiral helical polymers can also be obtained by the induction of
racemic  helical  polymers  using  chiral  guest  molecules.  This  is
because  noncovalent  interactions  can  be  formed  between
guest  molecules  and  the  polymers.  The  optical  activity  of  the
induced helical polymers may be retained on occasion after the
removal  of  chiral  guest  molecules.  Lots  of  research  work  have
been  done  in  the  chiral  induction  of  racemic  polyacety-
lenes.[40,41] For  example,  Yashima  and  co-workers  prepared
optically  inactive  polyacetylene  bearing  2,2′-biphenolderived
pendants.[40] The helicity of the polymeric backbone, as well  as
the axial chirality of the side chains, could be induced by chiral
alcohol.  Moreover,  the  induced  macromolecular  helicity  and
axial  chirality  were  memorized  automatically  and  could  be
further switched in the solid state.

Except  for  polyacetylenes,  vinyl  polymers  can  be  induced
to  form  one-handed  helix  too.[42,43] Wan’s  group  facilely  and
efficiently  constructed  the  helical  structure  with  diverse  and
tunable  chiral  amplification  through  the  macromolecular
acid-base  complex  of  highly  isotactic  poly(2-vinylpyridine),
(+)-camphorsulfonic  acid  ((+)-CSA),  and  dodecylbenzensulf-
onic acid (Fig. 4).[42] They found that the backbone of poly(2-
vinylpyridine) would be twisted in a preferred direction driv-
en by the ionic interactions of  pyridinium pendants with the
acid ions of  (+)-CSA in the solution of  CHCl3 or  CHCl3/CH3CN
mixtures. Moreover, the sign and intensity of induced circular
dichroism depended on the composition of the solvents.

3. CHIRAL RECOGNITION AND RESOLUTION OF
HELICAL POLYMERS

Chiral recognition is an essential feature of living organisms, and

a  pair  of  enantiomers  usually  presents  different  physiological
and  toxicological  behaviors  in  biological  systems.  Therefore,
chiral  resolution  of  enantiomers  is  necessary  and  of  great
significance. The helical polymer-based chiral resolution system
has  been  widely  investigated  because  of  their  high  resolution
abilities for an array of racemates. A variety of helical polymers,
e.g.,  polyacetylenes,  polyisocyanides,  poly(methacrylate)s, etc.
have  been  explored  to  be  applied  in  the  field  of  chiral
recognition and resolution. The part will be mainly divided into
three  sections  according  to  the  type  of  helical  polymers, i.e.
helical  polyacetylenes  (Section  3.1),  helical  polyisocyanides
(Section 3.2), and other helical polymers out of the above scope
(Section 3.3).

3.1 Chiral Recognition and Resolution of Helical
Polyacetylenes
Polyacetylenes  have  attracted  much  attention  and  been
extensively investigated for chiral recognition and resolution of
racemates  for  the reason that  their  rigid conjugated backbone
could  be  induced  into  a  regular  helical  conformation via the
covalent  or  non-covalent  interaction  of  the  backbone  with
chiral  compounds.[44−47] Polyacetylenes  synthesized  directly  by
polymerization  of  chiral  acetylene  monomers  are  usually
optically  active  and  commonly  to  be  used  to  separate
racemates.  Zhang  and  Okamoto et  al. synthesized  optically
active helical poly(phenylacetylene)s with L-phenylalanine or L-
phenylglycine  ethyl  ester  pendants.[44] The  chiral  recognition
ability of  the polymers was influenced by the coating solvents,
molecular  weight,  optical  rotations,  as  well  as  the  substituted
groups  in  the  chiral  pendants.  Shen  and  Wan et  al. prepared
chiral  helical  polyacetylenes via the  polymerization  of  proline-
modified  acetylene  monomers  catalyzed  by  Rh-diene  comp-
lexes.[45] The  obtained  polymers  presented  remarkable  chiral
resolution ability when they were used as the CSPs of HPLC for
racemates  of  hydrogen-bond  donors  and  cobalt(III)  acetylace,
and  the  chiral  resolution  performance  was  affected  by  the
strength  of  the  hydrogen  bond  and π-π interactions  of
racemates  with  CSPs.  Freire  and  Maeda et  al. reported  three-
state  switchable  CSP  for  high-performance  HPLC  based  on
the  racemic  poly(phenylacetylene)  with  a  chiral  (R)-α-

 
Fig.  3    A  schematic  illustration  of  the  preparation  of  Azobenzeng-
OAPPs by HSSP. (Reprinted with permission from Ref. [38]; Copyright
(2020) The Royal Society of Chemistry).

 
Fig.  4    Schematic  illustration  of  helicity  induction  and  different
solvation  states  of  iP2VP-(+)-CSA  complex  in  CHCl3 and  CH3CN.
(Reprinted with permission from Ref. [42]; Copyright (2019) American
Chemical Society).
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methoxyphenylacetic  acid  (MPA)  pendants  (Fig.  5).[46] The
helical  sense  of  the  racemic  poly(phenylacetylene)-based  CSP
was dynamic and it could be induced to left- and right-handed
upon a  trace addition of  soluble  sodium or  cesium salts  in  the
system.  Moreover,  the  transition  of  the  two  different  helical
conformations  for  racemic  poly(phenylacetylene)  could  be
facilely realized through rinsing the CSP with methanol and the
successive addition of the proper salt.

Chiral  induction  strategy  can  also  afford  optically  active
helical  polyacetylenes  that  present  excellent  performance  in
chiral  recognition  and  resolution.  Ishidate et  al. prepared
poly(biphenylylacetylene)s (PBPAs) with a variety of function-
al  units  at  the  4’-position  of  the  biphenyl  pendants.[47] The
helicity of the polymeric backbone, as well as the axial chiral-
ity  of  the  biphenyl  pendants  could  be  induced via chiral  1-
phenylethanol.  Moreover,  the  helical  conformation  of  PBPA-
based CPS could be switched by alternate column treatment
with  a  (R)-  or  (S)-1-phenylethanol  containing  solution  after
immobilization of PBPA chains onto silica gel.

3.2 Chiral Recognition and Resolution of Helical
Polyisocyanides
Polyisocyanides  have  attracted  a  great  deal  of  attention
because of their  unique rigid rod helical  structure and broad
applications,  including  chiral  recognition  and  resolution  of
racemic  molecules.  Recently,  Wu’s  group  designed  and
synthesized  a  variety  of  stereoregular  helical  poly(phenyl
isocyanide)s  and  explored  their  chiral  recognition  and
resolution  ability.[48−53] For  example,  they  prepared  block
copolymers  and  miktoarm  star  polymers  consisted  of  optically
active  helical  poly(phenyl  isocyanide)s  bearing  chiral  pendants
and  random-coil  poly(ethylene  glycol).[48] The  obtained
copolymers  were  amphiphilic  and  could  form  supramolecular
spherical  self-assemblies  in  aqueous  solutions.  Moreover,  the
supramolecular  self-assemblies  presented  excellent  chiral
recognition  ability  to  fluorescent  dansyl  modified  L-  and  D-
phenylalanine  (L-  or  D-Phe-DNSP).  The  fluorescent  intensity  of
D-Phe-DNSP was about 5.4 times larger than that of L-Phe-DNSP
at  the  same  condition  (Fig.  6).  In  another  work,  Zhang et  al.
prepared  chiral  helical  poly(phenyl  isocyanide)-contained
hyperbranched  copolymers  by  the  combination  of  the  ring-
opening  polymerization  of  L-lactic  acid  with  Pd(II)-catalyzed

polymerization  of  phenyl  isocyanide  monomers  bearing  chiral
pendants.[49] The  obtained  hyperbranched  copolymers  were
optically  active  and  showed  good  chiral  recognition  and
resolution ability to racemic threonine in aqueous solutions. The
enantiomeric  excess  (ee)  value  of  the  induced  crystals  could
achieve 92%.

Apart  from  optically  active  helical  polymers,  Wu  and  co-
workers  also  prepared  optically  active  hybrid  materials  con-
sisted  of  poly(phenyl  isocyanide)  with  Fe3O4,  silicon  wafer,
grapheme  oxide  (GO), etc.[54−56] For  example,  They  immobil-
ized  chiral  helical  poly(phenyl  isocyanide)s  onto  GO
nanosheets via “grafting  from”  method  and  followed  by  hy-
drolysis  to  enhance  the  hydrophilicity  of  the  hybrid
GO/poly(phenyl  isocyanide)s.[54] The  chiral  recognition  and
resolution  ability  of  the  obtained  hybrid  composite  was
investigated,  and  it  turned  out  that  L-alanine  crystals  could
be  induced via the  composites  containing  the  helical  poly-
mers with right-handedness. Meanwhile, they synthesized hy-
brid  magnetic  nanoparticles  consisting  of  Fe3O4 as  the  core
and  helical  poly(phenyl  isocyanide)  bearing  chiral  pendants
as  arms.[55] Benefitting  from  the  handedness  of  helical
poly(phenyl isocyanide), the hybrid nanoparticles were optic-
ally  active and presented good performance in  chiral  resolu-
tion of threonine racemates. The ee value of the induced crys-
tal could achieve 93% (Fig. 7a). Owing to the magnetic prop-
erty,  the  chiral  hybrid  particles  could  be  easily  recovered via
magnetic field,  and they were still  with chiral resolution abil-
ity after recover (Fig. 7b).

3.3 Chiral Recognition and Resolution of Other Helical
Polymers
Besides helical polyacetylenes and polyisocyanides, helical vinyl
polymers,[57] polyfluorene,[58,59] as  well  as  supramolecular
polymers[60] have  also  been  studied  in  the  chiral  recognition

 
Fig. 5    Schematic illustration of macromolecular helicity modulation
in  poly-1 through  conformational  switching  of  the  MPA  pendants
using metal cations in solution. (Reprinted with permission from Ref.
[46]; Copyright (2019) American Chemical Society).

 
Fig. 6    (a) The structure of L- and D-Phe-DNSP. (b) Emission spectra
of the L- and D-Phe-DNSP encapsulated aggregates of miktoarm star
polymer  measured  in  water  at  25  °C  (λexc=390  nm).  Inserts  are  the
photographs  of  the  respective  solutions  under  UV  light  of  365  nm.
(Reprinted with permission from Ref. [48]; Copyright (2017) The Royal
Society of Chemistry).
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and  resolution  of  racemic  compounds.  Lu et  al. prepared
optically  active  polymers  through  the  radical  polymerization
of  acrylamide  derivatives  with  chiral  oxazoline  chromophore
units  using  Ln(OTf)3 (Ln  =  La,  Nd,  Sm,  and  Y,  OTf  =
fluoromethanesulfonate)  as  catalysts.[57] The  optical  activity
was affected by the stereoregularity of the polymers, and the
isotactic-rich  polymers  showed  chiral  recognition  ability  to
racemic  1,1’-bi-2-naphthol.  Valaš́ek,  Kappes  and  Mayor et  al.
reported  the  chiral  recognition  and  resolution  of  semicon-
ducting  single-walled  carbon  nanotubes  (s-SWCNTs).[58] They
prepared  a  pair  of  chiral  acid  cleavable  polyfluorenes  which
presented exciting recognition ability to left- or right-handed
s-SWCNTs  and  could  be  used  for  handedness  sorting  of  s-
SWCNTs.  What’s  more,  polyfluorenes  could  be  removed  to
afford handedness sorted s-SWNTs by treating polymers with
acids,  which  would  cause  the  degradation  of  the  polymers
into recyclable fluorine monomers.

4. CONCLUSIONS AND PROSPECTS

This  mini  review  summarized  recent  advances  in  the
preparation  of  helical  polymers  and  their  application  in  chiral
recognition  and  resolution.  Preparations  of  optically  active
helical polymers from achiral monomers through chiral catalyst-
assisted  HSSP,  chiral  additive-assisted  HSSP,  as  well  as  chiral
induction  of  racemic  helical  polymers,  were  firstly  described.
Then, the chiral  recognition and resolution of racemates based
on  helical  polymers,  particularly  polyacetylene,  polyisocyanide,

were reviewed.
Despite  the  numerous  remarkable  achievements  made  to

date,  there are still  some issues need to be further  explored.
For  example,  helical  polymers  with  highly  efficient  chiral  re-
cognition and resolution ability were rare. Meanwhile, the re-
ported helical polymers usually could separate a limited kinds
of  racemates,  while  helical  polymers  which  can  separate  a
wide range of racemates are seldom. In addition, mechanical
performance  of  most  synthetic  helical  polymers  is  usually
poor, which may prevent them from being fabricated into op-
tically  active polymeric  membrane that can be used in chiral
resolution at  industrial  level.  These are  the directions  for  the
research work in the future.
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